51
|
Isakova EP, Deryabina YI, Leonovich OA, Zylkova MV, Biriukova IK. Study of the Accumulation of Rec A from Bacillus subtilis in the Mitochondria of a Recombinant Strain of the Yeast Yarovia lipolytica. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
52
|
Scarcelli N, Mariac C, Couvreur TLP, Faye A, Richard D, Sabot F, Berthouly‐Salazar C, Vigouroux Y. Intra‐individual polymorphism in chloroplasts from
NGS
data: where does it come from and how to handle it? Mol Ecol Resour 2015; 16:434-45. [DOI: 10.1111/1755-0998.12462] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/07/2015] [Accepted: 08/21/2015] [Indexed: 01/11/2023]
Affiliation(s)
- N. Scarcelli
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - C. Mariac
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - T. L. P. Couvreur
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
- Département des Sciences Biologiques Laboratoire de Botanique Systématique et d'Ecologie Ecole Normale Supérieure Université de Yaoundé I BP 047 Yaoundé Cameroon
| | - A. Faye
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - D. Richard
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - F. Sabot
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| | - C. Berthouly‐Salazar
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
- Route des Hydrocarbures Centre de Recherche de Bel‐Air IRD/ISRA BP 1386 – 18524 Dakar Senegal
| | - Y. Vigouroux
- UMR DIADE IRD Montpellier 911 avenue Agropolis 34394 Montpellier Cedex 5 France
| |
Collapse
|
53
|
Raposo do Amaral F, Neves LG, Resende MFR, Mobili F, Miyaki CY, Pellegrino KCM, Biondo C. Ultraconserved Elements Sequencing as a Low-Cost Source of Complete Mitochondrial Genomes and Microsatellite Markers in Non-Model Amniotes. PLoS One 2015; 10:e0138446. [PMID: 26379155 PMCID: PMC4574942 DOI: 10.1371/journal.pone.0138446] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Sequence capture of ultraconserved elements (UCEs) associated with massively parallel sequencing has become a common source of nuclear data for studies of animal systematics and phylogeography. However, mitochondrial and microsatellite variation are still commonly used in various kinds of molecular studies, and probably will complement genomic data in years to come. Here we show that besides providing abundant genomic data, UCE sequencing is an excellent source of both sequences for microsatellite loci design and complete mitochondrial genomes with high sequencing depth. Identification of dozens of microsatellite loci and assembly of complete mitogenomes is exemplified here using three species of Poospiza warbling finches from southern and southeastern Brazil. This strategy opens exciting opportunities to simultaneously analyze genome-wide nuclear datasets and traditionally used mtDNA and microsatellite markers in non-model amniotes at no additional cost.
Collapse
Affiliation(s)
- Fábio Raposo do Amaral
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Laboratório de Genética Evolutiva, Rua Professor Artur Riedel, 275, Diadema, SP, 09972–270, Brazil
| | - Leandro G. Neves
- RAPiD Genomics, LLC, 747 SW 2nd Avenue, Gainesville, FL, 32601, United States of America
| | - Márcio F. R. Resende
- RAPiD Genomics, LLC, 747 SW 2nd Avenue, Gainesville, FL, 32601, United States of America
| | - Flávia Mobili
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Laboratório de Genética Evolutiva, Rua Professor Artur Riedel, 275, Diadema, SP, 09972–270, Brazil
| | - Cristina Y. Miyaki
- Universidade de São Paulo, Departamento de Genética e Biologia Evolutiva, Rua do Matão, 277, Cidade Universitária, São Paulo, SP, 05508–090, Brazil
| | - Katia C. M. Pellegrino
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Laboratório de Genética Evolutiva, Rua Professor Artur Riedel, 275, Diadema, SP, 09972–270, Brazil
| | - Cibele Biondo
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Rua Arcturus 03, Jardim Antares, São Bernardo do Campo, SP, 09606–070, Brazil
| |
Collapse
|
54
|
Williams-Newkirk AJ, Burroughs M, Changayil SS, Dasch GA. The mitochondrial genome of the lone star tick (Amblyomma americanum). Ticks Tick Borne Dis 2015; 6:793-801. [DOI: 10.1016/j.ttbdis.2015.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/29/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
|
55
|
Low Genetic Diversity and Strong Geographical Structure of the Critically Endangered White-Headed Langur (Trachypithecus leucocephalus) Inferred from Mitochondrial DNA Control Region Sequences. PLoS One 2015; 10:e0129782. [PMID: 26057239 PMCID: PMC4461268 DOI: 10.1371/journal.pone.0129782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/13/2015] [Indexed: 11/29/2022] Open
Abstract
Many Asian colobine monkey species are suffering from habitat destruction and population size decline. There is a great need to understand their genetic diversity, population structure and demographic history for effective species conservation. The white-headed langur (Trachypithecus leucocephalus) is a Critically Endangered colobine species endemic to the limestone karst forests in southwestern China. We analyzed the mitochondrial DNA (mtDNA) control region sequences of 390 fecal samples from 40 social groups across the main distribution areas, which represented one-third of the total extant population. Only nine haplotypes and 10 polymorphic sites were identified, indicating remarkably low genetic diversity in the species. Using a subset of 77 samples from different individuals, we evaluated genetic variation, population structure, and population demographic history. We found very low values of haplotype diversity (h = 0.570 ± 0.056) and nucleotide diversity (π = 0.00323 ± 0.00044) in the hypervariable region I (HVRI) of the mtDNA control region. Distribution of haplotypes displayed marked geographical pattern, with one population (Chongzuo, CZ) showing a complete lack of genetic diversity (having only one haplotype), whereas the other population (Fusui, FS) having all nine haplotypes. We detected strong population genetic structure among habit patches (ΦST = 0.375, P < 0.001). In addition, the Mantel test showed a significant correlation between the pairwise genetic distances and geographical distances among social groups in FS (correlation coefficient = 0.267, P = 0.003), indicting isolation-by-distance pattern of genetic divergence in the mtDNA sequences. Analyses of demographic history suggested an overall stable historical population size and modest population expansion in the last 2,000 years. Our results indicate different genetic diversity and possibly distinct population history for different local populations, and suggest that CZ and FS should be considered as one evolutionarily significant unit (ESU) and two management units (MUs) pending further investigation using nuclear markers.
Collapse
|
56
|
Kuijper B, Lane N, Pomiankowski A. Can paternal leakage maintain sexually antagonistic polymorphism in the cytoplasm? J Evol Biol 2015; 28:468-80. [PMID: 25653025 PMCID: PMC4413368 DOI: 10.1111/jeb.12582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/05/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022]
Abstract
A growing number of studies in multicellular organisms highlight low or moderate frequencies of paternal transmission of cytoplasmic organelles, including both mitochondria and chloroplasts. It is well established that strict maternal inheritance is selectively blind to cytoplasmic elements that are deleterious to males – ’mother's curse’. But it is not known how sensitive this conclusion is to slight levels of paternal cytoplasmic leakage. We assess the scope for polymorphism when individuals bear multiple cytoplasmic alleles in the presence of paternal leakage, bottlenecks and recurrent mutation. When fitness interactions among cytoplasmic elements within an individual are additive, we find that sexually antagonistic polymorphism is restricted to cases of strong selection on males. However, when fitness interactions among cytoplasmic elements are nonlinear, much more extensive polymorphism can be supported in the cytoplasm. In particular, mitochondrial mutants that have strong beneficial fitness effects in males and weak deleterious fitness effects in females when rare (i.e. ’reverse dominance’) are strongly favoured under paternal leakage. We discuss how such epistasis could arise through preferential segregation of mitochondria in sex-specific somatic tissues. Our analysis shows how paternal leakage can dampen the evolution of deleterious male effects associated with predominant maternal inheritance of cytoplasm, potentially explaining why ’mother's curse’ is less pervasive than predicted by earlier work.
Collapse
Affiliation(s)
- B Kuijper
- CoMPLEX, Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, UK; Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | | |
Collapse
|
57
|
Szumiel I. From radioresistance to radiosensitivity: In vitro evolution of L5178Y lymphoma. Int J Radiat Biol 2015; 91:465-71. [PMID: 25651039 DOI: 10.3109/09553002.2014.996263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To discuss the possible reasons for the loss of tumourigenicity and the acquisition of new phenotypic features (among them, sensitivity to X and UVC radiations) as a result of in vitro cultivation of L5178Y lymphoma cells. RESULTS Ten years ago the phenotypic differences between LY-R (original L5178Y maintained in vivo and examined in vitro) and LY-S lines were reviewed in detail by the author. The loss of tumourigenicity of LY-R cells upon in vitro cultivation accompanying the acquirement of the LY-S phenotype had been described earlier by Beer et al. (1983). In spite of their common origin, the sublines were shown to differ in their relative sensitivity to a number of DNA damaging agents and in numerous other features. Here, selected differences between LY-R and LY-S lines are briefly reviewed. It is proposed that Wallace's concept (2010a) that mitochondria are the interface between environmental conditions and the genome may explain the LY-R-LY-S conversion under prolonged in vitro cultivation. CONCLUSION The differences between the LY lines were probably of epigenetic rather than genetic character. The properties of LY-R cells changed as a result of exposure to an oxic in vitro milieu. The changes could be preconditioned by heteroplasmy and the selection of cells endowed with mitochondria best fitted to a high oxygen-low carbon dioxide environment.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
58
|
Katz AD, Giordano R, Soto-Adames FN. Operational criteria for cryptic species delimitation when evidence is limited, as exemplified by North AmericanEntomobrya(Collembola: Entomobryidae). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12220] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aron D. Katz
- Department of Entomology; University of Illinois; 320 Morrill Hall 505 South Goodwin Avenue Urbana IL 61801 USA
- Illinois Natural History Survey; University of Illinois; 1816 South Oak Street Champaign IL 61820 USA
| | - Rosanna Giordano
- Department of Entomology; University of Illinois; 320 Morrill Hall 505 South Goodwin Avenue Urbana IL 61801 USA
| | - Felipe N. Soto-Adames
- Illinois Natural History Survey; University of Illinois; 1816 South Oak Street Champaign IL 61820 USA
| |
Collapse
|
59
|
Abstract
Why the DNA-containing organelles, chloroplasts, and mitochondria, are inherited maternally is a long standing and unsolved question. However, recent years have seen a paradigm shift, in that the absoluteness of uniparental inheritance is increasingly questioned. Here, we review the field and propose a unifying model for organelle inheritance. We argue that the predominance of the maternal mode is a result of higher mutational load in the paternal gamete. Uniparental inheritance evolved from relaxed organelle inheritance patterns because it avoids the spread of selfish cytoplasmic elements. However, on evolutionary timescales, uniparentally inherited organelles are susceptible to mutational meltdown (Muller's ratchet). To prevent this, fall-back to relaxed inheritance patterns occurs, allowing low levels of sexual organelle recombination. Since sexual organelle recombination is insufficient to mitigate the effects of selfish cytoplasmic elements, various mechanisms for uniparental inheritance then evolve again independently. Organelle inheritance must therefore be seen as an evolutionary unstable trait, with a strong general bias to the uniparental, maternal, mode.
Collapse
Affiliation(s)
- Stephan Greiner
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Johanna Sobanski
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
60
|
Cupp JD, Nielsen BL. Minireview: DNA replication in plant mitochondria. Mitochondrion 2014; 19 Pt B:231-7. [PMID: 24681310 PMCID: PMC4177014 DOI: 10.1016/j.mito.2014.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/28/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Higher plant mitochondrial genomes exhibit much greater structural complexity compared to most other organisms. Unlike well-characterized metazoan mitochondrial DNA (mtDNA) replication, an understanding of the mechanism(s) and proteins involved in plant mtDNA replication remains unclear. Several plant mtDNA replication proteins, including DNA polymerases, DNA primase/helicase, and accessory proteins have been identified. Mitochondrial dynamics, genome structure, and the complexity of dual-targeted and dual-function proteins that provide at least partial redundancy suggest that plants have a unique model for maintaining and replicating mtDNA when compared to the replication mechanism utilized by most metazoan organisms.
Collapse
Affiliation(s)
- John D Cupp
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, United States.
| | - Brent L Nielsen
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
61
|
Lee YP, Cho Y, Kim S. A high-resolution linkage map of the Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility in radish (Raphanus sativus L.) produced by a combination of bulked segregant analysis and RNA-Seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2243-52. [PMID: 25119873 DOI: 10.1007/s00122-014-2376-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/02/2014] [Indexed: 05/13/2023]
Abstract
We utilized a combination of BSA and RNA-Seq to identify SNPs linked to the Rfd1 locus, a restorer-of-fertility gene in radish. A high-density linkage map was constructed using this approach. Male fertility of cytoplasmic male sterility conditioned by the Dongbu cytoplasmic and genic male-sterility cytoplasm can be restored by a restorer-of-fertility locus, Rfd1, in radish. To construct a high-density linkage map and to identify a candidate gene for the Rfd1 locus, bulked segregant analysis and RNA-seq approaches were combined. A total of 26 and 28 million reads produced from male-fertile and male-sterile bulked RNA were mapped to the radish reference unigenes. After stringent screening of SNPs, 327 reliable SNPs of 109 unigenes were selected. Arabidopsis homologs for 101 of the 109 genes were clustered around the 4,000 kb region of Arabidopsis chromosome 3, which was syntenic to the Rfd1 flanking region. Since the reference unigene set was incomplete, the contigs were de novo assembled to identify 134 contigs harboring SNPs. Most of SNP-containing contigs were also clustered on the same syntenic region in Arabidopsis chromosome. A total of 21 molecular markers positioned within a 2.1 cM interval including the Rfd1 locus were developed, based on the selected unigenes and contigs. A segregating population consisting of 10,459 individuals was analyzed to identify recombinants containing crossovers within this interval. A total of 284 identified recombinants were then used to construct a high-density map, which delimited the Rfd1 locus into an 83-kb syntenic interval of Arabidopsis chromosome 3. Since no candidate gene, such as a pentatricopeptide repeat (PPR)-coding gene, was found in this interval, 231 unigenes and 491 contigs containing putative PPR motifs were analyzed further, but no PPR gene in linkage disequilibrium with the Rfd1 locus could be found.
Collapse
Affiliation(s)
- Young-Pyo Lee
- Biotech Research Center, Dongbu Advanced Research Institute, Dongbu Hannong Co., Ltd., Daejeon, 305-708, Korea
| | | | | |
Collapse
|
62
|
Mao X, Dong J, Hua P, He G, Zhang S, Rossiter SJ. Heteroplasmy and ancient translocation of mitochondrial DNA to the nucleus in the Chinese Horseshoe Bat (Rhinolophus sinicus) complex. PLoS One 2014; 9:e98035. [PMID: 24842827 PMCID: PMC4026475 DOI: 10.1371/journal.pone.0098035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
The utility and reliability of mitochondrial DNA sequences in phylogenetic and phylogeographic studies may be compromised by widespread and undetected nuclear mitochondrial copies (numts) as well as heteroplasmy within individuals. Both numts and heteroplasmy are likely to be common across diverse taxa yet few studies have characterised their frequencies and variation at the intra-specific level. Here we report the presence of both numts and heteroplasmy in the mitochondrial control region of the Chinese horseshoe bat Rhinolophus sinicus. In total we generated 123 sequences from 18 bats, which contained two different numt clades (i.e. Numt-1 and Numt-2) and one mtDNA clade. The sequence divergence between Numt-1 and Numt-2 was 16.8% and each numt type was found in all four R. sinicus taxa, suggesting either two ancient translocations of mitochondrial DNA into the nucleus from the same source taxon, or a single translocation from different source taxa that occurred before the split of R. sinicus into different lineages. Within the mtDNA clade, phylogenetic relationships among the four taxa of R. sinicus were similar to those seen in previous results. Based on PCR comparisons, heteroplasmy was inferred between almost all individuals of R. sinicus with respect to sequence variation. Consistent with introgression of mtDNA between Central sinicus and septentrionalis, individuals from these two taxa exhibited similar signatures of repeated sequences in the control region. Our study highlights the importance of testing for the presence of numts and heteroplasmy when applying mtDNA markers to phylogenetic studies.
Collapse
Affiliation(s)
- Xiuguang Mao
- Institute of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, China
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ji Dong
- Institute of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, China
| | - Panyu Hua
- Institute of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, China
| | - Guimei He
- Institute of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, China
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, China
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
63
|
Sabir JSM, Arasappan D, Bahieldin A, Abo-Aba S, Bafeel S, Zari TA, Edris S, Shokry AM, Gadalla NO, Ramadan AM, Atef A, Al-Kordy MA, El-Domyati FM, Jansen RK. Whole mitochondrial and plastid genome SNP analysis of nine date palm cultivars reveals plastid heteroplasmy and close phylogenetic relationships among cultivars. PLoS One 2014; 9:e94158. [PMID: 24718264 PMCID: PMC3981771 DOI: 10.1371/journal.pone.0094158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/11/2014] [Indexed: 11/19/2022] Open
Abstract
Date palm is a very important crop in western Asia and northern Africa, and it is the oldest domesticated fruit tree with archaeological records dating back 5000 years. The huge economic value of this crop has generated considerable interest in breeding programs to enhance production of dates. One of the major limitations of these efforts is the uncertainty regarding the number of date palm cultivars, which are currently based on fruit shape, size, color, and taste. Whole mitochondrial and plastid genome sequences were utilized to examine single nucleotide polymorphisms (SNPs) of date palms to evaluate the efficacy of this approach for molecular characterization of cultivars. Mitochondrial and plastid genomes of nine Saudi Arabian cultivars were sequenced. For each species about 60 million 100 bp paired-end reads were generated from total genomic DNA using the Illumina HiSeq 2000 platform. For each cultivar, sequences were aligned separately to the published date palm plastid and mitochondrial reference genomes, and SNPs were identified. The results identified cultivar-specific SNPs for eight of the nine cultivars. Two previous SNP analyses of mitochondrial and plastid genomes identified substantial intra-cultivar ( = intra-varietal) polymorphisms in organellar genomes but these studies did not properly take into account the fact that nearly half of the plastid genome has been integrated into the mitochondrial genome. Filtering all sequencing reads that mapped to both organellar genomes nearly eliminated mitochondrial heteroplasmy but all plastid SNPs remained heteroplasmic. This investigation provides valuable insights into how to deal with interorganellar DNA transfer in performing SNP analyses from total genomic DNA. The results confirm recent suggestions that plastid heteroplasmy is much more common than previously thought. Finally, low levels of sequence variation in plastid and mitochondrial genomes argue for using nuclear SNPs for molecular characterization of date palm cultivars.
Collapse
Affiliation(s)
- Jamal S. M. Sabir
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dhivya Arasappan
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Ahmed Bahieldin
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Ain Shams University, Cairo, Egypt
| | - Salah Abo-Aba
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Microbial Genetics, National Research Centre, Giza, Egypt
| | - Sameera Bafeel
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Talal A. Zari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherif Edris
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Ain Shams University, Cairo, Egypt
| | - Ahmed M. Shokry
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Agriculture Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Nour O. Gadalla
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics and Cytology, National Research Centre, Dokki, Egypt
| | - Ahmed M. Ramadan
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Agriculture Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Ahmed Atef
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magdy A. Al-Kordy
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics and Cytology, National Research Centre, Dokki, Egypt
| | - Fotoh M. El-Domyati
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Ain Shams University, Cairo, Egypt
| | - Robert K. Jansen
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
64
|
Noyszewski AK, Ghavami F, Alnemer LM, Soltani A, Gu YQ, Huo N, Meinhardt S, Kianian PMA, Kianian SF. Accelerated evolution of the mitochondrial genome in an alloplasmic line of durum wheat. BMC Genomics 2014; 15:67. [PMID: 24460856 PMCID: PMC3942274 DOI: 10.1186/1471-2164-15-67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 01/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat is an excellent plant species for nuclear mitochondrial interaction studies due to availability of large collection of alloplasmic lines. These lines exhibit different vegetative and physiological properties than their parents. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic condition, three mitochondrial genomes of the Triticum-Aegilops species were sequenced: 1) durum alloplasmic line with the Ae. longissima cytoplasm that carries the T. turgidum nucleus designated as (lo) durum, 2) the cytoplasmic donor line, and 3) the nuclear donor line. RESULTS The mitochondrial genome of the T. turgidum was 451,678 bp in length with high structural and nucleotide identity to the previously characterized T. aestivum genome. The assembled mitochondrial genome of the (lo) durum and the Ae. longissima were 431,959 bp and 399,005 bp in size, respectively. The high sequence coverage for all three genomes allowed analysis of heteroplasmy within each genome. The mitochondrial genome structure in the alloplasmic line was genetically distant from both maternal and paternal genomes. The alloplasmic durum and the Ae. longissima carry the same versions of atp6, nad6, rps19-p, cob and cox2 exon 2 which are different from the T. turgidum parent. Evidence of paternal leakage was also observed by analyzing nad9 and orf359 among all three lines. Nucleotide search identified a number of open reading frames, of which 27 were specific to the (lo) durum line. CONCLUSIONS Several heteroplasmic regions were observed within genes and intergenic regions of the mitochondrial genomes of all three lines. The number of rearrangements and nucleotide changes in the mitochondrial genome of the alloplasmic line that have occurred in less than half a century was significant considering the high sequence conservation between the T. turgidum and the T. aestivum that diverged from each other 10,000 years ago. We showed that the changes in genes were not limited to paternal leakage but were sufficiently significant to suggest that other mechanisms, such as recombination and mutation, were responsible. The newly formed ORFs, differences in gene sequences and copy numbers, heteroplasmy, and substoichiometric changes show the potential of the alloplasmic condition to accelerate evolution towards forming new mitochondrial genomes.
Collapse
|
65
|
Alfonsi E, Méheust E, Fuchs S, Carpentier FG, Quillivic Y, Viricel A, Hassani S, Jung JL. The use of DNA barcoding to monitor the marine mammal biodiversity along the French Atlantic coast. Zookeys 2013:5-24. [PMID: 24453548 PMCID: PMC3890668 DOI: 10.3897/zookeys.365.5873] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/11/2013] [Indexed: 01/09/2023] Open
Abstract
In the last ten years, 14 species of cetaceans and five species of pinnipeds stranded along the Atlantic coast of Brittany in the North West of France. All species included, an average of 150 animals strand each year in this area. Based on reports from the stranding network operating along this coast, the most common stranding events comprise six cetacean species (Delphinus delphis, Tursiops truncatus, Stenella coeruleoalba, Globicephala melas, Grampus griseus, Phocoena phocoena)and one pinniped species (Halichoerus grypus). Rare stranding events include deep-diving or exotic species, such as arctic seals. In this study, our aim was to determine the potential contribution of DNA barcoding to the monitoring of marine mammal biodiversity as performed by the stranding network. We sequenced more than 500 bp of the 5’ end of the mitochondrial COI gene of 89 animals of 15 different species (12 cetaceans, and three pinnipeds). Except for members of the Delphininae, all species were unambiguously discriminated on the basis of their COI sequences. We then applied DNA barcoding to identify some “undetermined” samples. With again the exception of the Delphininae, this was successful using the BOLD identification engine. For samples of the Delphininae, we sequenced a portion of the mitochondrial control region (MCR), and using a non-metric multidimentional scaling plot and posterior probability calculations we were able to determine putatively each species. We then showed, in the case of the harbour porpoise, that COI polymorphisms, although being lower than MCR ones, could also be used to assess intraspecific variability. All these results show that the use of DNA barcoding in conjunction with a stranding network could clearly increase the accuracy of the monitoring of marine mammal biodiversity.
Collapse
Affiliation(s)
- Eric Alfonsi
- Laboratoire BioGeMME (Biologie et Génétique des Mammifères Marins dans leur Environnement), Université Européenne de Bretagne & Université de Bretagne Occidentale, UFR Sciences et Techniques, 6 Av. Victor Le Gorgeu - CS93837 - 29238 Brest Cedex 3, France ; Laboratoire d'Etude des Mammifères Marins (LEMM), Océanopolis, port de plaisance, BP 91039, 29210 Brest Cedex 1, France
| | - Eleonore Méheust
- Laboratoire BioGeMME (Biologie et Génétique des Mammifères Marins dans leur Environnement), Université Européenne de Bretagne & Université de Bretagne Occidentale, UFR Sciences et Techniques, 6 Av. Victor Le Gorgeu - CS93837 - 29238 Brest Cedex 3, France ; Laboratoire d'Etude des Mammifères Marins (LEMM), Océanopolis, port de plaisance, BP 91039, 29210 Brest Cedex 1, France
| | - Sandra Fuchs
- Laboratoire d'Etude des Mammifères Marins (LEMM), Océanopolis, port de plaisance, BP 91039, 29210 Brest Cedex 1, France
| | - François-Gilles Carpentier
- Laboratoire BioGeMME (Biologie et Génétique des Mammifères Marins dans leur Environnement), Université Européenne de Bretagne & Université de Bretagne Occidentale, UFR Sciences et Techniques, 6 Av. Victor Le Gorgeu - CS93837 - 29238 Brest Cedex 3, France
| | - Yann Quillivic
- Laboratoire d'Etude des Mammifères Marins (LEMM), Océanopolis, port de plaisance, BP 91039, 29210 Brest Cedex 1, France
| | - Amélia Viricel
- Observatoire PELAGIS, UMS 3462, CNRS-Université de La Rochelle, Pôle analytique, 5 allée de l'océan, 17000 La Rochelle, France ; Littoral, Environnement et Sociétés, UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Sami Hassani
- Laboratoire d'Etude des Mammifères Marins (LEMM), Océanopolis, port de plaisance, BP 91039, 29210 Brest Cedex 1, France
| | - Jean-Luc Jung
- Laboratoire BioGeMME (Biologie et Génétique des Mammifères Marins dans leur Environnement), Université Européenne de Bretagne & Université de Bretagne Occidentale, UFR Sciences et Techniques, 6 Av. Victor Le Gorgeu - CS93837 - 29238 Brest Cedex 3, France
| |
Collapse
|
66
|
Dugesia sicula (Platyhelminthes, Tricladida): the colonizing success of an asexual Planarian. BMC Evol Biol 2013; 13:268. [PMID: 24330464 PMCID: PMC3922848 DOI: 10.1186/1471-2148-13-268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dugesia sicula is the only species of its genus not presenting an endemic or restricted distribution within the Mediterranean area. It mostly comprises fissiparous populations (asexual reproduction by body division and regeneration), most likely sexually sterile, and characterized by an extremely low genetic diversity interpreted as the consequence of a recent anthropic expansion. However, its fissiparous reproduction can result in an apparent lack of diversity within the species, since genetic variation within individuals can be as large as between them because most individuals within a population are clones. We have estimated haplotype and nucleotide diversity of cytochrome oxidase I within and among individuals along the species distribution of a broad sample of D. sicula, including asexual and the two only sexual populations known today; and predicted its potential distribution based on climatic variables. Our aim was to determine the centre of colonisation origin, whether the populations are recent, and whether the species is expanding. RESULTS The species presents 3 most frequent haplotypes, differing in a maximum of 11 base pairs. As expected from their fissiparous mode of reproduction, in half of all the analysed localities many individuals have multiple heteroplasmic haplotypes. The distribution of haplotypes is not geographically structured; however, the distribution of haplotypes and heteroplasmic populations shows higher diversity in the central Mediterranean region. The potential distribution predicted by climatic variables based modelling shows a preference for coastal areas and fits well with the observed data. CONCLUSIONS The distribution and frequency of the most frequent haplotypes and the presence of heteroplasmic individuals allow us to gain an understanding of the recent history of the species, together with previous knowledge on its phylogenetic relationships and age: The species most probably originated in Africa and dispersed through the central Mediterranean. After one or multiple populations became triploid and fissiparous, the species colonized the Mediterranean basin, likely both by its own means and helped by human activities. Its present distribution practically fulfils its potential distribution as modelled with climatic variables. Its prevalence in coastal regions with higher water temperatures predicts a likely future expansion to northern and more interior areas following the increase in temperatures due to climate change.
Collapse
|
67
|
McCauley DE. Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes. THE NEW PHYTOLOGIST 2013; 200:966-77. [PMID: 23952142 DOI: 10.1111/nph.12431] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/25/2013] [Indexed: 05/25/2023]
Abstract
Plant mitochondrial genomes are usually transmitted to the progeny from the maternal parent. However, cases of paternal transmission are known and are perhaps more common than once thought. This review will consider recent evidence, both direct and indirect, of paternal transmission (leakage) of the mitochondrial genome of seed plants, especially in natural populations, and how this can result in offspring that carry a mixture of maternally and paternally derived copies of the genome; a type of heteroplasmy. It will further consider how this heteroplasmy facilitates recombination between genetically distinct partners; a process that can enhance mitochondrial genotypic diversity. This will then form the basis for a discussion of five evolutionary questions that arise from these observations. Questions include how plant mitochondrial genome evolution can be placed on a sexual to asexual continuum, whether cytoplasmic male sterility (CMS) facilitates the evolution of paternal leakage, whether paternal leakage is more likely in populations undergoing admixture, how leakage influences patterns of gene flow, and whether heteroplasmy occurs in natural populations at a frequency greater than predicted by crossing experiments. It is proposed that each of these questions offers fertile ground for future research on a diversity of plant species.
Collapse
Affiliation(s)
- David E McCauley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
68
|
Xiong H, Barker SC, Burger TD, Raoult D, Shao R. Heteroplasmy in the mitochondrial genomes of human lice and ticks revealed by high throughput sequencing. PLoS One 2013; 8:e73329. [PMID: 24058467 PMCID: PMC3772822 DOI: 10.1371/journal.pone.0073329] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 01/03/2023] Open
Abstract
The typical mitochondrial (mt) genomes of bilateral animals consist of 37 genes on a single circular chromosome. The mt genomes of the human body louse, Pediculus humanus, and the human head louse, Pediculus capitis, however, are extensively fragmented and contain 20 minichromosomes, with one to three genes on each minichromosome. Heteroplasmy, i.e. nucleotide polymorphisms in the mt genome within individuals, has been shown to be significantly higher in the mt cox1 gene of human lice than in humans and other animals that have the typical mt genomes. To understand whether the extent of heteroplasmy in human lice is associated with mt genome fragmentation, we sequenced the entire coding regions of all of the mt minichromosomes of six human body lice and six human head lice from Ethiopia, China and France with an Illumina HiSeq platform. For comparison, we also sequenced the entire coding regions of the mt genomes of seven species of ticks, which have the typical mitochondrial genome organization of bilateral animals. We found that the level of heteroplasmy varies significantly both among the human lice and among the ticks. The human lice from Ethiopia have significantly higher level of heteroplasmy than those from China and France (Pt<0.05). The tick, Amblyomma cajennense, has significantly higher level of heteroplasmy than other ticks (Pt<0.05). Our results indicate that heteroplasmy level can be substantially variable within a species and among closely related species, and does not appear to be determined by single factors such as genome fragmentation.
Collapse
Affiliation(s)
- Haoyu Xiong
- Parasitology Section, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephen C. Barker
- Parasitology Section, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas D. Burger
- Parasitology Section, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UMR CNRS 6236 IRD 198, Faculté de Mé decine, Mé diterranée Infection, Aix-Marseille Université, Marseille, France
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
69
|
Yin J, Pan D, He C, Wang A, Yan J, Sun H. Morphological and molecular data confirm species assignment and dispersal of the genusLigia(Crustacea: Isopoda: Ligiidae) along northeastern coastal China and East Asia. Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiawen Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Cha He
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - An Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Jie Yan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| | - Hongying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology; College of Life Sciences; Nanjing Normal University; Nanjing 210023 China
| |
Collapse
|
70
|
THUMMAJITSAKUL SIRIKUL, SILPRASIT KUN, KLINBUNGA SIRAWUT, SITTIPRANEED SIRIPORN. The partial mitochondrial sequence of the Old World stingless bee, Tetragonula pagdeni. J Genet 2013; 92:299-303. [DOI: 10.1007/s12041-013-0243-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
71
|
Park JY, Lee YP, Lee J, Choi BS, Kim S, Yang TJ. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish (Raphanus sativus L.) containing DCGMS cytoplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1763-74. [PMID: 23539087 DOI: 10.1007/s00122-013-2090-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/19/2013] [Indexed: 05/03/2023]
Abstract
A novel cytoplasmic male sterility (CMS) conferred by Dongbu cytoplasmic and genic male-sterility (DCGMS) cytoplasm and its restorer-of-fertility gene (Rfd1) was previously reported in radish (Raphanus sativus L.). Its inheritance of fertility restoration and profiles of mitochondrial DNA (mtDNA)-based molecular markers were reported to be different from those of Ogura CMS, the first reported CMS in radish. The complete mitochondrial genome sequence (239,186 bp; GenBank accession No. KC193578) of DCGMS mitotype is reported in this study. Thirty-four protein-coding genes and three ribosomal RNA genes were identified. Comparative analysis of a mitochondrial genome sequence of DCGMS and previously reported complete sequences of normal and Ogura CMS mitotypes revealed various recombined structures of seventeen syntenic sequence blocks. Short-repeat sequences were identified in almost all junctions between syntenic sequence blocks. Phylogenetic analysis of three radish mitotypes showed that DCGMS was more closely related to the normal mitotype than to the Ogura mitotype. A single 1,551-bp unique region was identified in DCGMS mtDNA sequences and a novel chimeric gene, designated orf463, consisting of 128-bp partial sequences of cox1 gene and 1,261-bp unidentified sequences were found in the unique region. No other genes with a chimeric structure, a major feature of most characterized CMS-associated genes in other plant species, were found in rearranged junctions of syntenic sequence blocks. Like other known CMS-associated mitochondrial genes, the predicted gene product of orf463 contained 12 transmembrane domains. Thus, this gene product might be integrated into the mitochondrial membrane. In total, the results indicate that orf463 is likely to be a casual factor for CMS induction in radish containing the DCGMS cytoplasm.
Collapse
Affiliation(s)
- Jee Young Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | |
Collapse
|
72
|
Zander M, Patel DA, Van de Wouw A, Lai K, Lorenc MT, Campbell E, Hayward A, Edwards D, Raman H, Batley J. Identifying genetic diversity of avirulence genes in Leptosphaeria maculans using whole genome sequencing. Funct Integr Genomics 2013; 13:295-308. [PMID: 23793572 DOI: 10.1007/s10142-013-0324-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/07/2013] [Accepted: 05/12/2013] [Indexed: 12/18/2022]
Abstract
Next generation sequencing technology allows rapid re-sequencing of individuals, as well as the discovery of single nucleotide polymorphisms (SNPs), for genomic diversity and evolutionary analyses. By sequencing two isolates of the fungal plant pathogen Leptosphaeria maculans, the causal agent of blackleg disease in Brassica crops, we have generated a resource of over 76 million sequence reads aligned to the reference genome. We identified over 21,000 SNPs with an overall SNP frequency of one SNP every 2,065 bp. Sequence validation of a selection of these SNPs in additional isolates collected throughout Australia indicates a high degree of polymorphism in the Australian population. In preliminary phylogenetic analysis, isolates from Western Australia clustered together and those collected from Brassica juncea stubble were identical. These SNPs provide a novel marker resource to study the genetic diversity of this pathogen. We demonstrate that re-sequencing provides a method of validating previously characterised SNPs and analysing differences in important genes, such as the disease related avirulence genes of L. maculans. Understanding the genetic characteristics of this devastating pathogen is vital in developing long-term solutions to managing blackleg disease in Brassica crops.
Collapse
Affiliation(s)
- Manuel Zander
- School of Agriculture and Food Sciences and Centre for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Grechko VV. The problems of molecular phylogenetics with the example of squamate reptiles: Mitochondrial DNA markers. Mol Biol 2013. [DOI: 10.1134/s0026893313010056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
74
|
Sablok G, Mudunuri SB, Patnana S, Popova M, Fares MA, Porta NL. ChloroMitoSSRDB: open source repository of perfect and imperfect repeats in organelle genomes for evolutionary genomics. DNA Res 2013; 20:127-33. [PMID: 23284085 PMCID: PMC3628443 DOI: 10.1093/dnares/dss038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Microsatellites or simple sequence repeats (SSRs) are repetitive stretches of nucleotides (A, T, G, C) that are distributed either as single base pair stretches or as a combination of two- to six-nucleotides units that are non-randomly distributed within coding and in non-coding regions of the genome. ChloroMitoSSRDB is a complete curated web-oriented relational database of perfect and imperfect repeats in organelle genomes. The present version of the database contains perfect and imperfect SSRs of 2161 organelle genomes (1982 mitochondrial and 179 chloroplast genomes). We detected a total of 5838 chloroplast perfect SSRs, 37 297 chloroplast imperfect SSRs, 5898 mitochondrial perfect SSRs and 50 355 mitochondrial imperfect SSRs across these genomes. The repeats have been further hyperlinked to the annotated gene regions (coding or non-coding) and a link to the corresponding gene record in National Center for Biotechnology Information(www.ncbi.nlm.nih.gov/) to identify and understand the positional relationship of the repetitive tracts. ChloroMitoSSRDB is connected to a user-friendly web interface that provides useful information associated with the location of the repeats (coding and non-coding), size of repeat, motif and length polymorphism, etc. ChloroMitoSSRDB will serve as a repository for developing functional markers for molecular phylogenetics, estimating molecular variation across species. Database URL: ChloroMitoSSRDB can be accessed as an open source repository at www.mcr.org.in/chloromitossrdb.
Collapse
Affiliation(s)
- Gaurav Sablok
- Sustainable Agro-ecosystems and Bioresources Department, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all'Adige, Trentino 38010, Italy.
| | | | | | | | | | | |
Collapse
|
75
|
Yamauchi A, Telschow A. Bistability of endosymbiont evolution of genome size and host sex control. J Theor Biol 2012; 309:58-66. [DOI: 10.1016/j.jtbi.2012.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 05/16/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
76
|
Cho Y, Lee YP, Park BS, Han TH, Kim S. Construction of a high-resolution linkage map of Rfd1, a restorer-of-fertility locus for cytoplasmic male sterility conferred by DCGMS cytoplasm in radish (Raphanus sativus L.) using synteny between radish and Arabidopsis genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:467-477. [PMID: 22434503 DOI: 10.1007/s00122-012-1846-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
Cytoplasmic male sterility caused by Dongbu cytoplasmic and genic male-sterility (DCGMS) cytoplasm and its nuclear restorer-of-fertility locus (Rfd1) with a linked molecular marker (A137) have been reported in radish (Raphanus sativus L.). To construct a linkage map of the Rfd1 locus, linked amplified fragment length polymorphism (AFLP) markers were screened using bulked segregant analysis. A 220-bp linked AFLP fragment sequence from radish showed homology with an Arabidopsis coding sequence. Using this Arabidopsis gene sequence, a simple PCR marker (A220) was developed. The A137 and A220 markers flanked the Rfd1 locus. Two homologous Arabidopsis genes with both marker sequences were positioned on Arabidopsis chromosome-3 with an interval of 2.4 Mb. To integrate the Rfd1 locus into a previously reported expressed sequence tag (EST)-simple sequence repeat (SSR) linkage map, the radish EST sequences located in three syntenic blocks within the 2.4-Mb interval were used to develop single nucleotide polymorphism (SNP) markers for tagging each block. The SNP marker in linkage group-2 co-segregated with male fertility in an F(2) population. Using radish ESTs positioned in linkage group-2, five intron length polymorphism (ILP) markers and one cleaved amplified polymorphic sequence (CAPS) marker were developed and used to construct a linkage map of the Rfd1 locus. Two closely linked markers delimited the Rfd1 locus within a 985-kb interval of Arabidopsis chromosome-3. Synteny between the radish and Arabidopsis genomes in the 985-kb interval were used to develop three ILP and three CAPS markers. Two ILP markers further delimited the Rfd1 locus to a 220-kb interval of Arabidopsis chromosome-3.
Collapse
Affiliation(s)
- Youngcho Cho
- Department of Plant Biotechnology, Biotechnology Research Institute, Chonnam National University, Gwangju, 500-757, Korea
| | | | | | | | | |
Collapse
|
77
|
Miller-Messmer M, Kühn K, Bichara M, Le Ret M, Imbault P, Gualberto JM. RecA-dependent DNA repair results in increased heteroplasmy of the Arabidopsis mitochondrial genome. PLANT PHYSIOLOGY 2012; 159:211-26. [PMID: 22415515 PMCID: PMC3375962 DOI: 10.1104/pp.112.194720] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/13/2012] [Indexed: 05/18/2023]
Abstract
Plant mitochondria have very active DNA recombination activities that are responsible for its plastic structures and that should be involved in the repair of double-strand breaks in the mitochondrial genome. Little is still known on plant mitochondrial DNA repair, but repair by recombination is believed to be a major determinant in the rapid evolution of plant mitochondrial genomes. In flowering plants, mitochondria possess at least two eubacteria-type RecA proteins that should be core components of the mitochondrial repair mechanisms. We have performed functional analyses of the two Arabidopsis (Arabidopsis thaliana) mitochondrial RecAs (RECA2 and RECA3) to assess their potential roles in recombination-dependent repair. Heterologous expression in Escherichia coli revealed that RECA2 and RECA3 have overlapping as well as specific activities that allow them to partially complement bacterial repair pathways. RECA2 and RECA3 have similar patterns of expression, and mutants of either display the same molecular phenotypes of increased recombination between intermediate-size repeats, thus suggesting that they act in the same recombination pathways. However, RECA2 is essential past the seedling stage and should have additional important functions. Treatment of plants with several DNA-damaging drugs further showed that RECA3 is required for different recombination-dependent repair pathways that significantly contribute to plant fitness under stress. Replication repair of double-strand breaks results in the accumulation of crossovers that increase the heteroplasmic state of the mitochondrial DNA. It was shown that these are transmitted to the plant progeny, enhancing the potential for mitochondrial genome evolution.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Bleomycin/pharmacology
- Crossing Over, Genetic
- DNA Breaks
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Enzyme Activation
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Evolution, Molecular
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Genome, Mitochondrial
- Mitochondria/drug effects
- Mitochondria/enzymology
- Mitochondria/genetics
- Phenotype
- Polymorphism, Genetic
- Rec A Recombinases/genetics
- Rec A Recombinases/metabolism
- Recombinational DNA Repair
- Seedlings/genetics
- Seedlings/metabolism
- Stress, Physiological
Collapse
|
78
|
Mower JP, Case AL, Floro ER, Willis JH. Evidence against equimolarity of large repeat arrangements and a predominant master circle structure of the mitochondrial genome from a monkeyflower (Mimulus guttatus) lineage with cryptic CMS. Genome Biol Evol 2012; 4:670-86. [PMID: 22534162 PMCID: PMC3381676 DOI: 10.1093/gbe/evs042] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Despite intense investigation for over 25 years, the in vivo structure of plant mitochondrial genomes remains uncertain. Mapping studies and genome sequencing generally produce large circular chromosomes, whereas electrophoretic and microscopic studies typically reveal linear and multibranched molecules. To more fully assess the structure of plant mitochondrial genomes, the complete sequence of the monkeyflower (Mimulus guttatus DC. line IM62) mitochondrial DNA was constructed from a large (35 kb) paired-end shotgun sequencing library to a high depth of coverage (∼30×). The complete genome maps as a 525,671 bp circular molecule and exhibits a fairly conventional set of features including 62 genes (encoding 35 proteins, 24 transfer RNAs, and 3 ribosomal RNAs), 22 introns, 3 large repeats (2.7, 9.6, and 29 kb), and 96 small repeats (40–293 bp). Most paired-end reads (71%) mapped to the consensus sequence at the expected distance and orientation across the entire genome, validating the accuracy of assembly. Another 10% of reads provided clear evidence of alternative genomic conformations due to apparent rearrangements across large repeats. Quantitative assessment of these repeat-spanning read pairs revealed that all large repeat arrangements are present at appreciable frequencies in vivo, although not always in equimolar amounts. The observed stoichiometric differences for some arrangements are inconsistent with a predominant master circular structure for the mitochondrial genome of M. guttatus IM62. Finally, because IM62 contains a cryptic cytoplasmic male sterility (CMS) system, an in silico search for potential CMS genes was undertaken. The three chimeric open reading frames (ORFs) identified in this study, in addition to the previously identified ORFs upstream of the nad6 gene, are the most likely CMS candidate genes in this line.
Collapse
Affiliation(s)
- Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska, NE, USA.
| | | | | | | |
Collapse
|
79
|
Kawaura K, Saeki A, Masumura T, Morita S, Ogihara Y. Heteroplasmy and expression of mitochondrial genes in alloplasmic and euplasmic wheat. Genes Genet Syst 2012; 86:249-55. [PMID: 22214593 DOI: 10.1266/ggs.86.249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The plant chondriome confers a complex nature. The atp4 gene (formerly called orf25) of Aegilops crassa (CR) harbors the promoter sequence of the rps7 gene from common wheat (Triticum aestivum cv. Chinese Spring, CS). The rps7 gene of CR has the promoter sequence of CS atp6. The atp6 gene of CR contains an unknown sequence inside of its coding region. Since repeat sequences have been found around the breaking points, these structural alterations are most likely generated through homologous recombination. In this study, PCR analysis was performed to detect structural alterations in each of three lines: euplasmic lines of Ae. crassa, Chinese Spring, and alloplasmic Chinese Spring wheat with the cytoplasm of Ae. crassa ((cr)-CS). We found that each of these lines contained both genotypes, although mitochondrial genotypes of CR in Chinese Spring wheat and CS genotypes in Ae. crassa were still retained as minor fractions (less than 10%). On the other hand, CS mitochondrial gene frequencies in ((cr)-CS) were shown to be ca. 30%. SNP analysis after DNA sequencing of these genes indicated that minor types of all three mitochondrial genes in alloplasmic wheat contained the mitochondrial gene types from pollens. Since the frequencies of paternal mitochondrial gene types in F(1) were about 20%, successive backcrossing increased the frequencies of paternal mitochondrial gene types to around 30% in alloplasmic wheat. Expression profiles of these mitochondrial genes were quantitatively analyzed by RT-PCR. Transcripts of paternal mitochondrial gene types were scarcely found. This suggests that minor fractions including paternal mitochondrial gene types are maintained and silenced in the descendants.
Collapse
Affiliation(s)
- Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University, Japan
| | | | | | | | | |
Collapse
|
80
|
Seed Plant Mitochondrial Genomes: Complexity Evolving. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
81
|
Lane N. Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations. Bioessays 2011; 33:860-9. [PMID: 21922504 DOI: 10.1002/bies.201100051] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many conserved eukaryotic traits, including apoptosis, two sexes, speciation and ageing, can be causally linked to a bioenergetic requirement for mitochondrial genes. Mitochondrial genes encode proteins involved in cell respiration, which interact closely with proteins encoded by nuclear genes. Functional respiration requires the coadaptation of mitochondrial and nuclear genes, despite divergent tempi and modes of evolution. Free-radical signals emerge directly from the biophysics of mosaic respiratory chains encoded by two genomes prone to mismatch, with apoptosis being the default penalty for compromised respiration. Selection for genomic matching is facilitated by two sexes, and optimizes fitness, adaptability and fertility in youth. Mismatches cause infertility, low fitness, hybrid breakdown, and potentially speciation. The dynamics of selection for mitonuclear function optimize fitness over generations, but the same selective processes also operate within generations, driving ageing and age-related diseases. This coherent view of eukaryotic energetics offers striking insights into infertility and age-related diseases.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
82
|
Lopes IF, Tomasulo-Seccomandi AM, Bryan AL, Brisbin IL, Glenn TC, Del Lama SN. Genetic status of the wood stork (Mycteria americana) from the southeastern United States and the Brazilian Pantanal as revealed by mitochondrial DNA analysis. GENETICS AND MOLECULAR RESEARCH 2011; 10:1910-22. [PMID: 21948753 DOI: 10.4238/vol10-3gmr1217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The wood stork (Mycteria americana) is a colonial wading bird that inhabits the Neotropical region from the southeastern United States (US) to northern Argentina. The species is considered to be endangered in the US due to degradation of its foraging and breeding habitat. In other parts of its range, such as in the Brazilian Pantanal region, breeding populations of this species appear to be stable. We compared the levels of genetic variability and population structuring of the US and the Pantanal breeding populations using mitochondrial DNA (mtDNA) control region sequences. Twenty-seven haplotypes were identified among 88 wood stork samples collected from eight breeding colonies in the US and eight in the Pantanal. Patterns indicative of heteroplasmy were observed in 35.3% of the mtDNA sequences that were examined. Significantly higher levels of haplotype diversity were observed in the Pantanal samples compared to those from the US, suggesting that during the last century, demographic declines or a recent evolutionary bottleneck reduced the levels of mtDNA variability of the US population. Analyses of genetic structuring revealed non-significant genetic differentiation between these regions, indicating that either the populations were only recently separated or that gene flow continues to occur at low levels. Haplotype network analysis indicated low current levels of gene flow between populations that were closely related in the past.
Collapse
Affiliation(s)
- I F Lopes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil.
| | | | | | | | | | | |
Collapse
|
83
|
Munwes I, Geffen E, Friedmann A, Tikochinski Y, Gafny S. Variation in repeat length and heteroplasmy of the mitochondrial DNA control region along a core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol Ecol 2011; 20:2878-87. [PMID: 21645158 DOI: 10.1111/j.1365-294x.2011.05134.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral populations are those situated at the distribution margins of a species and are often subjected to more extreme abiotic and biotic conditions than those at the core. Here, we hypothesized that shorter repeat length and fewer heteroplasmic mitochondrial DNA (mtDNA) copies, which are associated with more efficient mitochondrial function, may be related to improved survival under extreme environmental conditions. We sampled eastern spadefoot toads (mostly as tadpoles) from 43 rain pools distributed along a 300-km gradient from core to edge of the species' distribution. We show that mean pool tandem repeat length and heteroplasmy increase from edge to core, even after controlling for body size. We evaluate several alternative hypotheses and propose the Fisher hypothesis as the most likely explanation. However, additional sequential sampling and experimental studies are required to determine whether selection under extreme conditions, or alternative mechanisms, could account for the gradient in heteroplasmy and repeat length in the mtDNA control region.
Collapse
Affiliation(s)
- Inbar Munwes
- School of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | | | | | | | | |
Collapse
|
84
|
Yoon YG, Koob MD. Toward genetic transformation of mitochondria in mammalian cells using a recoded drug-resistant selection marker. J Genet Genomics 2011; 38:173-9. [PMID: 21530901 DOI: 10.1016/j.jgg.2011.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 01/04/2023]
Abstract
Due to technical difficulties, the genetic transformation of mitochondria in mammalian cells is still a challenge. In this report, we described our attempts to transform mammalian mitochondria with an engineered mitochondrial genome based on selection using a drug resistance gene. Because the standard drug-resistant neomycin phosphotransferase confers resistance to high concentrations of G418 when targeted to the mitochondria, we generated a recoded neomycin resistance gene that uses the mammalian mitochondrial genetic code to direct the synthesis of this protein in the mitochondria, but not in the nucleus (mitochondrial version). We also generated a universal version of the recoded neomycin resistance gene that allows synthesis of the drug-resistant proteins both in the mitochondria and nucleus. When we transfected these recoded neomycin resistance genes that were incorporated into the mouse mitochondrial genome clones into mouse tissue culture cells by electroporation, no DNA constructs were delivered into the mitochondria. We found that the universal version of the recoded neomycin resistance gene was expressed in the nucleus and thus conferred drug resistance to G418 selection, while the synthetic mitochondrial version of the gene produced no background drug-resistant cells from nuclear transformation. These recoded synthetic drug-resistant genes could be a useful tool for selecting mitochondrial genetic transformants as a precise technology for mitochondrial transformation is developed.
Collapse
Affiliation(s)
- Young Geol Yoon
- Mitochondria Hub Regulation Center and Department of Anatomy and Cell Biology, Dong-A University College of Medicine, 3-1 Dongdaesin-dong, Seo-gu, Busan 602-714, Republic of Korea.
| | | |
Collapse
|
85
|
Coyer JA, Hoarau G, Costa JF, Hogerdijk B, Serrão EA, Billard E, Valero M, Pearson GA, Olsen JL. Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North Atlantic. Mol Phylogenet Evol 2011; 58:283-96. [PMID: 21111835 DOI: 10.1016/j.ympev.2010.11.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/10/2010] [Accepted: 11/16/2010] [Indexed: 11/22/2022]
Abstract
We examined 733 individuals of Fucusspiralis from 21 locations and 1093 Fucusvesiculosus individuals from 37 locations throughout their northern hemisphere ranges using nuclear and mitochondrial markers. Three genetic entities of F. spiralis were recovered. In northern and sympatric populations, the presence of "F. spiralis Low" in the mid-intertidal and "F. spiralis High" in the high-intertidal was confirmed and both co-occurred with the sister species F. vesiculosus. The third and newly-discovered entity, "F. spiralis South", was present mainly in the southern range, where it did not co-occur with F. vesiculosus. The South entity diverged early in allopatry, then hybridized with F. vesiculosus in sympatry to produce F. spiralis Low. Ongoing parallel evolution of F. spiralis Low and F. spiralis High is most likely due to habitat preference/local selection and maintained by preferentially selfing reproductive strategies. Contemporary populations of F. spiralis throughout the North Atlantic stem from a glacial refugium around Brittany involving F. spiralis High; F. spiralis South was probably unaffected by glacial episodes. Exponential population expansion for F. vesiculosus began during the Cromer and/Holstein interglacial period (300,000-200,000 yrs BP). Following the last glacial maximum (30,000-22,000 yrs BP), a single mtDNA haplotype from a glacial refugium in SW Ireland colonized Scandinavia, the Central Atlantic islands, and the W Atlantic.
Collapse
Affiliation(s)
- J A Coyer
- Department of Marine Benthic Ecology and Evolution, Center for Ecological and Evolutionary Studies, University of Groningen, Centre for Life Sciences, AG Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Zhidkov I, Cohen R, Geifman N, Mishmar D, Rubin E. CHILD: a new tool for detecting low-abundance insertions and deletions in standard sequence traces. Nucleic Acids Res 2011; 39:e47. [PMID: 21278161 PMCID: PMC3074157 DOI: 10.1093/nar/gkq1354] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Several methods have been proposed for detecting insertion/deletions (indels) from chromatograms generated by Sanger sequencing. However, most such methods are unsuitable when the mutated and normal variants occur at unequal ratios, such as is expected to be the case in cancer, with organellar DNA or with alternatively spliced RNAs. In addition, the current methods do not provide robust estimates of the statistical confidence of their results, and the sensitivity of this approach has not been rigorously evaluated. Here, we present CHILD, a tool specifically designed for indel detection in mixtures where one variant is rare. CHILD makes use of standard sequence alignment statistics to evaluate the significance of the results. The sensitivity of CHILD was tested by sequencing controlled mixtures of deleted and undeleted plasmids at various ratios. Our results indicate that CHILD can identify deleted molecules present as just 5% of the mixture. Notably, the results were plasmid/primer-specific; for some primers and/or plasmids, the deleted molecule was only detected when it comprised 10% or more of the mixture. The false positive rate was estimated to be lower than 0.4%. CHILD was implemented as a user-oriented web site, providing a sensitive and experimentally validated method for the detection of rare indel-carrying molecules in common Sanger sequence reads.
Collapse
Affiliation(s)
- Ilia Zhidkov
- National Institute for Biotechnology in the Negev, Dept. of Life Sciences, Dept. of Computer Sciences and Shraga Segal Dept. of Microbiology and Immunology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Raphael Cohen
- National Institute for Biotechnology in the Negev, Dept. of Life Sciences, Dept. of Computer Sciences and Shraga Segal Dept. of Microbiology and Immunology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nophar Geifman
- National Institute for Biotechnology in the Negev, Dept. of Life Sciences, Dept. of Computer Sciences and Shraga Segal Dept. of Microbiology and Immunology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Dan Mishmar
- National Institute for Biotechnology in the Negev, Dept. of Life Sciences, Dept. of Computer Sciences and Shraga Segal Dept. of Microbiology and Immunology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Eitan Rubin
- National Institute for Biotechnology in the Negev, Dept. of Life Sciences, Dept. of Computer Sciences and Shraga Segal Dept. of Microbiology and Immunology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- *To whom correspondence should be addressed. Tel: +972 8 6477180; Fax: +972 8 6479197;
| |
Collapse
|
87
|
Gianazza E, Eberini I, Sensi C, Barile M, Vergani L, Vanoni MA. Energy matters: mitochondrial proteomics for biomedicine. Proteomics 2011; 11:657-74. [PMID: 21241019 DOI: 10.1002/pmic.201000412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/22/2010] [Accepted: 11/03/2010] [Indexed: 12/16/2022]
Abstract
This review compiles results of medical relevance from mitochondrial proteomics, grouped either according to the type of disease - genetic or degenerative - or to the involved mechanism - oxidative stress or apoptosis. The findings are commented in the light of our current understanding of uniformity/variability in cell responses to different stimuli. Specificities in the conceptual and technical approaches to human mitochondrial proteomics are also outlined.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
88
|
Vollmer NL, Viricel A, Wilcox L, Katherine Moore M, Rosel PE. The occurrence of mtDNA heteroplasmy in multiple cetacean species. Curr Genet 2011; 57:115-31. [DOI: 10.1007/s00294-010-0331-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 11/30/2022]
|
89
|
Ladoukakis ED, Theologidis I, Rodakis GC, Zouros E. Homologous recombination between highly diverged mitochondrial sequences: examples from maternally and paternally transmitted genomes. Mol Biol Evol 2011; 28:1847-59. [PMID: 21220759 DOI: 10.1093/molbev/msr007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Homologous recombination is restricted to sequences of low divergence. This is attributed to the mismatch repairing system (MMR), which does not allow recombination between sequences that are highly divergent. This acts as a safeguard against recombination between nonhomologous sequences that could result in genome imbalance. Here, we report recombination between maternal and paternal mitochondrial genomes of the sea mussel, whose sequences differ by >20%. We propose that the strict maternal inheritance of the animal mitochondrial DNA and the ensuing homoplasmy has relieved the MMR system of the animal mitochondrion from the pressure to tolerate recombination only among sequences with a high degree of similarity.
Collapse
|
90
|
Klütsch CFC, Seppälä EH, Uhlén M, Lohi H, Savolainen P. Segregation of point mutation heteroplasmy in the control region of dog mtDNA studied systematically in deep generation pedigrees. Int J Legal Med 2010; 125:527-35. [PMID: 21049272 PMCID: PMC3115052 DOI: 10.1007/s00414-010-0524-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/18/2010] [Indexed: 12/04/2022]
Abstract
Heteroplasmy, the presence of two or more variants in an organism, may render mitochondrial DNA (mtDNA)-based individual identification challenging in forensic analysis. However, the variation of heteroplasmic proportions and the segregation of heteroplasmic variants through generations and within families have not been systematically described at a large scale in animals such as the domestic dog. Therefore, we performed the largest study to date in domestic dogs and screened a 582-bp-long fragment of the mtDNA control region in 180 individuals in 58 pedigrees for signs of heteroplasmy. We identified three pedigrees (5.17%) with heteroplasmic point mutations. To follow the segregation of the point mutations, we then analyzed 131 samples from these three independent pedigrees and found significant differences in heteroplasmy between generations and among siblings. Frequently (10% of cases), the proportion of one base changed from 0–10% to 80–90% (as judged from Sanger electropherograms) between generations and varied to a similar extent among siblings. We included also a literature review of heteroplasmic and potential mutational hot spot positions in the studied region which showed that all heteroplasmic positions appear to be mutational hot spots. Thus, although heteroplasmy may be used to increase the significance of a match in forensic case work, it may also cause erroneous exclusion of related individuals because of sharp switches from one state to the other within a single generation or among siblings especially in the presented mutational hot spots.
Collapse
Affiliation(s)
- Cornelya F C Klütsch
- KTH-Royal Institute of Technology, Gene Technology, Roslagstullsbacken 21, 10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
91
|
Mazunin IO, Volodko NV, Starikovskaya EB, Sukernik RI. Mitochondrial genome and human mitochondrial diseases. Mol Biol 2010. [DOI: 10.1134/s0026893310050018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
92
|
Raupach MJ, Astrin JJ, Hannig K, Peters MK, Stoeckle MY, Wägele JW. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Front Zool 2010; 7:26. [PMID: 20836845 PMCID: PMC2945340 DOI: 10.1186/1742-9994-7-26] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 09/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. RESULTS We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae. CONCLUSION Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.
Collapse
Affiliation(s)
- Michael J Raupach
- Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160-162, 53113 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
93
|
Magnacca KN, Brown MJF. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evol Biol 2010; 10:174. [PMID: 20540728 PMCID: PMC2891727 DOI: 10.1186/1471-2148-10-174] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 06/11/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The past several years have seen a flurry of papers seeking to clarify the utility and limits of DNA barcoding, particularly in areas such as species discovery and paralogy due to nuclear pseudogenes. Heteroplasmy, the coexistence of multiple mitochondrial haplotypes in a single organism, has been cited as a potentially serious problem for DNA barcoding but its effect on identification accuracy has not been tested. In addition, few studies of barcoding have tested a large group of closely-related species with a well-established morphological taxonomy. In this study we examine both of these issues, by densely sampling the Hawaiian Hylaeus bee radiation. RESULTS Individuals from 21 of the 49 a priori morphologically-defined species exhibited coding sequence heteroplasmy at levels of 1-6% or more. All homoplasmic species were successfully identified by COI using standard methods of analysis, but only 71% of heteroplasmic species. The success rate in identifying heteroplasmic species was increased to 86% by treating polymorphisms as character states rather than ambiguities. Nuclear pseudogenes (numts) were also present in four species, and were distinguishable from heteroplasmic sequences by patterns of nucleotide and amino acid change. CONCLUSIONS Heteroplasmy significantly decreased the reliability of species identification. In addition, the practical issue of dealing with large numbers of polymorphisms- and resulting increased time and labor required - makes the development of DNA barcode databases considerably more complex than has previously been suggested. The impact of heteroplasmy on the utility of DNA barcoding as a bulk specimen identification tool will depend upon its frequency across populations, which remains unknown. However, DNA barcoding is still likely to remain an important identification tool for those species that are difficult or impossible to identify through morphology, as is the case for the ecologically important solitary bee fauna.
Collapse
Affiliation(s)
- Karl N Magnacca
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- Current address: Department of Biology, University of Hawai'i, 200 W. Kawili St., Hilo HI 96720, USA
| | - Mark JF Brown
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
94
|
Differential replication of two chloroplast genome forms in heteroplasmic Chlamydomonas reinhardtii gametes contributes to alternative inheritance patterns. Genetics 2010; 185:1167-81. [PMID: 20519744 DOI: 10.1534/genetics.110.118265] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS-. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only approximately 25% of tetrads, whereas the PS- genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS- genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS- genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies.
Collapse
|
95
|
Cost of Having the Largest Mitochondrial Genome: Evolutionary Mechanism of Plant Mitochondrial Genome. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/620137] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The angiosperm mitochondrial genome is the largest and least gene-dense among the eukaryotes, because its intergenic regions are expanded. There seems to be no functional constraint on the size of the intergenic regions; angiosperms maintain the large mitochondrial genome size by a currently unknown mechanism. After a brief description of the angiosperm mitochondrial genome, this review focuses on our current knowledge of the mechanisms that control the maintenance and alteration of the genome. In both processes, the control of homologous recombination is crucial in terms of site and frequency. The copy numbers of various types of mitochondrial DNA molecules may also be controlled, especially during transmission of the mitochondrial genome from one generation to the next. An important characteristic of angiosperm mitochondria is that they contain polypeptides that are translated from open reading frames created as byproducts of genome alteration and that are generally nonfunctional. Such polypeptides have potential to evolve into functional ones responsible for mitochondrially encoded traits such as cytoplasmic male sterility or may be remnants of the former functional polypeptides.
Collapse
|
96
|
Paternal leakage and heteroplasmy of mitochondrial genomes in Silene vulgaris: evidence from experimental crosses. Genetics 2010; 185:961-8. [PMID: 20421605 DOI: 10.1534/genetics.110.115360] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inheritance of mitochondrial genetic (mtDNA) markers in the gynodioecious plant Silene vulgaris was studied using a series of controlled crosses between parents of known mtDNA genotype followed by quantitative PCR assays of offspring genotype. Overall, approximately 2.5% of offspring derived from crosses between individuals that were homoplasmic for different mtDNA marker genotypes showed evidence of paternal leakage. When the source population of the pollen donor was considered, however, population-specific rates of leakage varied significantly around this value, ranging from 10.3% to zero. When leakage did occur, the paternal contribution ranged from 0.5% in some offspring (i.e., biparental inheritance resulting in a low level of heteroplasmy) to 100% in others. Crosses between mothers known to be heteroplasmic for one of the markers and homoplasmic fathers showed that once heteroplasmy enters a maternal lineage it is retained by approximately 17% of offspring in the next generation, but lost from the others. The results are discussed with regard to previous studies of heteroplasmy in open-pollinated natural populations of S. vulgaris and with regard to the potential impact of mitochondrial paternal leakage and heteroplasmy on both the evolution of the mitochondrial genome and the evolution of gynodioecy.
Collapse
|
97
|
Maréchal A, Brisson N. Recombination and the maintenance of plant organelle genome stability. THE NEW PHYTOLOGIST 2010; 186:299-317. [PMID: 20180912 DOI: 10.1111/j.1469-8137.2010.03195.x] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like their nuclear counterpart, the plastid and mitochondrial genomes of plants have to be faithfully replicated and repaired to ensure the normal functioning of the plant. Inability to maintain organelle genome stability results in plastid and/or mitochondrial defects, which can lead to potentially detrimental phenotypes. Fortunately, plant organelles have developed multiple strategies to maintain the integrity of their genetic material. Of particular importance among these processes is the extensive use of DNA recombination. In fact, recombination has been implicated in both the replication and the repair of organelle genomes. Revealingly, deregulation of recombination in organelles results in genomic instability, often accompanied by adverse consequences for plant fitness. The recent identification of four families of proteins that prevent aberrant recombination of organelle DNA sheds much needed mechanistic light on this important process. What comes out of these investigations is a partial portrait of the recombination surveillance machinery in which plants have co-opted some proteins of prokaryotic origin but have also evolved whole new factors to keep their organelle genomes intact. These new features presumably optimized the protection of plastid and mitochondrial genomes against the particular genotoxic stresses they face.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Department of Biochemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, QC H3C 3J7, Canada
| | | |
Collapse
|
98
|
Woloszynska M. Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes--though this be madness, yet there's method in't. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:657-71. [PMID: 19995826 DOI: 10.1093/jxb/erp361] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondrial heteroplasmy is defined as the coexistence of divergent mitochondrial genotypes in a cell. The ratio of the alternative genomes may be variable, but in plants, the usually prevalent main genome is accompanied by sublimons--substoichiometric mitochondrial DNA (mtDNA) molecules. Plant mitochondrial heteroplasmy was originally viewed as being associated with pathological mutations or was found in non-natural plant populations. Currently, it is considered to be a common situation in plants. Recent years have changed the previous view on the role of homologous recombination, small-scale mutations, and paternal leakage of mtDNA in the generation of heteroplasmy. Newly developed sensitive techniques have allowed the precise estimation of mtDNA stoichiometry. Mechanisms of maintenance and transmission of heteroplasmic genomes, including DNA recombination and replication, as well as mitochondrial fusion and fission, have been studied. This review describes the high level of plant mitochondrial genome complication--the 'madness' resulting from the heteroplasmic state and explains the method hidden in this madness. Heteroplasmy is described as the evolutionary strategy of uniparentally inherited plant mitochondrial genomes which do not undergo sexual recombination. In order to compensate for this deficiency, alternative types of mtDNA are substoichiometrically accumulated as a reservoir of genetic variability and may undergo accelerated evolution. Occasionally, sublimons are selected and amplified in the process called substoichiometric shifting, to take over the role of the main genome. Alternative mitochondrial genomes may recombine, yielding new mtDNA variants, or segregate during plant growth resulting in plants with mosaic phenotypes. Two opposite roles of mitochondrial heteroplasmy with respect to acceleration or counteracting of mutation accumulation are also discussed. Finally, nuclear control of heteroplasmy and substoichiometric shifting is described.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Laboratory of Molecular Cell Biology, Faculty of Biotechnology, University of Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
99
|
Comparison of mitochondrial and chloroplast genome segments from three onion (Allium cepa L.) cytoplasm types and identification of a trans-splicing intron of cox2. Curr Genet 2010; 56:177-88. [PMID: 20127247 DOI: 10.1007/s00294-010-0290-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/11/2010] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
To study genetic relatedness of two male sterility-inducing cytotypes, the phylogenetic relationship among three cytotypes of onions (Allium cepa L.) was assessed by analyzing polymorphisms of the mitochondrial DNA organization and chloroplast sequences. The atp6 gene and a small open reading frame, orf22, did not differ between the normal and CMS-T cytotypes, but two SNPs and one 4-bp insertion were identified in CMS-S cytotype. Partial sequences of the chloroplast ycf2 gene were integrated in the upstream sequence of the cob gene via short repeat sequence-mediated recombination. However, this chloroplast DNA-integrated organization was detected only in CMS-S. Interestingly, disruption of a group II intron of cox2 was identified for the first time in this study. Like other trans-splicing group II introns in mitochondrial genomes, fragmentation of the intron occurred in domain IV. Two variants of each exon1 and exon2 flanking sequences were identified. The predominant types of four variants were identical in both the normal and the CMS-T cytotypes. These predominant types existed as sublimons in CMS-S cytotypes. Altogether, no differences were identified between normal and CMS-T, but significant differences in gene organization and nucleotide sequences were identified in CMS-S, suggesting recent origin of CMS-T male-sterility from the normal cytotype.
Collapse
|
100
|
Elansary HO, Müller K, Olson MS, Štorchová H. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris. BMC PLANT BIOLOGY 2010; 10:11. [PMID: 20070905 PMCID: PMC2820487 DOI: 10.1186/1471-2229-10-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 01/13/2010] [Indexed: 05/05/2023]
Abstract
BACKGROUND Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. RESULTS We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. CONCLUSIONS Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris.Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.
Collapse
Affiliation(s)
- Hosam O Elansary
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, 165 00 Prague 6, Lysolaje, Czech Republic
| | - Karel Müller
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, 165 00 Prague 6, Lysolaje, Czech Republic
| | - Matthew S Olson
- Department of Biology and Wildlife, University of Alaska at Fairbanks, Fairbanks, AK 99775, USA
- Institute of Arctic Biology, University of Alaska at Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA
| | - Helena Štorchová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, 165 00 Prague 6, Lysolaje, Czech Republic
- Institute of Arctic Biology, University of Alaska at Fairbanks, P.O. Box 757000, Fairbanks, AK 99775, USA
| |
Collapse
|