51
|
Ballard P, Brassil P, Bui KH, Dolgos H, Petersson C, Tunek A, Webborn PJH. The right compound in the right assay at the right time: an integrated discovery DMPK strategy. Drug Metab Rev 2012; 44:224-52. [DOI: 10.3109/03602532.2012.691099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
52
|
Wang D, Wang H. Oxazaphosphorine bioactivation and detoxification The role of xenobiotic receptors. Acta Pharm Sin B 2012; 2. [PMID: 24349963 DOI: 10.1016/j.apsb.2012.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Oxazaphosphorines, with the most representative members including cyclophosphamide, ifosfamide, and trofosfamide, constitute a class of alkylating agents that have a broad spectrum of anticancer activity against many malignant ailments including both solid tumors such as breast cancer and hematological malignancies such as leukemia and lymphoma. Most oxazaphosphorines are prodrugs that require hepatic cytochrome P450 enzymes to generate active alkylating moieties before manifesting their chemotherapeutic effects. Meanwhile, oxazaphosphorines can also be transformed into non-therapeutic byproducts by various drug-metabolizing enzymes. Clinically, oxazaphosphorines are often administered in combination with other chemotherapeutics in adjuvant treatments. As such, the therapeutic efficacy, off-target toxicity, and unintentional drug-drug interactions of oxazaphosphorines have been long-lasting clinical concerns and heightened focuses of scientific literatures. Recent evidence suggests that xenobiotic receptors may play important roles in regulating the metabolism and clearance of oxazaphosphorines. Drugs as modulators of xenobiotic receptors can affect the therapeutic efficacy, cytotoxicity, and pharmacokinetics of coadministered oxazaphosphorines, providing a new molecular mechanism of drug-drug interactions. Here, we review current advances regarding the influence of xenobiotic receptors, particularly, the constitutive androstane receptor, the pregnane X receptor and the aryl hydrocarbon receptor, on the bioactivation and detoxification of oxazaphosphorines, with a focus on cyclophosphamide and ifosfamide.
Collapse
|
53
|
Fujimura T, Takahashi S, Urano T, Tanaka T, Zhang W, Azuma K, Takayama K, Obinata D, Murata T, Horie-Inoue K, Kodama T, Ouchi Y, Homma Y, Inoue S. Clinical significance of steroid and xenobiotic receptor and its targeted gene CYP3A4 in human prostate cancer. Cancer Sci 2011; 103:176-80. [PMID: 22050110 DOI: 10.1111/j.1349-7006.2011.02143.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The steroid and xenobiotic receptor (SXR) regulates cytochrome P450 (CYP) enzymes, which are key inactivators of testosterone in the liver and prostate. In the present study, we investigated SXR expression in human prostate tissues. We determined SXR immunoreactivity using an anti-SXR antibody in benign (n = 78) and cancerous (n = 106) tissues obtained by radical prostatectomy. Stained slides were evaluated for the proportion and staining intensity of immunoreactive cells. Total immunoreactivity (IR) scores (range: 0-8) were calculated as the sum of the proportion and intensity scores. Associations between the clinicopathological features of the patients, SXR status, and CYP3A4 immunoreactivity were analyzed. Western blot analyses validated the specificity of the anti-SXR antibody in 293T cells transfected with pcDNA-FLAG-SXR. Positive (IR score: ≥ 2) nuclear SXR staining was observed in 91% (71/78) of benign foci and 47% (50/106) of cancerous lesions. Immunoreactivity scores were significantly lower in the cancerous lesions than in the benign foci (P < 0.0001). Clinicopathological analyses showed that cancer-specific survival in patients with high SXR IR scores (≥ 4) was significantly increased (P = 0.046). Combined data of present and previous studies showed that high IR scores for both the SXR and CYP3A4 correlated with significantly better cancer-specific survival rates in multivariate regression analyses (hazard ratio: 2.15, 95% confidence interval: 1.25-3.55, P = 0.007). We showed differential SXR expression in human prostate tissues. The high expression of the SXR and CYP3A4 is a strong prognostic indicator of favorable outcomes in prostate cancer, and could be a therapeutic target.
Collapse
Affiliation(s)
- Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Williams-Brown MY, Salih SM, Xu X, Veenstra TD, Saeed M, Theiler SK, Diaz-Arrastia CR, Salama SA. The effect of tamoxifen and raloxifene on estrogen metabolism and endometrial cancer risk. J Steroid Biochem Mol Biol 2011; 126:78-86. [PMID: 21600284 PMCID: PMC3421458 DOI: 10.1016/j.jsbmb.2011.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/22/2011] [Accepted: 05/03/2011] [Indexed: 11/18/2022]
Abstract
Selective estrogen receptor modulators (SERMs) demonstrate differential endometrial cancer (EC) risk. While tamoxifen (TAM) use increases the risk of endometrial hyperplasia and malignancy, raloxifene (RAL) has neutral effects on the uterus. How TAM increases the risk of EC and why TAM and RAL differentially modulate the risk for EC, however, remain elusive. Here, we tested the hypothesis that TAM increases the risk for EC, at least in part, by enhancing the local estrogen biosynthesis and directing estrogen metabolism towards the formation of genotoxic and hormonally active estrogen metabolites. In addition, the differential effects of TAM and RAL in EC risk are attributed to their differential effect on estrogen metabolism/metabolites. The endometrial cancer cell line (Ishikawa cells) and the nonmalignant immortalized human endometrial glandular cell line (EM1) were used for the study. The profile of estrogen/estrogen metabolites (EM), depurinating estrogen-DNA adducts, and the expression of estrogen-metabolizing enzymes in cells treated with 17β-estradiol (E2) alone or in combination with TAM or RAL were investigated using high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS(2)), ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and Western blot analysis, respectively. TAM significantly increased the total EM and enhanced the formation of hormonally active and carcinogenic estrogen metabolites, 4-hydroxestrone (4-OHE1) and 16α-hydroxyestrone, with concomitant reduction in the formation of antiestrogenic and anticarcinogenic 2-hydroxyestradiol and 2-methoxyestradiol. Furthermore, TAM increased the formation of depurinating estrogen-DNA adducts 4-OHE1 [2]-1-N7Guanine and 4-OHE1 [2]-1-N3 Adenine. TAM-induced alteration in EM and depurinating DNA adduct formation is associated with altered expression of estrogen metabolizing enzymes CYP1A1, CYP1B1, COMT, NQO1, and SF-1 as revealed by Western blot analysis. In contrast to TAM, RAL has minimal effect on EM, estrogen-DNA adduct formation, or estrogen-metabolizing enzymes expression. These data show that TAM perturbs the balance of estrogen-metabolizing enzymes and alters the disposition of estrogen metabolites, which can explain, at least in part, the mechanism for TAM-induced EC. These results also implicate the differential effect of TAM and RAL on estrogen metabolism/metabolites as a potential mechanism for their disparate effects on the endometrium.
Collapse
Affiliation(s)
- Marian Y Williams-Brown
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, United States.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Yu C, Chai X, Yu L, Chen S, Zeng S. Identification of novel pregnane X receptor activators from traditional Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2011; 136:137-143. [PMID: 21524698 DOI: 10.1016/j.jep.2011.04.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 04/01/2011] [Accepted: 04/11/2011] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY To investigate the ability of traditional Chinese medicines (TCMs) and their bioactive compounds to activate pregnane X receptor (PXR) signalling pathway. MATERIALS AND METHODS We screened ethanol extracts of 28 commonly used TCMs for their capability to induce cytochrome P450 3A4 (CYP3A4) via PXR signalling pathway using a cell-based reporter gene assay combined with RT-PCR analysis. In addition, 34 bioactive components from these TCMs were examined for their potential to activate PXR. RESULTS Our observations showed that 22 ethanol extracts and 8 compounds could activate human PXR and induce CYP3A4 reporter construct in HepG2 cells. Among them, Ginkgo biloba, Ligusticum chuanxiong, Chinese angelica, prepared Rehmannia root, Epimedium brevicornum, Atractylodes macrocephala, Schisandra chinensis, Paeonia lactiflora, Ophiopogon japonicus, Polygonum multiflorum, Coptis chinensis, Artemisia scoparia, Trichosanthes kirilowii, Silybum marianum, Gardenia fruit and Lycium chinense could strongly trans-activate PXR. Moreover, ligustilide, schisantherin A, berberine hydrochloride and trans-resveratrol were identified for the first time as efficacious PXR agonists. CONCLUSIONS Twenty-two TCM ethanol extracts and eight bioactive compounds could activate PXR signalling pathway and induce CYP3A4 reporter gene. Therefore, caution should be taken when these PXR activators are used in combination with prescribed drugs metabolized by CYP3A4.
Collapse
Affiliation(s)
- Chunna Yu
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
56
|
Chai J, Luo D, Wu X, Wang H, He Y, Li Q, Zhang Y, Chen L, Peng ZH, Xiao T, Wang R, Chen W. Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive cholestasis. J Gastrointest Surg 2011; 15:996-1004. [PMID: 21359593 DOI: 10.1007/s11605-011-1473-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/10/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hepatic multidrug resistance-associated protein 4 (Mrp4) levels are low, but increase markedly in rodent cholestatic liver. Nuclear receptors (NRs) are essential for regulating Mrp4 expression in cholestasis models. However, information about MRP4 and related NRs, including constitutive androstane receptor (CAR), pregnane X receptor (PXR), and retinoic X receptor-α (RXRα), is relatively lacking in human obstructive cholestasis. We collected liver samples from patients with obstructive cholestasis or without liver disease and investigated the expression of MRP4 and NRs CAR, PXR, and RXRα by semi-quantitative RT-PCR, Western blot and immunostaining assays. RESULTS MRP4 mRNA/protein levels were markedly increased in obstructive cholestasis. Concentration of serum total bile acids (TBA) was significantly correlated with MRP4 protein in cholestasis samples (P < 0.01). PXR and RXRα mRNA/protein levels were significantly increased in obstructive cholestasis. CAR mRNA levels were unchanged while protein levels were markedly induced in obstructive cholestasis. There was a statistically positive correlation between MRP4 mRNA and CAR protein (P < 0.05), suggesting that CAR may activate transcription of MRP4 genes by its nuclear translocation. CONCLUSION Hepatic MRP4 levels were dramatically induced in human obstructive cholestasis, which may reduce liver injury by increasing efflux of toxic bile acids from hepatocytes into blood.
Collapse
Affiliation(s)
- Jin Chai
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
KlĂĽmpen HJ, Samer CF, Mathijssen RH, Schellens JH, Gurney H. Moving towards dose individualization of tyrosine kinase inhibitors. Cancer Treat Rev 2011; 37:251-60. [DOI: 10.1016/j.ctrv.2010.08.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 12/11/2022]
|
58
|
3,4-Methylenedioxymethamphetamine (MDMA) interacts with therapeutic drugs on CYP3A by inhibition of pregnane X receptor (PXR) activation and catalytic enzyme inhibition. Toxicol Lett 2011; 203:82-91. [DOI: 10.1016/j.toxlet.2011.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 01/16/2023]
|
59
|
Ludwig S, Tinwell H, Schorsch F, Cavaillé C, Pallardy M, Rouquié D, Bars R. A molecular and phenotypic integrative approach to identify a no-effect dose level for antiandrogen-induced testicular toxicity. Toxicol Sci 2011; 122:52-63. [PMID: 21525395 DOI: 10.1093/toxsci/kfr099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The safety assessment of chemicals for humans relies on identifying no-observed adverse effect levels (NOAELs) in animal toxicity studies using standard methods. With the advent of high information content technologies, especially microarrays, it is pertinent to determine the impact of molecular data on the NOAELs. Consequently, we conducted an integrative study to identify a no-transcriptomic effect dose using microarray analyses coupled with quantitative reverse transcriptase PCR (RT-qPCR) and determined how this correlated with the NOAEL. We assessed the testicular effects of the antiandrogen, flutamide (FM), in a rat 28-day toxicity study using doses of 0.2-30 mg/kg/day. Plasma testosterone levels and testicular histopathology indicated a NOAEL of 1 mg/kg/day. A no-effect dose of 0.2 mg/kg/day was established based on molecular data relevant to the phenotypic changes. We observed differential gene expression starting from 1 mg/kg/day and a deregulation of more than 1500 genes at 30 mg/kg/day. Dose-related changes were identified for the major pathways (e.g., fatty acid metabolism) associated with the testicular lesion (Leydig cell hyperplasia) that were confirmed by RT-qPCR. These data, along with protein accumulation profiles and FM metabolite concentrations in testis, supported the no-effect dose of 0.2 mg/kg/day. Furthermore, the microarray data indicated a dose-dependent change in the fatty acid catabolism pathway, a biological process described for the first time to be affected by FM in testicular tissue. In conclusion, the present data indicate the existence of a transcriptomic threshold, which must be exceeded to progress from a normal state to an adaptative state and subsequently to adverse toxicity.
Collapse
Affiliation(s)
- Sophie Ludwig
- Department of Research Toxicology, Université Paris-Sud, INSERM UMR 996, Chatenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
60
|
Marks KM, Park ES, Arefolov A, Russo K, Ishihara K, Ring JE, Clardy J, Clarke AS, Pelish HE. The selectivity of austocystin D arises from cell-line-specific drug activation by cytochrome P450 enzymes. JOURNAL OF NATURAL PRODUCTS 2011; 74:567-573. [PMID: 21348461 PMCID: PMC3081663 DOI: 10.1021/np100429s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Indexed: 05/30/2023]
Abstract
The natural product austocystin D was identified as a potent cytotoxic agent with in vivo antitumor activity and selectivity for cells expressing the multidrug resistance transporter MDR1. We sought to elucidate the mechanism of austocystin D's selective cytotoxic activity. Here we show that the selective cytotoxic action of austocystin D arises from its selective activation by cytochrome P450 (CYP) enzymes in specific cancer cell lines, leading to induction of DNA damage in cells and in vitro. The potency and selectivity of austocystin D is lost upon inhibition of CYP activation and does not require MDR1 expression or activity. Furthermore, the pattern of cytotoxicity of austocystin D was distinct from doxorubicin and etoposide and unlike aflatoxin B(1), a compound that resembles austocystin D and is also activated by CYP enzymes to induce DNA damage. Theses results suggest that austocystin D may be of clinical benefit for targeting or overcoming chemoresistance.
Collapse
Affiliation(s)
- Kevin M. Marks
- Makoto Life Sciences, Inc., 15 DeAngelo Drive, Bedford, Massachusetts 01730, United States
| | - Eun Sun Park
- Makoto Life Sciences, Inc., 15 DeAngelo Drive, Bedford, Massachusetts 01730, United States
| | - Alexander Arefolov
- Makoto Life Sciences, Inc., 15 DeAngelo Drive, Bedford, Massachusetts 01730, United States
| | - Katie Russo
- Makoto Life Sciences, Inc., 15 DeAngelo Drive, Bedford, Massachusetts 01730, United States
| | - Keiko Ishihara
- Makoto Life Sciences, Inc., 15 DeAngelo Drive, Bedford, Massachusetts 01730, United States
- Taiho Pharmaceutical Co., LTD., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Jennifer E. Ring
- Makoto Life Sciences, Inc., 15 DeAngelo Drive, Bedford, Massachusetts 01730, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Astrid S. Clarke
- Makoto Life Sciences, Inc., 15 DeAngelo Drive, Bedford, Massachusetts 01730, United States
| | - Henry E. Pelish
- Makoto Life Sciences, Inc., 15 DeAngelo Drive, Bedford, Massachusetts 01730, United States
| |
Collapse
|
61
|
Wang D, Li L, Fuhrman J, Ferguson S, Wang H. The role of constitutive androstane receptor in oxazaphosphorine-mediated induction of drug-metabolizing enzymes in human hepatocytes. Pharm Res 2011; 28:2034-44. [PMID: 21487929 DOI: 10.1007/s11095-011-0429-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/08/2011] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the roles of the constitutive androstane receptor (CAR) in cyclophosphamide (CPA)- and ifosfamide (IFO)-mediated induction of hepatic drug-metabolizing enzymes (DME). METHODS Induction of DMEs was evaluated using real-time RT-PCR and Western blotting analysis in human primary hepatocyte (HPH) cultures. Activation of CAR, pregnane X receptor (PXR), and aryl hydrocarbon receptor by CPA and IFO was assessed in cell-based reporter assays in HepG2 cells and/or nuclear translocation assays in HPHs. RESULTS CYP2B6 reporter activity was significantly enhanced by CPA and IFO in HepG2 cells co-transfected with CYP2B6 reporter plasmid and a chemical-responsive human CAR variant (CAR1 + A) construct. Real-time RT-PCR and Western blotting analysis in HPHs showed that both CPA and IFO induced the expressions of CYP2B6 and CYP3A4. Notably, treatment of HPHs with CPA but not IFO resulted in significant nuclear accumulation of CAR, which represents the initial step of CAR activation. Further studies in HPHs demonstrated that selective inhibition of PXR by sulforaphane preferentially repressed IFO- over CPA-mediated induction of CYP2B6. CONCLUSION These results provide novel insights into the differential roles of CAR in the regulation of CPA- and IFO-induced DME expression and potential drug-drug interactions.
Collapse
Affiliation(s)
- Duan Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
62
|
Begriche K, Massart J, Robin MA, Borgne-Sanchez A, Fromenty B. Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 2011; 54:773-94. [PMID: 21145849 DOI: 10.1016/j.jhep.2010.11.006] [Citation(s) in RCA: 366] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 02/08/2023]
Abstract
Numerous investigations have shown that mitochondrial dysfunction is a major mechanism of drug-induced liver injury, which involves the parent drug or a reactive metabolite generated through cytochromes P450. Depending of their nature and their severity, the mitochondrial alterations are able to induce mild to fulminant hepatic cytolysis and steatosis (lipid accumulation), which can have different clinical and pathological features. Microvesicular steatosis, a potentially severe liver lesion usually associated with liver failure and profound hypoglycemia, is due to a major inhibition of mitochondrial fatty acid oxidation (FAO). Macrovacuolar steatosis, a relatively benign liver lesion in the short term, can be induced not only by a moderate reduction of mitochondrial FAO but also by an increased hepatic de novo lipid synthesis and a decreased secretion of VLDL-associated triglycerides. Moreover, recent investigations suggest that some drugs could favor lipid deposition in the liver through primary alterations of white adipose tissue (WAT) homeostasis. If the treatment is not interrupted, steatosis can evolve toward steatohepatitis, which is characterized not only by lipid accumulation but also by necroinflammation and fibrosis. Although the mechanisms involved in this aggravation are not fully characterized, it appears that overproduction of reactive oxygen species by the damaged mitochondria could play a salient role. Numerous factors could favor drug-induced mitochondrial and metabolic toxicity, such as the structure of the parent molecule, genetic predispositions (in particular those involving mitochondrial enzymes), alcohol intoxication, hepatitis virus C infection, and obesity. In obese and diabetic patients, some drugs may induce acute liver injury more frequently while others may worsen the pre-existent steatosis (or steatohepatitis).
Collapse
Affiliation(s)
- Karima Begriche
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
63
|
Brózik A, Hegedüs C, Erdei Z, Hegedus T, Özvegy-Laczka C, Szakács G, Sarkadi B. Tyrosine kinase inhibitors as modulators of ATP binding cassette multidrug transporters: substrates, chemosensitizers or inducers of acquired multidrug resistance? Expert Opin Drug Metab Toxicol 2011; 7:623-42. [PMID: 21410427 DOI: 10.1517/17425255.2011.562892] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Anticancer tyrosine kinase inhibitors (TKIs) are small molecule hydrophobic compounds designed to arrest aberrant signaling pathways in malignant cells. Multidrug resistance (MDR) ATP binding cassette (ABC) transporters have recently been recognized as important determinants of the general ADME-Tox (absorption, distribution, metabolism, excretion, toxicity) properties of small molecule TKIs, as well as key factors of resistance against targeted anticancer therapeutics. AREAS COVERED The article summarizes MDR-related ABC transporter interactions with imatinib, nilotinib, dasatinib, gefitinib, erlotinib, lapatinib, sunitinib and sorafenib, including in vitro and in vivo observations. An array of methods developed to study such interactions is presented. Transporter-TKI interactions relevant to the ADME-Tox properties of TKI drugs, primary or acquired cancer TKI resistance, and drug-drug interactions are also reviewed. EXPERT OPINION Based on the concept presented in this review, TKI anticancer drugs are considered as compounds recognized by the cellular mechanisms handling xenobiotics. Accordingly, novel anticancer therapies should equally focus on the effectiveness of target inhibition and exploration of potential interactions of the designed molecules by membrane transporters. Thus, targeted hydrophobic small molecule compounds should also be screened to evade xenobiotic-sensing cellular mechanisms.
Collapse
Affiliation(s)
- Anna BrĂłzik
- Hungarian Academy of Sciences and Semmelweis University, Membrane Biology, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
64
|
Substrate-dependent modulation of the catalytic activity of CYP3A by erlotinib. Acta Pharmacol Sin 2011; 32:399-407. [PMID: 21372830 DOI: 10.1038/aps.2010.218] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM To ascertain the effects of erlotinib on CYP3A, to investigate the amplitude and kinetics of erlotinib-mediated inhibition of seven major CYP isoforms in human liver microsomes (HLMs) for evaluating the magnitude of erlotinib in drug-drug interaction in vivo. METHODS The activities of 7 major CYP isoforms (CYP1A2, CYP2A6, CYP3A, CYP2C9, CYP2D6, CYP2C8, and CYP2E1) were assessed in HLMs using HPLC or UFLC analysis. A two-step incubation method was used to examine the time-dependent inhibition of erlotinib on CYP3A. RESULTS The activity of CYP2C8 was inhibited with an IC(50) value of 6.17±2.0 μmol/L. Erlotinib stimulated the midazolam 1'-hydroxy reaction, but inhibited the formation of 6β-hydroxytestosterone and oxidized nifedipine. Inhibition of CYP3A by erlotinib was substrate-dependent: the IC(50) values for inhibiting testosterone 6β-hydroxylation and nifedipine metabolism were 31.3±8.0 and 20.5±5.3 μmol/L, respectively. Erlotinib also exhibited the time-dependent inhibition on CYP3A, regardless of the probe substrate used: the value of K(I) and k(inact) were 6.3 μmol/L and 0.035 min(-1) for midazolam; 9.0 μmol/L and 0.045 min(-1) for testosterone; and 10.1 μmol/L and 0.058 min(-1) for nifedipine. CONCLUSION The inhibition of CYP3A by erlotinib was substrate-dependent, while its time-dependent inhibition on CYP3A was substrate-independent. The time-dependent inhibition of CYP3A may be a possible cause of drug-drug interaction, suggesting that attention should be paid to the evaluation of erlotinib's safety, especially in the context of combination therapy.
Collapse
|
65
|
Scholler J, LevĂŞque D. Molecular pharmacokinetic determinants of anticancer kinase inhibitors in humans. Oncol Rev 2011. [DOI: 10.1007/s12156-011-0072-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
66
|
Visentin M, Biason P, Toffoli G. Drug interactions among the epidermal growth factor receptor inhibitors, other biologics and cytotoxic agents. Pharmacol Ther 2010; 128:82-90. [PMID: 20542058 DOI: 10.1016/j.pharmthera.2010.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
The epidermal growth factor receptor (EGFR) signalling pathway is a key element in the growth of several epithelial malignancies. Small molecules tyrosine kinase inhibitors (TKIs) and anti-EGFR monoclonal antibodies (mAbs) prevent the phosphorylation of the receptor, leading to cell cycle arrest at G(1) phase, apoptosis, inhibition of angiogenesis and metastasis. To increase the antitumoral effects of EGFR inhibitors (EGFRIs), a number of combinatory regimens have been evaluated and planned with standard cytotoxic drugs and/or inhibitors of EGFR complementary pathways such as mTOR, VEGF and Ras/Raf/ERK. Compared to EGFRI monotherapy, the combination approach is a promising strategy to improve tumor response and survival. However, pharmacokinetic (absorption, distribution, metabolism and excretion) and pharmacodynamic drug interactions can occur, affecting the outcome. Pharmacokinetics of TKIs can be affected by drugs used in combination: conversely, pharmacokinetic interactions have not been reported for EGFR mAbs. Potential pharmacokinetic interactions occur between EGFRIs and other factors such as food and hydrocarbons in tobacco smoke were also considered. EGFRIs are characterized by a number of pharmacodynamic interactions that must be taken into consideration to avoid adverse events, to increase antitumoral activity, and define potential new strategies for developing efficient combination regimens. In this context, treatment schedule and drug sequence appear to be particularly relevant for combination regimens with EGFRIs. Improved molecular characterisation of the EGFR pathway and its complementary pathways in tumor cells is required to better define predictive pharmacokinetic and pharmacodynamic biomarkers for optimum treatment outcome.
Collapse
Affiliation(s)
- Michele Visentin
- Experimental and Clinical Pharmacology Unit CRO Centro di Riferimento Oncologico, IRCCS National Cancer Institute, via Franco Gallini 2, 33081 Aviano (PN), Italy
| | | | | |
Collapse
|
67
|
Croyle MA. Long-term virus-induced alterations of CYP3A-mediated drug metabolism: a look at the virology, immunology and molecular biology of a multi-faceted problem. Expert Opin Drug Metab Toxicol 2009; 5:1189-211. [PMID: 19732028 DOI: 10.1517/17425250903136748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus infections are on the rise. Although the first description of CYP expression during virus infection was recorded 50 years ago, mechanistic studies of this phenomenon only began to appear in the last decade due to breakthroughs in molecular biology, genomic and transgenic technology. This review describes the relationship(s) among CYP-mediated drug metabolism, virus infection and the immune response and evaluates in vitro and in vivo models for mechanistic studies. The first studies that assessed CYP expression during infection focused on inflammatory mediators and the innate immune response at early time points. Recent studies assessing virus infection and its effect on hepatic CYP expression noted more long-term effects. An obvious approach toward understanding how viruses affect hepatic CYP3A expression and function would be to assess key regulators of CYP during infection. Improvements in techniques to identify post-translational modifications of CYP and systems that focus on virus-receptor interactions which allow subtraction and addition of immunological and regulatory elements that drive CYP will demonstrate that long-term changes in drug metabolism start from the time the virus enters the circulation, are reinforced by virus binding to cellular targets and further solidified by changes in cellular processes long after the virus is cleared.
Collapse
Affiliation(s)
- Maria A Croyle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmaceutics and Institute of Cellular and Molecular Biology, PHR 4.214D, 2409 W University Avenue, Austin, TX 78712-1074, USA.
| |
Collapse
|
68
|
Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 2009; 35:692-706. [PMID: 19733976 DOI: 10.1016/j.ctrv.2009.08.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 01/21/2023]
Abstract
In the recent years, eight tyrosine kinase inhibitors (TKIs) have been approved for cancer treatment and numerous are under investigation. These drugs are rationally designed to target specific tyrosine kinases that are mutated and/or over-expressed in cancer tissues. Post marketing study commitments have been made upon (accelerated) approval such as additional pharmacokinetic studies in patients with renal- or hepatic impairment, in children, additional interactions studies and studies on the relative or absolute bioavailability. Therefore, much information will emerge on the pharmacokinetic behavior of these drugs after their approval. In the present manuscript, the pharmacokinetic characteristics; absorption, distribution, metabolism and excretion (ADME), of the available TKIs are reviewed. Results from additional studies on the effect of drug transporters and drug-drug interactions have been incorporated. Overall, the TKIs reach their maximum plasma levels relatively fast; have an unknown absolute bioavailability, are extensively distributed and highly protein bound. The drugs are primarily metabolized by cytochrome P450 (CYP) 3A4 with other CYP-enzymes playing a secondary role. They are predominantly excreted with the feces and only a minor fraction is eliminated with the urine. All TKIs appear to be transported by the efflux ATP binding-cassette transports B1 and G2. Additionally these drugs can inhibit some of their own metabolizing enzymes and transporters making steady-state metabolism and drug-drug interactions both complex and unpredictable. By understanding the pharmacokinetic profile of these drugs and their similarities, factors that influence drug exposure will be better recognized and this knowledge may be used to limit sub- or supra-therapeutic drug exposure.
Collapse
|
69
|
van Erp NP, Eechoute K, van der Veldt AA, Haanen JB, Reyners AKL, Mathijssen RHJ, Boven E, van der Straaten T, Baak-Pablo RF, Wessels JAM, Guchelaar HJ, Gelderblom H. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol 2009; 27:4406-12. [PMID: 19667267 DOI: 10.1200/jco.2008.21.7679] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To identify genetic markers in the pharmacokinetic and pharmacodynamic pathways of sunitinib that predispose for development of toxicities: thrombocytopenia, leukopenia, mucosal inflammation, hand-foot syndrome, and any toxicity according to National Cancer Institute Common Toxicity Criteria higher than grade 2. PATIENTS AND METHODS A multicenter pharmacogenetic association study was performed in 219 patients treated with single-agent sunitinib. A total of 31 single nucleotide polymorphisms in 12 candidate genes, together with several nongenetic variants, were analyzed for a possible association with toxicity. In addition, genetic haplotypes were developed and related to toxicity. RESULTS The risk for leukopenia was increased when the G allele in CYP1A1 2455A/G (odds ratio [OR], 6.24; P = .029) or the T allele in FLT3 738T/C (OR, 2.8; P = .008) were present or CAG in the NR1I3 (5719C/T, 7738A/C, 7837T/G) haplotype (OR, 1.74; P = .041) was absent. Any toxicity higher than grade 2 prevalence was increased when the T allele of vascular endothelial growth factor receptor 2 1191C/T (OR, 2.39; P = .046) or a copy of TT in the ABCG2 (-15622C/T, 1143C/T) haplotype (OR, 2.63; P = .016) were present. The risk for mucosal inflammation was increased in the presence of the G allele in CYP1A1 2455A/G (OR, 4.03; P = .021) and the prevalence of hand-foot syndrome was increased when a copy of TTT in the ABCB1 (3435C/T, 1236C/T, 2677G/T) haplotype (OR, 2.56; P = .035) was present. CONCLUSION This exploratory study suggests that polymorphisms in specific genes encoding for metabolizing enzymes, efflux transporters, and drug targets are associated with sunitinib-related toxicities. A better understanding of genetic and nongenetic determinants of sunitinib toxicity should help to optimize drug treatment in individual patients.
Collapse
Affiliation(s)
- Nielka P van Erp
- Leiden University Medical Center, Department of Clinical Pharmacy & Toxicology, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Li Y, Ross-Viola JS, Shay NF, Moore DD, Ricketts ML. Human CYP3A4 and murine Cyp3A11 are regulated by equol and genistein via the pregnane X receptor in a species-specific manner. J Nutr 2009; 139:898-904. [PMID: 19297428 PMCID: PMC2714390 DOI: 10.3945/jn.108.103572] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pregnane X receptor (PXR) is an important component of the body's adaptive defense system responsible for the elimination of various toxic xenobiotics. PXR activation by endogenous and exogenous chemicals, including steroids, antibiotics, bile acids, and herbal compounds, results in induction of drug metabolism. We investigated the ability of the isoflavones genistein, daidzein, and the daidzein metabolite equol to activate human and mouse PXR in vitro using cell-based transient transfection studies and primary hepatocytes and in vivo in a mouse model. In transient transfection assays, the isoflavones genistein and daidzein activate full-length, wild-type mouse PXR, but not a mutant form, with genistein being the most potent. In contrast, equol was a more potent activator of human PXR than genistein or daidzein. In a mammalian 2-hybrid assay, isoflavones induced recruitment of the coactivator steroid receptor coactivator 1 to PXR. When tested against the native human Cytochrome P450 3A4 (CYP3A4) promoter, equol was the more potent activator and treatment of human hepatocytes with equol increased CYP3A4 mRNA and immunoreactive protein expression. Treatment of wild-type, but not PXR(-/-), mouse hepatocytes showed that genistein and daidzein induced the expression of Cytochrome P450 3A11 (Cyp3A11) mRNA, whereas equol had no effect. Cyp3A11 mRNA was also induced in vivo in mice fed a soy protein-containing diet. The results presented herein demonstrate that there is a species-specific difference in the activation of PXR by isoflavones and equol.
Collapse
Affiliation(s)
- Yilan Li
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556; Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Jennifer S. Ross-Viola
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556; Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Neil F. Shay
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556; Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - David D. Moore
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556; Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Marie-Louise Ricketts
- Department of Biological Sciences, University of Notre Dame, South Bend, IN 46556; Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
71
|
Mani S, Ghalib M, Chaudhary I, Goel S. Alterations of chemotherapeutic pharmacokinetic profiles by drug-drug interactions. Expert Opin Drug Metab Toxicol 2009; 5:109-30. [PMID: 19239394 PMCID: PMC3533254 DOI: 10.1517/17425250902753212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drug interactions in oncology are common place and largely ignored as we tolerate high thresholds of 'toxic' drug responses in these patients. However, in the era of 'targeted' or seemingly 'less toxic' therapy, these interactions are more commonly flagged and contribute significantly towards poor 'quality of life' and medical fatalities. OBJECTIVE This review and opinion article focuses on alteration of chemotherapeutic pharmacokinetic profiles by drug interactions in the setting of polypharmacy. The assumption is that the drugs, with changes in their pharmacokinetics, will contribute towards changes in their pharmacodynamics. METHODS The examples cited for such drug-drug interactions are culled from published literature with an emphasis on those interactions that have been well characterized at the molecular level. RESULTS Although very few drug interaction studies have been performed on approved oncology based drugs, it is clear that drugs whose pharmacokinetics profiles are closely related to their pharmacodynamics will indeed result in clinically important drug interactions. Some newer mechanisms are described that involve interactions at the level of gene transcription, whereby, drug metabolism is significantly altered. However, for any given drug interaction, there does not seem to be a comprehensive model describing interactions. CONCLUSIONS Mechanisms based drug interactions are plentiful in oncology; however, there is an absolute lack of a comprehensive model that would predict drug-drug interactions.
Collapse
Affiliation(s)
- Sridhar Mani
- Associate Professor: Medicine, Oncology and Molecular Genetics, 1300 Morris Park Ave, Chanin 302D-1, NY 10461, Bronx, USA, Tel: +1 718 430 2871; Fax: +1 718 904 2830
| | - Mohammed Ghalib
- Medicine, Oncology and Molecular Genetics, 1300 Morris Park Ave, Chanin 302D-1, NY 10461, Bronx, USA, Tel: +1 718 430 2871; Fax: +1 718 904 2830
| | - Imran Chaudhary
- Medicine, Oncology and Molecular Genetics, 1300 Morris Park Ave, Chanin 302D-1, NY 10461, Bronx, USA, Tel: +1 718 430 2871; Fax: +1 718 904 2830
| | - Sanjay Goel
- Associate Professor, Medicine, Oncology and Molecular Genetics, 1300 Morris Park Ave, Chanin 302D-1, NY 10461, Bronx, USA, Tel: +1 718 430 2871; Fax: +1 718 904 2830
| |
Collapse
|