51
|
Lyra E Silva NM, Gonçalves RA, Pascoal TA, Lima-Filho RAS, Resende EDPF, Vieira ELM, Teixeira AL, de Souza LC, Peny JA, Fortuna JTS, Furigo IC, Hashiguchi D, Miya-Coreixas VS, Clarke JR, Abisambra JF, Longo BM, Donato J, Fraser PE, Rosa-Neto P, Caramelli P, Ferreira ST, De Felice FG. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer's disease. Transl Psychiatry 2021; 11:251. [PMID: 33911072 PMCID: PMC8080782 DOI: 10.1038/s41398-021-01349-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored. Using T2-weighted magnetic resonance imaging (MRI), we observed signs of probable inflammation in the hypothalamus and in the hippocampus of AD patients when compared to cognitively healthy control subjects. Pathological examination of post-mortem AD hypothalamus revealed the presence of hyperphosphorylated tau and tangle-like structures, as well as parenchymal and vascular amyloid deposits surrounded by astrocytes. T2 hyperintensities on MRI positively correlated with plasma IL-6, and both correlated inversely with cognitive performance and hypothalamic/hippocampal volumes in AD patients. Increased IL-6 and suppressor of cytokine signaling 3 (SOCS3) were observed in post-mortem AD brains. Moreover, activation of the IL-6 pathway was observed in the hypothalamus and hippocampus of AD mice. Neutralization of IL-6 and inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling in the brains of AD mouse models alleviated memory impairment and peripheral glucose intolerance, and normalized plasma IL-6 levels. Collectively, these results point to IL-6 as a link between cognitive impairment and peripheral metabolic alterations in AD. Targeting pro-inflammatory IL-6 signaling may be a strategy to alleviate memory impairment and metabolic alterations in the disease.
Collapse
Affiliation(s)
- Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Rafaella A Gonçalves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Elisa de Paula França Resende
- Behavioral and Cognitive Neurology Research Group, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Erica L M Vieira
- Centre of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Antonio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Santa Casa BH Ensino e Pesquisa, Belo Horizonte, MG, Brazil
| | - Leonardo C de Souza
- Behavioral and Cognitive Neurology Research Group, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julyanna A Peny
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana T S Fortuna
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Debora Hashiguchi
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Vivian S Miya-Coreixas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose F Abisambra
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease University of Florida, Gainesville, FL, USA
| | - Beatriz M Longo
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology Research Group, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.
- Department of Biomedical and Molecuar Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
52
|
Janssens J, Hermans B, Vandermeeren M, Barale-Thomas E, Borgers M, Willems R, Meulders G, Wintmolders C, Van den Bulck D, Bottelbergs A, Ver Donck L, Larsen P, Moechars D, Edwards W, Mercken M, Van Broeck B. Passive immunotherapy with a novel antibody against 3pE-modified Aβ demonstrates potential for enhanced efficacy and favorable safety in combination with BACE inhibitor treatment in plaque-depositing mice. Neurobiol Dis 2021; 154:105365. [PMID: 33848635 DOI: 10.1016/j.nbd.2021.105365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
The imbalance between production and clearance of amyloid β (Aβ) peptides and their resulting accumulation in the brain is an early and crucial step in the pathogenesis of Alzheimer's disease (AD). Therefore, Aβ is strongly positioned as a promising and extensively validated therapeutic target for AD. Investigational disease-modifying approaches aiming at reducing cerebral Aβ concentrations include prevention of de novo production of Aβ through inhibition of β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and clearance of Aβ deposits via passive Aβ immunotherapy. We have developed a novel, high affinity antibody against Aβ peptides bearing a pyroglutamate residue at amino acid position 3 (3pE), an Aβ species abundantly present in plaque deposits in AD brains. Here, we describe the preclinical characterization of this antibody, and demonstrate a significant reduction in amyloid burden in the absence of microhemorrhages in different mouse models with established plaque deposition. Moreover, we combined antibody treatment with chronic BACE1 inhibitor treatment and demonstrate significant clearance of pre-existing amyloid deposits in transgenic mouse brain, without induction of microhemorrhages and other histopathological findings. Together, these data confirm significant potential for the 3pE-specific antibody to be developed as a passive immunotherapy approach that balances efficacy and safety. Moreover, our studies suggest further enhanced treatment efficacy and favorable safety after combination of the 3pE-specific antibody with BACE1 inhibitor treatment.
Collapse
Affiliation(s)
- Jonathan Janssens
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bart Hermans
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marc Vandermeeren
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Erio Barale-Thomas
- Non-Clinical Science, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marianne Borgers
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Roland Willems
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Greet Meulders
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Cindy Wintmolders
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Dries Van den Bulck
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Astrid Bottelbergs
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Luc Ver Donck
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Peter Larsen
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Dieder Moechars
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Marc Mercken
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bianca Van Broeck
- Department of Neuroscience, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Beerse, Belgium.
| |
Collapse
|
53
|
Schoemaker D, Charidimou A, Zanon Zotin MC, Raposo N, Johnson KA, Sanchez JS, Greenberg SM, Viswanathan A. Association of Memory Impairment With Concomitant Tau Pathology in Patients With Cerebral Amyloid Angiopathy. Neurology 2021; 96:e1975-e1986. [PMID: 33627498 DOI: 10.1212/wnl.0000000000011745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/13/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Relying on tau-PET imaging, this cross-sectional study explored whether memory impairment is linked to the presence of concomitant tau pathology in individuals with cerebral amyloid angiopathy (CAA). METHODS Forty-six patients with probable CAA underwent a neuropsychological examination and an MRI for quantification of structural markers of cerebral small vessel disease. A subset of these participants also completed a [11C]-Pittsburgh compound B (n = 39) and [18F]-flortaucipir (n = 40) PET for in vivo estimation of amyloid and tau burden, respectively. Participants were classified as amnestic or nonamnestic on the basis of neuropsychological performance. Statistical analyses were performed to examine differences in cognition, structural markers of cerebral small vessel disease, and amyloid- and tau-PET retention between participants with amnestic and those with nonamnestic CAA. RESULTS Patients with probable CAA with an amnestic presentation displayed a globally more severe profile of cognitive impairment, smaller hippocampal volume (p < 0.001), and increased tau-PET binding in regions susceptible to Alzheimer disease neurodegeneration (p = 0.003) compared to their nonamnestic counterparts. Amnestic and nonamnestic patients with CAA did not differ on any other MRI markers or on amyloid-PET binding. In a generalized linear model including all evaluated neuroimaging markers, tau-PET retention (β = -0.85, p = 0.001) and hippocampal volume (β = 0.64 p = 0.01) were the only significant predictors of memory performance. The cognitive profile of patients with CAA with an elevated tau-PET retention was distinctly characterized by a significantly lower performance on the memory domain (p = 0.004). CONCLUSIONS These results suggest that the presence of objective memory impairment in patients with probable CAA could serve as a marker for underlying tau pathology. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that tau-PET retention is related to the presence of objective memory impairment in patients with CAA.
Collapse
Affiliation(s)
- Dorothee Schoemaker
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston.
| | - Andreas Charidimou
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Maria Clara Zanon Zotin
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Nicolas Raposo
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Keith A Johnson
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Justin S Sanchez
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Steven M Greenberg
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Anand Viswanathan
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| |
Collapse
|
54
|
Saito S, Tanaka M, Satoh-Asahara N, Carare RO, Ihara M. Taxifolin: A Potential Therapeutic Agent for Cerebral Amyloid Angiopathy. Front Pharmacol 2021; 12:643357. [PMID: 33643053 PMCID: PMC7907591 DOI: 10.3389/fphar.2021.643357] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of β-amyloid (Aβ) in the walls of cerebral vessels, leading to complications such as intracerebral hemorrhage, convexity subarachnoid hemorrhage and cerebral microinfarcts. Patients with CAA-related intracerebral hemorrhage are more likely to develop dementia and strokes. Several pathological investigations have demonstrated that more than 90% of Alzheimer's disease patients have concomitant CAA, suggesting common pathogenic mechanisms. Potential causes of CAA include impaired Aβ clearance from the brain through the intramural periarterial drainage (IPAD) system. Conversely, CAA causes restriction of IPAD, limiting clearance. Early intervention in CAA could thus prevent Alzheimer's disease progression. Growing evidence has suggested Taxifolin (dihydroquercetin) could be used as an effective therapy for CAA. Taxifolin is a plant flavonoid, widely available as a health supplement product, which has been demonstrated to exhibit anti-oxidative and anti-inflammatory effects, and provide protection against advanced glycation end products and mitochondrial damage. It has also been shown to facilitate disassembly, prevent oligomer formation and increase clearance of Aβ in a mouse model of CAA. Disturbed cerebrovascular reactivity and spatial reference memory impairment in CAA are completely prevented by Taxifolin treatment. These results highlight the need for clinical trials on the efficacy and safety of Taxifolin in patients with CAA.
Collapse
Affiliation(s)
- Satoshi Saito
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masashi Tanaka
- Department of Physical Therapy, Health Science University, Fujikawaguchiko, Japan.,Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
55
|
Dal Magro R, Vitali A, Fagioli S, Casu A, Falqui A, Formicola B, Taiarol L, Cassina V, Marrano CA, Mantegazza F, Anselmi-Tamburini U, Sommi P, Re F. Oxidative Stress Boosts the Uptake of Cerium Oxide Nanoparticles by Changing Brain Endothelium Microvilli Pattern. Antioxidants (Basel) 2021; 10:antiox10020266. [PMID: 33572224 PMCID: PMC7916071 DOI: 10.3390/antiox10020266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular oxidative stress is considered a worsening factor in the progression of Alzheimer's disease (AD). Increased reactive oxygen species (ROS) levels promote the accumulation of amyloid-β peptide (Aβ), one of the main hallmarks of AD. In turn, Aβ is a potent inducer of oxidative stress. In early stages of AD, the concomitant action of oxidative stress and Aβ on brain capillary endothelial cells was observed to compromise the blood-brain barrier functionality. In this context, antioxidant compounds might provide therapeutic benefits. To this aim, we investigated the antioxidant activity of cerium oxide nanoparticles (CNP) in human cerebral microvascular endothelial cells (hCMEC/D3) exposed to Aβ oligomers. Treatment with CNP (13.9 ± 0.7 nm in diameter) restored basal ROS levels in hCMEC/D3 cells, both after acute or prolonged exposure to Aβ. Moreover, we found that the extent of CNP uptake by hCMEC/D3 was +43% higher in the presence of Aβ. Scanning electron microscopy and western blot analysis suggested that changes in microvilli structures on the cell surface, under pro-oxidant stimuli (Aβ or H2O2), might be involved in the enhancement of CNP uptake. This finding opens the possibility to exploit the modulation of endothelial microvilli pattern to improve the uptake of anti-oxidant particles designed to counteract ROS-mediated cerebrovascular dysfunctions.
Collapse
Affiliation(s)
- Roberta Dal Magro
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
- Correspondence:
| | - Agostina Vitali
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (A.V.); (U.A.-T.)
| | - Stefano Fagioli
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Alberto Casu
- NABLA Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (A.C.); (A.F.)
| | - Andrea Falqui
- NABLA Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (A.C.); (A.F.)
| | - Beatrice Formicola
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Lorenzo Taiarol
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Valeria Cassina
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Claudia Adriana Marrano
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | - Francesco Mantegazza
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| | | | - Patrizia Sommi
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Re
- BioNanoMedicine Center NANOMIB, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.F.); (B.F.); (L.T.); (V.C.); (C.A.M.); (F.M.); (F.R.)
| |
Collapse
|
56
|
Abdallah IM, Al-Shami KM, Yang E, Kaddoumi A. Blood-Brain Barrier Disruption Increases Amyloid-Related Pathology in TgSwDI Mice. Int J Mol Sci 2021; 22:ijms22031231. [PMID: 33513818 PMCID: PMC7865722 DOI: 10.3390/ijms22031231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
In Alzheimer’s disease (AD), several studies have reported blood-brain barrier (BBB) breakdown with compromised function. P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are transport proteins localized at the BBB luminal membrane and play an important role in the clearance of amyloid-β (Aβ). The purpose of this study was to investigate the effect of pharmacological inhibition of Aβ efflux transporters on BBB function and Aβ accumulation and related pathology. Recently, we have developed an in vitro high-throughput screening assay to screen for compounds that modulate the integrity of a cell-based BBB model, which identified elacridar as a disruptor of the monolayer integrity. Elacridar, an investigational compound known for its P-gp and BCRP inhibitory effect and widely used in cancer research. Therefore, it was used as a model compound for further evaluation in a mouse model of AD, namely TgSwDI. TgSwDI mouse is also used as a model for cerebral amyloid angiopathy (CAA). Results showed that P-gp and BCRP inhibition by elacridar disrupted the BBB integrity as measured by increased IgG extravasation and reduced expression of tight junction proteins, increased amyloid deposition due to P-gp, and BCRP downregulation and receptor for advanced glycation end products (RAGE) upregulation, increased CAA and astrogliosis. Further studies revealed the effect was mediated by activation of NF-κB pathway. In conclusion, results suggest that BBB disruption by inhibiting P-gp and BCRP exacerbates AD pathology in a mouse model of AD, and indicate that therapeutic drugs that inhibit P-gp and BCRP could increase the risk for AD.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Acridines/administration & dosage
- Acridines/pharmacology
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Amyloid beta-Peptides/metabolism
- Animals
- Astrocytes/drug effects
- Astrocytes/metabolism
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Cell Line
- Disease Models, Animal
- Immunoglobulin G/metabolism
- Immunohistochemistry
- Male
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Transgenic
- NF-kappa B/metabolism
- Signal Transduction/drug effects
- Synapses/drug effects
- Synapses/metabolism
- Tetrahydroisoquinolines/administration & dosage
- Tetrahydroisoquinolines/pharmacology
- Tight Junctions/metabolism
Collapse
|
57
|
Fu Z, Van Nostrand WE, Smith SO. Anti-Parallel β-Hairpin Structure in Soluble Aβ Oligomers of Aβ40-Dutch and Aβ40-Iowa. Int J Mol Sci 2021; 22:ijms22031225. [PMID: 33513738 PMCID: PMC7865275 DOI: 10.3390/ijms22031225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 11/16/2022] Open
Abstract
The amyloid-β (Aβ) peptides are associated with two prominent diseases in the brain, Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA). Aβ42 is the dominant component of cored parenchymal plaques associated with AD, while Aβ40 is the predominant component of vascular amyloid associated with CAA. There are familial CAA mutations at positions Glu22 and Asp23 that lead to aggressive Aβ aggregation, drive vascular amyloid deposition and result in degradation of vascular membranes. In this study, we compared the transition of the monomeric Aβ40-WT peptide into soluble oligomers and fibrils with the corresponding transitions of the Aβ40-Dutch (E22Q), Aβ40-Iowa (D23N) and Aβ40-Dutch, Iowa (E22Q, D23N) mutants. FTIR measurements show that in a fashion similar to Aβ40-WT, the familial CAA mutants form transient intermediates with anti-parallel β-structure. This structure appears before the formation of cross-β-sheet fibrils as determined by thioflavin T fluorescence and circular dichroism spectroscopy and occurs when AFM images reveal the presence of soluble oligomers and protofibrils. Although the anti-parallel β-hairpin is a common intermediate on the pathway to Aβ fibrils for the four peptides studied, the rate of conversion to cross-β-sheet fibril structure differs for each.
Collapse
Affiliation(s)
- Ziao Fu
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA;
| | - William E. Van Nostrand
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA;
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Steven O. Smith
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: ; Tel.: +1-631-632-1210
| |
Collapse
|
58
|
Steinman J, Sun HS, Feng ZP. Microvascular Alterations in Alzheimer's Disease. Front Cell Neurosci 2021; 14:618986. [PMID: 33536876 PMCID: PMC7849053 DOI: 10.3389/fncel.2020.618986] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with continual decline in cognition and ability to perform routine functions such as remembering familiar places or understanding speech. For decades, amyloid beta (Aβ) was viewed as the driver of AD, triggering neurodegenerative processes such as inflammation and formation of neurofibrillary tangles (NFTs). This approach has not yielded therapeutics that cure the disease or significant improvements in long-term cognition through removal of plaques and Aβ oligomers. Some researchers propose alternate mechanisms that drive AD or act in conjunction with amyloid to promote neurodegeneration. This review summarizes the status of AD research and examines research directions including and beyond Aβ, such as tau, inflammation, and protein clearance mechanisms. The effect of aging on microvasculature is highlighted, including its contribution to reduced blood flow that impairs cognition. Microvascular alterations observed in AD are outlined, emphasizing imaging studies of capillary malfunction. The review concludes with a discussion of two therapies to protect tissue without directly targeting Aβ for removal: (1) administration of growth factors to promote vascular recovery in AD; (2) inhibiting activity of a calcium-permeable ion channels to reduce microglial activation and restore cerebral vascular function.
Collapse
Affiliation(s)
- Joe Steinman
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
59
|
Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 2021; 9:12. [PMID: 33413694 PMCID: PMC7791879 DOI: 10.1186/s40478-020-01108-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA.
Collapse
|
60
|
Boon BDC, Bulk M, Jonker AJ, Morrema THJ, van den Berg E, Popovic M, Walter J, Kumar S, van der Lee SJ, Holstege H, Zhu X, Van Nostrand WE, Natté R, van der Weerd L, Bouwman FH, van de Berg WDJ, Rozemuller AJM, Hoozemans JJM. The coarse-grained plaque: a divergent Aβ plaque-type in early-onset Alzheimer's disease. Acta Neuropathol 2020; 140:811-830. [PMID: 32926214 PMCID: PMC7666300 DOI: 10.1007/s00401-020-02198-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-beta (Aβ) deposits, which come in myriad morphologies with varying clinical relevance. Previously, we observed an atypical Aβ deposit, referred to as the coarse-grained plaque. In this study, we evaluate the plaque's association with clinical disease and perform in-depth immunohistochemical and morphological characterization. The coarse-grained plaque, a relatively large (Ø ≈ 80 µm) deposit, characterized as having multiple cores and Aβ-devoid pores, was prominent in the neocortex. The plaque was semi-quantitatively scored in the middle frontal gyrus of Aβ-positive cases (n = 74), including non-demented cases (n = 15), early-onset (EO)AD (n = 38), and late-onset (LO)AD cases (n = 21). The coarse-grained plaque was only observed in cases with clinical dementia and more frequently present in EOAD compared to LOAD. This plaque was associated with a homozygous APOE ε4 status and cerebral amyloid angiopathy (CAA). In-depth characterization was done by studying the coarse-grained plaque's neuritic component (pTau, APP, PrPC), Aβ isoform composition (Aβ40, Aβ42, AβN3pE, pSer8Aβ), its neuroinflammatory component (C4b, CD68, MHC-II, GFAP), and its vascular attribution (laminin, collagen IV, norrin). The plaque was compared to the classic cored plaque, cotton wool plaque, and CAA. Similar to CAA but different from classic cored plaques, the coarse-grained plaque was predominantly composed of Aβ40. Furthermore, the coarse-grained plaque was distinctly associated with both intense neuroinflammation and vascular (capillary) pathology. Confocal laser scanning microscopy (CLSM) and 3D analysis revealed for most coarse-grained plaques a particular Aβ40 shell structure and a direct relation with vessels. Based on its morphological and biochemical characteristics, we conclude that the coarse-grained plaque is a divergent Aβ plaque-type associated with EOAD. Differences in Aβ processing and aggregation, neuroinflammatory response, and vascular clearance may presumably underlie the difference between coarse-grained plaques and other Aβ deposits. Disentangling specific Aβ deposits between AD subgroups may be important in the search for disease-mechanistic-based therapies.
Collapse
Affiliation(s)
- Baayla D C Boon
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands.
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands.
| | - Marjolein Bulk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Allert J Jonker
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Tjado H J Morrema
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Emma van den Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Marko Popovic
- Microscopy and Cytometry Core Facility, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sathish Kumar
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sven J van der Lee
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Henne Holstege
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Xiaoyue Zhu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, USA
| | - Remco Natté
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Femke H Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
61
|
Salminen A. Hypoperfusion is a potential inducer of immunosuppressive network in Alzheimer's disease. Neurochem Int 2020; 142:104919. [PMID: 33242538 DOI: 10.1016/j.neuint.2020.104919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which causes a non-reversible cognitive impairment and dementia. The primary cause of late-onset AD remains unknown although its pathology was discovered over a century ago. Recently, the vascular hypothesis of AD has received backing from evidence emerging from neuroimaging studies which have revealed the presence of a significant hypoperfusion in the brain regions vulnerable to AD pathology. In fact, hypoxia can explain many of the pathological changes evident in AD pathology, e.g. the deposition of β-amyloid plaques and chronic low-grade inflammation. Hypoxia-inducible factor-1α (HIF-1α) stimulates inflammatory responses and modulates both innate and adaptive immunity. It is known that hypoxia-induced inflammation evokes compensatory anti-inflammatory response involving tissue-resident microglia/macrophages and infiltrated immune cells. Hypoxia/HIF-1α induce immunosuppression by (i) increasing the expression of immunosuppressive genes, (ii) stimulating adenosinergic signaling, (iii) enhancing aerobic glycolysis, i.e. lactate production, and (iv) augmenting the secretion of immunosuppressive exosomes. Interestingly, it seems that these common mechanisms are also involved in the pathogenesis of AD. In AD pathology, an enhanced immunosuppression appears, e.g. as a shift in microglia/macrophage phenotypes towards the anti-inflammatory M2 phenotype and an increase in the numbers of regulatory T cells (Treg). The augmented anti-inflammatory capacity promotes the resolution of acute inflammation but persistent inflammation has crucial effects not only on immune cells but also harmful responses to the homeostasis of AD brain. I will examine in detail the mechanisms of the hypoperfusion/hypoxia-induced immunosuppressive state in general and especially, in its association with AD pathogenesis. These immunological observations support the vascular hypothesis of AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
62
|
Ocular Vascular Changes in Mild Alzheimer's Disease Patients: Foveal Avascular Zone, Choroidal Thickness, and ONH Hemoglobin Analysis. J Pers Med 2020; 10:jpm10040231. [PMID: 33203157 PMCID: PMC7712569 DOI: 10.3390/jpm10040231] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
In Alzheimer’s disease (AD), vascular changes could be caused by amyloid beta (Aβ) aggregates replacing the contractile smooth musculature of the arteriole walls. These changes happen in the brain vascular network, but also in the eye, and are related to decreased vascular density and low blood flow. In patients with Alzheimer’s disease, thinning of the choroid and the retina has been shown. The aim of this prospective study was to assess the retinal and choroidal vascular systems, analyzing the choroidal thickness with optical coherence tomography (OCT), the foveal avascular zone (FAZ) with OCT-angiography (OCTA), and the optic nerve head (ONH) hemoglobin with the Laguna ONhE program, to evaluate which of the two ocular vascular systems shows earlier changes in mild AD patients. These patients, compared to controls, showed a significantly thinner choroid at all the analyzed points, with the exception of the temporal macula (at 1000 and 1500 µm from the fovea). On the other hand, the FAZ and ONH hemoglobin did not show significant differences. In conclusion, a thinner choroid was the main ocular vascular change observed in mild AD patients, while the retinal vessels were not yet affected. Therefore, choroidal thickness could be used an early biomarker in AD.
Collapse
|
63
|
Saito S, Ikeda Y, Ando D, Carare RO, Ishibashi-Ueda H, Ihara M. Cerebral Amyloid Angiopathy Presenting as Massive Subarachnoid Haemorrhage: A Case Study and Review of Literature. Front Aging Neurosci 2020; 12:538456. [PMID: 33240073 PMCID: PMC7683384 DOI: 10.3389/fnagi.2020.538456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterised by the progressive accumulation of β-amyloid (Aβ) in the walls of cerebral capillaries and arteries representing a major cause of haemorrhagic stroke including lobar intracerebral haemorrhage (ICH) and convexity subarachnoid haemorrhage (SAH). Haemorrhaging from CAA predominantly involves smaller arteries rather than arterial aneurysm. Restricted bleeding into the subarachnoid space in CAA results in asymptomatic or mild symptomatic SAH. Herein, we present an autopsied case of massive SAH related to CAA. An 89-year-old male with a history of mild Alzheimer’s disease (AD) and advanced pancreatic cancer with liver metastasis developed sudden onset of coma. Head CT illustrated ICH located in the right frontal lobe and right insula, as well as SAH bilaterally spreading from the basal cistern to the Sylvian fissure, with hydrocephalus and brain herniation. He died about 24 h after onset and the post-mortem examination showed no evidence of arterial aneurysm. The substantial accumulation of Aβ in the vessels around the haemorrhagic lesions led to the diagnosis of ICH related to CAA and secondary SAH, which may have been aggravated by old age and malignancy. This case suggests that CAA can cause severe SAH resembling aneurysmal origin and thus may be overlooked when complicated by atypical cerebral haemorrhage.
Collapse
Affiliation(s)
- Satoshi Saito
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan.,Department of Pediatric Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Daisuke Ando
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Roxana Octavia Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
64
|
Doustar J, Rentsendorj A, Torbati T, Regis GC, Fuchs D, Sheyn J, Mirzaei N, Graham SL, Shah PK, Mastali M, Van Eyk JE, Black KL, Gupta VK, Mirzaei M, Koronyo Y, Koronyo‐Hamaoui M. Parallels between retinal and brain pathology and response to immunotherapy in old, late-stage Alzheimer's disease mouse models. Aging Cell 2020; 19:e13246. [PMID: 33090673 PMCID: PMC7681044 DOI: 10.1111/acel.13246] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/14/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Despite growing evidence for the characteristic signs of Alzheimer's disease (AD) in the neurosensory retina, our understanding of retina-brain relationships, especially at advanced disease stages and in response to therapy, is lacking. In transgenic models of AD (APPSWE/PS1∆E9; ADtg mice), glatiramer acetate (GA) immunomodulation alleviates disease progression in pre- and early-symptomatic disease stages. Here, we explored the link between retinal and cerebral AD-related biomarkers, including response to GA immunization, in cohorts of old, late-stage ADtg mice. This aged model is considered more clinically relevant to the age-dependent disease. Levels of synaptotoxic amyloid β-protein (Aβ)1-42, angiopathic Aβ1-40, non-amyloidogenic Aβ1-38, and Aβ42/Aβ40 ratios tightly correlated between paired retinas derived from oculus sinister (OS) and oculus dexter (OD) eyes, and between left and right posterior brain hemispheres. We identified lateralization of Aβ burden, with one-side dominance within paired retinal and brain tissues. Importantly, OS and OD retinal Aβ levels correlated with their cerebral counterparts, with stronger contralateral correlations and following GA immunization. Moreover, immunomodulation in old ADtg mice brought about reductions in cerebral vascular and parenchymal Aβ deposits, especially of large, dense-core plaques, and alleviation of microgliosis and astrocytosis. Immunization further enhanced cerebral recruitment of peripheral myeloid cells and synaptic preservation. Mass spectrometry analysis identified new parallels in retino-cerebral AD-related pathology and response to GA immunization, including restoration of homeostatic glutamine synthetase expression. Overall, our results illustrate the viability of immunomodulation-guided CNS repair in old AD model mice, while shedding light onto similar retino-cerebral responses to intervention, providing incentives to explore retinal AD biomarkers.
Collapse
Affiliation(s)
- Jonah Doustar
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Altan Rentsendorj
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Tania Torbati
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
- College of Osteopathic Medicine of the PacificWestern University of Health SciencesPomonaCAUSA
| | - Giovanna C. Regis
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Dieu‐Trang Fuchs
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Julia Sheyn
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Nazanin Mirzaei
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Stuart L. Graham
- Department of Clinical MedicineMacquarie UniversitySydneyNSWAustralia
- Save Sight InstituteSydney UniversitySydneyNSWAustralia
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research CenterCedars‐Sinai Heart InstituteLos AngelesCAUSA
| | - Mitra Mastali
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
| | - Jennifer E. Van Eyk
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
- Barbara Streisand Women’s Heart CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Keith L. Black
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Vivek K. Gupta
- Department of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Mehdi Mirzaei
- Department of Clinical MedicineMacquarie UniversitySydneyNSWAustralia
- Department of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNSWAustralia
| | - Yosef Koronyo
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Maya Koronyo‐Hamaoui
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
| |
Collapse
|
65
|
Hasselbalch HC, Skov V, Kjær L, Sørensen TL, Ellervik C, Wienecke T. Myeloproliferative blood cancers as a human neuroinflammation model for development of Alzheimer's disease: evidences and perspectives. J Neuroinflammation 2020; 17:248. [PMID: 32829706 PMCID: PMC7444051 DOI: 10.1186/s12974-020-01877-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammation and involvement of myeloid blood cells are associated with the development of Alzheimer's disease (AD). Chronic inflammation is a highly important driving force for the development and progression of the chronic myeloproliferative blood cancers (MPNs), which are characterized by repeated thrombotic episodes years before MPN-diagnosis, being elicited by elevated erythrocytes, leukocytes, and platelets. Mutations in blood cells, the JAK2V617F and TET2-mutations, contribute to the inflammatory and thrombogenic state. Herein, we discuss the MPNs as a human neuroinflammation model for AD development, taking into account the many shared cellular mechanisms for reduction in cerebral blood, including capillary stalling with plugging of blood cells in the cerebral microcirculation. The therapeutic consequences of an association between MPNs and AD are immense, including reduction in elevated cell counts by interferon-alpha2 or hydroxyurea and targeting the chronic inflammatory state by JAK1-2 inhibitors, e.g., ruxolitinib, in the future treatment of AD.
Collapse
Affiliation(s)
- Hans C Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Torben L Sørensen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Research, Production, Innovation, Roskilde, Region Zealand, Denmark
- Department of Pathology, Harvard Medical School, Boston, USA
| | - Troels Wienecke
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
66
|
Bennett RE, Hu M, Fernandes A, Perez-Rando M, Robbins A, Kamath T, Dujardin S, Hyman BT. Tau reduction in aged mice does not impact Microangiopathy. Acta Neuropathol Commun 2020; 8:137. [PMID: 32811565 PMCID: PMC7436970 DOI: 10.1186/s40478-020-01014-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 11/30/2022] Open
Abstract
Microangiopathy, including proliferation of small diameter capillaries, increasing vessel tortuosity, and increased capillary blockage by leukocytes, was previously observed in the aged rTg4510 mouse model. Similar gene expression changes related to angiogenesis were observed in both rTg4510 and Alzheimer's disease (AD). It is uncertain if tau is directly responsible for these vascular changes by interacting directly with microvessels, and/or if it contributes indirectly via neurodegeneration and concurrent neuronal loss and inflammation. To better understand the nature of tau-related microangiopathy in human AD and in tau mice, we isolated capillaries and observed that bioactive soluble tau protein could be readily detected in association with vasculature. To examine whether this soluble tau is directly responsible for the microangiopathic changes, we made use of the tetracycline-repressible gene expression cassette in the rTg4510 mouse model and measured vascular pathology following tau reduction. These data suggest that reduction of tau is insufficient to alter established microvascular complications including morphological alterations, enhanced expression of inflammatory genes involved in leukocyte adherence, and blood brain barrier compromise. These data imply that 1) soluble bioactive tau surprisingly accumulates at the blood brain barrier in human brain and in mouse models, and 2) the morphological and molecular phenotype of microvascular disturbance does not resolve with reduction of whole brain soluble tau. Additional consideration of vascular-directed therapies and strategies that target tau in the vascular space may be required to restore normal function in neurodegenerative disease.
Collapse
Affiliation(s)
- Rachel E Bennett
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Miwei Hu
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Analiese Fernandes
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Marta Perez-Rando
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ashley Robbins
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tarun Kamath
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Simon Dujardin
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
67
|
Hansen D, Ling H, Lashley T, Foley JA, Strand C, Eid TM, Holton JL, Warner TT. Novel clinicopathological characteristics differentiate dementia with Lewy bodies from Parkinson's disease dementia. Neuropathol Appl Neurobiol 2020; 47:143-156. [PMID: 32720329 DOI: 10.1111/nan.12648] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 01/09/2023]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) known as Lewy body dementias have overlapping clinical and neuropathological features. Neuropathology in both includes combination of Lewy body and Alzheimer's disease (AD) pathology. Cerebral amyloid angiopathy (CAA), often seen in AD, is increasingly recognized for its association with dementia. AIMS This study investigated clinical and neuropathological differences between DLB and PDD. METHODS 52 PDD and 16 DLB cases from the Queen Square Brain Bank (QSBB) for Neurological disorders were included. Comprehensive clinical data of motor and cognitive features were obtained from medical records. Neuropathological assessment included examination of CAA, Lewy body and AD pathology. RESULTS CAA was more common in DLB than in PDD (P = 0.003). The severity of CAA was greater in DLB than in PDD (P = 0.009), with significantly higher CAA scores in the parietal lobe (P = 0.043), and the occipital lobe (P = 0.008), in DLB than in PDD. The highest CAA scores were observed in cases with APOE ε4/4 and ε2/4. Survival analysis showed worse prognosis in DLB, as DLB reached each clinical milestone sooner than PDD. Absence of dyskinesia in DLB is linked to the significantly lower lifetime cumulative dose of levodopa in comparison with PDD. CONCLUSIONS This is the first study which identified prominent concurrent CAA pathology as a pathological substrate of DLB. More prominent CAA and rapid disease progression as measured by clinical milestones distinguish DLB from PDD.
Collapse
Affiliation(s)
- D Hansen
- Reta Lila Weston Institute, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - H Ling
- Reta Lila Weston Institute, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - J A Foley
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - C Strand
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T M Eid
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - J L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T T Warner
- Reta Lila Weston Institute, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
68
|
Jellinger KA. Neuropathological assessment of the Alzheimer spectrum. J Neural Transm (Vienna) 2020; 127:1229-1256. [PMID: 32740684 DOI: 10.1007/s00702-020-02232-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD), the most common form of dementia globally, classically defined a clinicopathological entity, is a heterogenous disorder with various pathobiological subtypes, currently referred to as Alzheimer continuum. Its morphological hallmarks are extracellular parenchymal β-amyloid (amyloid plaques) and intraneuronal (tau aggregates forming neurofibrillary tangles) lesions accompanied by synaptic loss and vascular amyloid deposits, that are essential for the pathological diagnosis of AD. In addition to "classical" AD, several subtypes with characteristic regional patterns of tau pathology have been described that show distinct clinical features, differences in age, sex distribution, biomarker levels, and patterns of key network destructions responsible for cognitive decline. AD is a mixed proteinopathy (amyloid and tau), frequently associated with other age-related co-pathologies, such as cerebrovascular lesions, Lewy and TDP-43 pathologies, hippocampal sclerosis, or argyrophilic grain disease. These and other co-pathologies essentially influence the clinical picture of AD and may accelerate disease progression. The purpose of this review is to provide a critical overview of AD pathology, its defining pathological substrates, and the heterogeneity among the Alzheimer spectrum entities that may provide a broader diagnostic coverage of this devastating disorder as a basis for implementing precision medicine approaches and for ultimate development of successful disease-modifying drugs for AD.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
69
|
The Role of Neurovascular System in Neurodegenerative Diseases. Mol Neurobiol 2020; 57:4373-4393. [PMID: 32725516 DOI: 10.1007/s12035-020-02023-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
The neurovascular system (NVS), which consisted of neurons, glia, and vascular cells, is a functional and structural unit of the brain. The NVS regulates blood-brain barrier (BBB) permeability and cerebral blood flow (CBF), thereby maintaining the brain's microenvironment for normal functioning, neuronal survival, and information processing. Recent studies have highlighted the role of vascular dysfunction in several neurodegenerative diseases. This is not unexpected since both nervous and vascular systems are functionally interdependent and show close anatomical apposition, as well as similar molecular pathways. However, despite extensive research, the precise mechanism by which neurovascular dysfunction contributes to neurodegeneration remains incomplete. Therefore, understanding the mechanisms of neurovascular dysfunction in disease conditions may allow us to develop potent and effective therapies for prevention and treatment of neurodegenerative diseases. This review article summarizes the current research in the context of neurovascular signaling associated with neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). We also discuss the potential implication of neurovascular factor as a novel therapeutic target and prognostic marker in patients with neurodegenerative conditions. Graphical Abstract.
Collapse
|
70
|
Crooks EJ, Irizarry BA, Ziliox M, Kawakami T, Victor T, Xu F, Hojo H, Chiu K, Simmerling C, Van Nostrand WE, Smith SO, Miller LM. Copper stabilizes antiparallel β-sheet fibrils of the amyloid β40 (Aβ40)-Iowa variant. J Biol Chem 2020; 295:8914-8927. [PMID: 32376688 PMCID: PMC7335782 DOI: 10.1074/jbc.ra119.011955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/25/2020] [Indexed: 01/05/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a vascular disorder that primarily involves deposition of the 40-residue-long β-amyloid peptide (Aβ40) in and along small blood vessels of the brain. CAA is often associated with Alzheimer's disease (AD), which is characterized by amyloid plaques in the brain parenchyma enriched in the Aβ42 peptide. Several recent studies have suggested a structural origin that underlies the differences between the vascular amyloid deposits in CAA and the parenchymal plaques in AD. We previously have found that amyloid fibrils in vascular amyloid contain antiparallel β-sheet, whereas previous studies by other researchers have reported parallel β-sheet in fibrils from parenchymal amyloid. Using X-ray fluorescence microscopy, here we found that copper strongly co-localizes with vascular amyloid in human sporadic CAA and familial Iowa-type CAA brains compared with control brain blood vessels lacking amyloid deposits. We show that binding of Cu(II) ions to antiparallel fibrils can block the conversion of these fibrils to the more stable parallel, in-register conformation and enhances their ability to serve as templates for seeded growth. These results provide an explanation for how thermodynamically less stable antiparallel fibrils may form amyloid in or on cerebral vessels by using Cu(II) as a structural cofactor.
Collapse
Affiliation(s)
- Elliot J Crooks
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, New York, USA
| | - Brandon A Irizarry
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, New York, USA
| | - Martine Ziliox
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, New York, USA
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Tiffany Victor
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Feng Xu
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kelley Chiu
- Department of Chemistry, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Carlos Simmerling
- Department of Chemistry, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - William E Van Nostrand
- George & Anne Ryan Institute for Neuroscience and Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Steven O Smith
- Department of Biochemistry and Cell Biology, Center for Structural Biology, Stony Brook University, Stony Brook, New York, USA.
| | - Lisa M Miller
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA; Department of Chemistry, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
71
|
Zeng F, Liu Y, Huang W, Qing H, Kadowaki T, Kashiwazaki H, Ni J, Wu Z. Receptor for advanced glycation end products up-regulation in cerebral endothelial cells mediates cerebrovascular-related amyloid β accumulation after Porphyromonas gingivalis infection. J Neurochem 2020; 158:724-736. [PMID: 32441775 PMCID: PMC8451939 DOI: 10.1111/jnc.15096] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
Cerebrovascular‐related amyloidogenesis is found in over 80% of Alzheimer's disease (AD) cases, and amyloid β (Aβ) generation is increased in the peripheral macrophages during infection of Porphyromonas gingivalis (P. gingivalis), a causal bacterium for periodontitis. In this study, we focused on receptor for advanced glycation end products (RAGE), the key molecule involves in Aβ influx after P. gingivalis infection to test our hypothesis that Aβ transportation from periphery into the brain, known as “Aβ influx,” is enhanced by P. gingivalis infection. Using cultured hCMEC/D3 cell line, in comparison to uninfected cells, directly infection with P. gingivalis (multiplicity of infection, MOI = 5) significantly increased a time‐dependent RAGE expression resulting in a dramatic increase in Aβ influx in the hCMEC/D3 cells; the P. gingivalis‐up‐regulated RAGE expression was significantly decreased by NF‐κB and Cathepsin B (CatB)‐specific inhibitors, and the P.gingivalis‐increased IκBα degradation was significantly decreased by CatB‐specific inhibitor. Furthermore, the P. gingivalis‐increased Aβ influx was significantly reduced by RAGE‐specific inhibitor. Using 15‐month‐old mice (C57BL/6JJmsSlc, female), in comparison to non‐infection mice, systemic P. gingivalis infection for three consecutive weeks (1 × 108 CFU/mouse, every 3 days, intraperitoneally) significantly increased the RAGE expression in the CD31‐positive endothelial cells and the Aβ loads around the CD31‐positive cells in the mice's brains. The RAGE expression in the CD31‐positive cells was positively correlated with the Aβ loads. These observations demonstrate that the up‐regulated RAGE expression in cerebral endothelial cells mediates the Aβ influx after P. gingivalis infection, and CatB plays a critical role in regulating the NF‐κB/RAGE expression.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan
| | - Yicong Liu
- The Affiliated Stomatology Hospital, School of Medical, Zhejiang University, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University, Zhejiang, China
| | - Wanyi Huang
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Tomoko Kadowaki
- Division of Frontier Life Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan.,Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan.,Faculty of Dental Science, OBT Research Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
72
|
Zeng F, Liu Y, Huang W, Qing H, Kadowaki T, Kashiwazaki H, Ni J, Wu Z. Receptor for advanced glycation end products up-regulation in cerebral endothelial cells mediates cerebrovascular-related amyloid β accumulation after Porphyromonas gingivalis infection. J Neurochem 2020. [PMID: 32441775 DOI: 10.1111/jnc.15073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cerebrovascular-related amyloidogenesis is found in over 80% of Alzheimer's disease (AD) cases, and amyloid β (Aβ) generation is increased in the peripheral macrophages during infection of Porphyromonas gingivalis (P. gingivalis), a causal bacterium for periodontitis. In this study, we focused on receptor for advanced glycation end products (RAGE), the key molecule involves in Aβ influx after P. gingivalis infection to test our hypothesis that Aβ transportation from periphery into the brain, known as "Aβ influx," is enhanced by P. gingivalis infection. Using cultured hCMEC/D3 cell line, in comparison to uninfected cells, directly infection with P. gingivalis (multiplicity of infection, MOI = 5) significantly increased a time-dependent RAGE expression resulting in a dramatic increase in Aβ influx in the hCMEC/D3 cells; the P. gingivalis-up-regulated RAGE expression was significantly decreased by NF-κB and Cathepsin B (CatB)-specific inhibitors, and the P.gingivalis-increased IκBα degradation was significantly decreased by CatB-specific inhibitor. Furthermore, the P. gingivalis-increased Aβ influx was significantly reduced by RAGE-specific inhibitor. Using 15-month-old mice (C57BL/6JJmsSlc, female), in comparison to non-infection mice, systemic P. gingivalis infection for three consecutive weeks (1 × 108 CFU/mouse, every 3 days, intraperitoneally) significantly increased the RAGE expression in the CD31-positive endothelial cells and the Aβ loads around the CD31-positive cells in the mice's brains. The RAGE expression in the CD31-positive cells was positively correlated with the Aβ loads. These observations demonstrate that the up-regulated RAGE expression in cerebral endothelial cells mediates the Aβ influx after P. gingivalis infection, and CatB plays a critical role in regulating the NF-κB/RAGE expression. Cover Image for this issue: https://doi.org/10.1111/jnc.15073.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan
| | - Yicong Liu
- The Affiliated Stomatology Hospital, School of Medical, Zhejiang University, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University, Zhejiang, China
| | - Wanyi Huang
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Tomoko Kadowaki
- Division of Frontier Life Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan.,Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan.,Faculty of Dental Science, OBT Research Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
73
|
Nielsen RB, Parbo P, Ismail R, Dalby R, Tietze A, Brændgaard H, Gottrup H, Brooks DJ, Østergaard L, Eskildsen SF. Impaired perfusion and capillary dysfunction in prodromal Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12032. [PMID: 32490139 PMCID: PMC7241262 DOI: 10.1002/dad2.12032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cardiovascular disease increases the risk of developing Alzheimer's disease (AD), and growing evidence suggests an involvement of cerebrovascular pathology in AD. Capillary dysfunction, a condition in which capillary flow disturbances rather than arterial blood supply limit brain oxygen extraction, could represent an overlooked vascular contributor to neurodegeneration. We examined whether cortical capillary transit-time heterogeneity (CTH), an index of capillary dysfunction, is elevated in amyloid-positive patients with mild cognitive impairment (prodromal AD [pAD]). METHODS We performed structural and perfusion weighted MRI in 22 pAD patients and 21 healthy controls. RESULTS We found hypoperfusion, reduced blood volume, and elevated CTH in the parietal and frontal cortices of pAD-patients compared to controls, while only the precuneus showed focal cortical atrophy. DISCUSSION We propose that microvascular flow disturbances antedate cortical atrophy and may limit local tissue oxygenation in pAD. We speculate that capillary dysfunction contributes to the development of neurodegeneration in AD.
Collapse
Affiliation(s)
- Rune B. Nielsen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| | - Peter Parbo
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Rola Ismail
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Rikke Dalby
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Department of NeuroradiologyAarhus University HospitalAarhusDenmark
| | - Anna Tietze
- Charité, UniversitätsmedizinInstitute of NeuroradiologyBerlinGermany
| | - Hans Brændgaard
- Dementia ClinicDepartment of NeurologyAarhus University HospitalAarhusDenmark
| | - Hanne Gottrup
- Dementia ClinicDepartment of NeurologyAarhus University HospitalAarhusDenmark
| | - David J. Brooks
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
- Division of NeuroscienceDepartment of MedicineImperial College LondonLondonUK
- Division of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Leif Østergaard
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Department of Nuclear Medicine and PET CentreAarhus University HospitalAarhusDenmark
| | - Simon F. Eskildsen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| |
Collapse
|
74
|
Shindo A, Ishikawa H, Ii Y, Niwa A, Tomimoto H. Clinical Features and Experimental Models of Cerebral Small Vessel Disease. Front Aging Neurosci 2020; 12:109. [PMID: 32431603 PMCID: PMC7214616 DOI: 10.3389/fnagi.2020.00109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cerebral small vessel disease (SVD) refers to a group of disease conditions affecting the cerebral small vessels, which include the small arteries, arterioles, capillaries, and postcapillary venules in the brain. SVD is the primary cause of vascular cognitive impairment and gait disturbances in aged people. There are several types of SVD, though arteriolosclerosis, which is mainly associated with hypertension, aging, and diabetes mellitus, and cerebral amyloid angiopathy (CAA) comprise most SVD cases. The pathology of arteriolosclerosis-induced SVD is characterized by fibrinoid necrosis and lipohyalinosis, while CAA-associated SVD is characterized by progressive deposition of amyloid beta (Aβ) protein in the cerebral vessels. Brain magnetic resonance imaging (MRI) has been used for examination of SVD lesions; typical lesions are characterized by white matter hyperintensity, lacunar infarcts, enlargement of perivascular spaces (EPVS), microbleeds, cortical superficial siderosis (cSS), and cortical microinfarcts. The microvascular changes that occur in the small vessels are difficult to identify clearly; however, these consequent image findings can represent the SVD. There are two main strategies for prevention and treatment of SVD, i.e., pharmacotherapy and lifestyle modification. In this review, we discuss clinical features of SVD, experimental models replicating SVD, and treatments to further understand the pathological and clinical features of SVD.
Collapse
Affiliation(s)
- Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Atsushi Niwa
- Department of Neurology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
75
|
Ferrer I, Andrés-Benito P. White matter alterations in Alzheimer's disease without concomitant pathologies. Neuropathol Appl Neurobiol 2020; 46:654-672. [PMID: 32255227 PMCID: PMC7754505 DOI: 10.1111/nan.12618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
Aims Most individuals with AD neuropathological changes have co‐morbidities which have an impact on the integrity of the WM. This study analyses oligodendrocyte and myelin markers in the frontal WM in a series of AD cases without clinical or pathological co‐morbidities. Methods From a consecutive autopsy series, 206 cases had neuropathological changes of AD; among them, only 33 were AD without co‐morbidities. WM alterations were first evaluated in coronal sections of the frontal lobe in every case. Then, RT‐qPCR and immunohistochemistry were carried out in the frontal WM of AD cases without co‐morbidities to analyse the expression of selected oligodendrocyte and myelin markers. Results WM demyelination was more marked in AD with co‐morbidities when compared with AD cases without co‐morbidities. Regarding the later, mRNA expression levels of MBP, PLP1, CNP, MAG, MAL, MOG and MOBP were preserved at stages I–II/0–A when compared with middle‐aged (MA) individuals, but significantly decreased at stages III–IV/0–C. This was accompanied by reduced expression of NG2 and PDGFRA mRNA, reduced numbers of NG2‐, Olig2‐ and HDAC2‐immunoreactive cells and reduced glucose transporter immunoreactivity. Partial recovery of some of these markers occurred at stages V–VI/B–C. Conclusions The present observations demonstrate that co‐morbidities have an impact on WM integrity in the elderly and in AD, and that early alterations in oligodendrocytes and transcription of genes linked to myelin proteins in WM occur in AD cases without co‐morbidities. These are followed by partial recovery attempts at advanced stages. These observations suggest that oligodendrocytopathy is part of AD.
Collapse
Affiliation(s)
- I Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - P Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
76
|
Reeves BC, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, Matouk C, Alper SL, Lundgaard I, Nedergaard M, Kahle KT. Glymphatic System Impairment in Alzheimer's Disease and Idiopathic Normal Pressure Hydrocephalus. Trends Mol Med 2020; 26:285-295. [PMID: 31959516 PMCID: PMC7489754 DOI: 10.1016/j.molmed.2019.11.008] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022]
Abstract
Approximately 10% of dementia patients have idiopathic normal pressure hydrocephalus (iNPH), an expansion of the cerebrospinal fluid (CSF)-filled brain ventricles. iNPH and Alzheimer's disease (AD) both exhibit sleep disturbances, build-up of brain metabolic wastes and amyloid-β (Aβ) plaques, perivascular reactive astrogliosis, and mislocalization of astrocyte aquaporin-4 (AQP4). The glia-lymphatic (glymphatic) system facilitates brain fluid clearance and waste removal during sleep via glia-supported perivascular channels. Human studies have implicated impaired glymphatic function in both AD and iNPH. Continued investigation into the role of glymphatic system biology in AD and iNPH models could lead to new strategies to improve brain health by restoring homeostatic brain metabolism and CSF dynamics.
Collapse
Affiliation(s)
- Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - H Mert Cerci
- Istanbul Universty-Cerrahpasa, Cerrahpasa School of Medicine, Istanbul 34096, Turkey
| | - Charles Matouk
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology; and Yale-Rockefeller National Institutes of Health (NIH) Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
77
|
dos Santos GAA, Pardi PC. Biomarkers in Alzheimer's disease: Evaluation of platelets, hemoglobin and vitamin B12. Dement Neuropsychol 2020; 14:35-40. [PMID: 32206196 PMCID: PMC7077854 DOI: 10.1590/1980-57642020dn14-010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/21/2019] [Indexed: 01/09/2023] Open
Abstract
Currently, the most likely hypotheses as the cause of Alzheimer's disease are deposition of amyloid beta peptide in the cerebral cortex and hyperphosphorylation of Tau protein. The diagnosis of Alzheimer's disease is based on the exclusion of other diseases, behavioral assessments, and blood and imaging tests. Biotechnology has created interesting perspectives for the early detection of Alzheimer's disease through blood analysis, with special attention to platelets, hemoglobin and vitamin B12. OBJECTIVE To evaluate the concentrations of platelets, hemoglobin and vitamin B12 in the blood of older adults with and without dementia of Alzheimer's disease. METHODS A case-control study involving 120 individuals was conducted, seeking to establish a correlation between changes in platelet, hemoglobin and vitamin B12 concentrations in patients with confirmed AD and in individuals in the inclusion group without AD. The study met the established ethical requirements. RESULTS Hemoglobin and platelet levels were statistically lower in patients with AD. The biochemical evaluation in AD patient and healthy groups for vitamin B12 showed a decrease in the levels of this compound in patients with AD. CONCLUSION We demonstrated the feasibility of the use of blood biomarkers as predictive markers for the diagnosis of AD.
Collapse
Affiliation(s)
- Gustavo Alves Andrade dos Santos
- Universidade de São Paulo – USP. Faculdade de Medicina de Ribeirão
Preto. Departamento de Anatomia e Cirurgia. Ribeirão Preto, SP, Brazil
- Centro Universitário do Senac – Unidade Tiradentes. Departamento de
Pós-graduação em Farmácia
| | - Paulo Celso Pardi
- Universidade Anhanguera Guarulhos. Departamento de Biomedicina, São
Paulo, SP, Brazil
| |
Collapse
|
78
|
Lebouvier T, Chen Y, Duriez P, Pasquier F, Bordet R. Antihypertensive agents in Alzheimer's disease: beyond vascular protection. Expert Rev Neurother 2019; 20:175-187. [PMID: 31869274 DOI: 10.1080/14737175.2020.1708195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Midlife hypertension has been consistently linked with increased risk of cognitive decline and Alzheimer's disease (AD). Observational studies and randomized trials show that the use of antihypertensive therapy is associated with a lesser incidence or prevalence of cognitive impairment and dementia. However, whether antihypertensive agents specifically target the pathological process of AD remains elusive.Areas covered: This review of literature provides an update on the clinical and preclinical arguments supporting anti-AD properties of antihypertensive drugs. The authors focused on validated all classes of antihypertensive treatments such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), calcium channel blockers (CCB), β-blockers, diuretics, neprilysin inhibitors, and other agents. Three main mechanisms can be advocated: action on the concurrent vascular pathology, action on the vascular component of Alzheimer's pathophysiology, and action on nonvascular targets.Expert opinion: In 2019, while there is no doubt that hypertension should be treated in primary prevention of vascular disease and in secondary prevention of stroke and mixed dementia, the place of antihypertensive agents in the secondary prevention of 'pure' AD remains an outstanding question.
Collapse
Affiliation(s)
- Thibaud Lebouvier
- Inserm URM_S1172, University of Lille, Lille, France.,DISTALZ, University of Lille, Lille, France
| | - Yaohua Chen
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | | | - Florence Pasquier
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | - Régis Bordet
- Inserm, CHU Lille, University of Lille, Lille, France
| |
Collapse
|
79
|
Computational analysis of Alzheimer-causing mutations in amyloid precursor protein and presenilin 1. Arch Biochem Biophys 2019; 678:108168. [DOI: 10.1016/j.abb.2019.108168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
|
80
|
Lendahl U, Nilsson P, Betsholtz C. Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes. EMBO Rep 2019; 20:e48070. [PMID: 31617312 PMCID: PMC6831996 DOI: 10.15252/embr.201948070] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative and cerebrovascular diseases cause considerable human suffering, and therapy options for these two disease categories are limited or non-existing. It is an emerging notion that neurodegenerative and cerebrovascular diseases are linked in several ways, and in this review, we discuss the current status regarding vascular dysregulation in neurodegenerative disease, and conversely, how cerebrovascular diseases are associated with central nervous system (CNS) degeneration and dysfunction. The emerging links between neurodegenerative and cerebrovascular diseases are reviewed with a particular focus on pericytes-important cells that ensheath the endothelium in the microvasculature and which are pivotal for blood-brain barrier function and cerebral blood flow. Finally, we address how novel molecular and cellular insights into pericytes and other vascular cell types may open new avenues for diagnosis and therapy development for these important diseases.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
- Department of Immunology, Genetics and PathologyRudbeck LaboratoryUppsala UniversityUppsalaSweden
- Department of MedicineKarolinska InstitutetHuddingeSweden
| |
Collapse
|
81
|
Boon BDC, Pouwels PJW, Jonkman LE, Keijzer MJ, Preziosa P, van de Berg WDJ, Geurts JJG, Scheltens P, Barkhof F, Rozemuller AJM, Bouwman FH, Steenwijk MD. Can post-mortem MRI be used as a proxy for in vivo? A case study. Brain Commun 2019; 1:fcz030. [PMID: 32954270 PMCID: PMC7425311 DOI: 10.1093/braincomms/fcz030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Post-mortem in situ MRI has been used as an intermediate between brain histo(patho)logy and in vivo imaging. However, it is not known how comparable post-mortem in situ is to ante-mortem imaging. We report the unique situation of a patient with familial early-onset Alzheimer's disease due to a PSEN1 mutation, who underwent ante-mortem brain MRI and post-mortem in situ imaging only 4 days apart. T1-weighted and diffusion MRI was performed at 3-Tesla at both time points. Visual atrophy rating scales, brain volume, cortical thickness and diffusion measures were derived from both scans and compared. Post-mortem visual atrophy scores decreased 0.5-1 point compared with ante-mortem, indicating an increase in brain volume. This was confirmed by quantitative analysis; showing a 27% decrease of ventricular and 7% increase of whole-brain volume. This increase was more pronounced in the cerebellum and supratentorial white matter than in grey matter. Furthermore, axial and radial diffusivity decreased up to 60% post-mortem whereas average fractional anisotropy of white matter increased approximately 10%. This unique case study shows that the process of dying affects several imaging markers. These changes need to be taken into account when interpreting post-mortem MRI to make inferences on the in vivo situation.
Collapse
Affiliation(s)
- Baayla D C Boon
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Matthijs J Keijzer
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, Gower Street, WC1E 6BT London, UK
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Femke H Bouwman
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Martijn D Steenwijk
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
82
|
Nudelman KNH, McDonald BC, Lahiri DK, Saykin AJ. Biological Hallmarks of Cancer in Alzheimer's Disease. Mol Neurobiol 2019; 56:7173-7187. [PMID: 30993533 PMCID: PMC6728183 DOI: 10.1007/s12035-019-1591-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
Although Alzheimer's disease (AD) is an international health research priority for our aging population, little therapeutic progress has been made. This lack of progress may be partially attributable to disease heterogeneity. Previous studies have identified an inverse association of cancer and AD, suggesting that cancer history may be one source of AD heterogeneity. These findings are particularly interesting in light of the number of common risk factors and two-hit models hypothesized to commonly drive both diseases. We reviewed the ten hallmark biological alterations of cancer cells to investigate overlap with the AD literature and identified overlap of all ten hallmarks in AD, including (1) potentially common underlying risk factors, such as increased inflammation, deregulated cellular energetics, and genome instability; (2) inversely regulated mechanisms, including cell death and evading growth suppressors; and (3) functions with more complex, pleiotropic mechanisms, some of which may be stage-dependent in AD, such as cell adhesion/contact inhibition and angiogenesis. Additionally, we discuss the recent observation of a biological link between cancer and AD neuropathology. Finally, we address the therapeutic implications of this topic. The significant overlap of functional pathways and molecules between these diseases, some similarly and some oppositely regulated or functioning in each disease, supports the need for more research to elucidate cancer-related AD genetic and functional heterogeneity, with the aims of better understanding AD risk mediators, as well as further exploring the potential for some types of drug repurposing towards AD therapeutic development.
Collapse
Affiliation(s)
- Kelly N. H. Nudelman
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
| | - Brenna C. McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, IN, USA
| | - Debomoy K. Lahiri
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
83
|
Polis B, Gurevich V, Assa M, Samson AO. Norvaline Restores the BBB Integrity in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2019; 20:E4616. [PMID: 31540372 PMCID: PMC6770953 DOI: 10.3390/ijms20184616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the leading cause of dementia. The disease progression is associated with the build-up of amyloid plaques and neurofibrillary tangles in the brain. However, besides the well-defined lesions, the AD-related pathology includes neuroinflammation, compromised energy metabolism, and chronic oxidative stress. Likewise, the blood-brain barrier (BBB) dysfunction is suggested to be a cause and AD consequence. Accordingly, therapeutic targeting of the compromised BBB is a promising disease-modifying approach. We utilized a homozygous triple-transgenic mouse model of AD (3×Tg-AD) to assess the effects of L-norvaline on BBB integrity. We scrutinized the perivascular astrocytes and macrophages by measuring the immunopositive profiles in relation to the presence of β-amyloid and compare the results with those found in wild-type animals. Typically, 3×Tg-AD mice display astroglia cytoskeletal atrophy, associated with the deposition of β-amyloid in the endothelia, and declining nitric oxide synthase (NOS) levels. L-norvaline escalated NOS levels, then reduced rates of BBB permeability, amyloid angiopathy, microgliosis, and astrodegeneration, which suggests AD treatment agent efficacy. Moreover, results undergird the roles of astrodegeneration and microgliosis in AD-associated BBB dysfunction and progressive cognitive impairment. L-norvaline self-evidently interferes with AD pathogenesis and presents a potent remedy for angiopathies and neurodegenerative disorders intervention.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Vyacheslav Gurevich
- Laboratory of Cancer Personalized Medicine and Diagnostic Genomics, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Michael Assa
- Inter-laboratory Equipment Center, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| |
Collapse
|
84
|
Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol 2019; 72:725-735. [PMID: 31395625 DOI: 10.1136/jclinpath-2019-205952] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterised by selective dysfunction and progressive loss of synapses and neurons associated with pathologically altered proteins that deposit primarily in the human brain and spinal cord. Recent discoveries have identified a spectrum of distinct immunohistochemically and biochemically detectable proteins, which serve as a basis for protein-based disease classification. Diagnostic criteria have been updated and disease staging procedures have been proposed. These are based on novel concepts which recognise that (1) most of these proteins follow a sequential distribution pattern in the brain suggesting a seeding mechanism and cell-to-cell propagation; (2) some of the neurodegeneration-associated proteins can be detected in peripheral organs; and (3) concomitant presence of neurodegeneration-associated proteins is more the rule than the exception. These concepts, together with the fact that the clinical symptoms do not unequivocally reflect the molecular pathological background, place the neuropathological examination at the centre of requirements for an accurate diagnosis. The need for quality control in biomarker development, clinical and neuroimaging studies, and evaluation of therapy trials, as well as an increasing demand for the general public to better understand human brain disorders, underlines the importance for a renaissance of postmortem neuropathological studies at this time. This review summarises recent advances in neuropathological diagnosis and reports novel aspects of relevance for general pathological practice.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
85
|
Carmona-Iragui M, Videla L, Lleó A, Fortea J. Down syndrome, Alzheimer disease, and cerebral amyloid angiopathy: The complex triangle of brain amyloidosis. Dev Neurobiol 2019; 79:716-737. [PMID: 31278851 DOI: 10.1002/dneu.22709] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/04/2019] [Accepted: 07/02/2019] [Indexed: 11/07/2022]
Abstract
Down syndrome (DS) is the main genetic cause of intellectual disability worldwide. The overexpression of the Amyloid Precursor Protein, present in chromosome 21, leads to β-amyloid deposition that results in Alzheimer disease (AD) and, in most cases, also to cerebral amyloid angiopathy (CAA) neuropathology. People with DS invariably develop the neuropathological hallmarks of AD at the age of 40, and they are at an ultra high risk for suffering AD-related cognitive impairment thereafter. In the general population, cerebrovascular disease is a significant contributor to AD-related cognitive impairment, while in DS remains understudied. This review describes the current knowledge on cerebrovascular disease in DS and reviews the potential biomarkers that could be useful in the future studies, focusing on CAA. We also discuss available evidence on sporadic AD or other genetically determined forms of AD. We highlight the urgent need of large biomarker-characterized cohorts, including neuropathological correlations, to study the exact contribution of CAA and related vascular factors that play a role in cognition and occur with aging, their characterization and interrelationships. DS represents a unique context in which to perform these studies as this population is relatively protected from some conventional vascular risk factors and they develop significant CAA, DS represents a particular atheroma-free model to study AD-related vascular pathologies. Only deepening on these underlying mechanisms, new preventive and therapeutic strategies could be designed to improve the quality of life of this population and their caregivers and lead to new avenues of treatment also in the general AD population.
Collapse
Affiliation(s)
- María Carmona-Iragui
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Videla
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
86
|
Yu P, Venkat P, Chopp M, Zacharek A, Shen Y, Liang L, Landschoot-Ward J, Liu Z, Jiang R, Chen J. Deficiency of tPA Exacerbates White Matter Damage, Neuroinflammation, Glymphatic Dysfunction and Cognitive Dysfunction in Aging Mice. Aging Dis 2019; 10:770-783. [PMID: 31440383 PMCID: PMC6675536 DOI: 10.14336/ad.2018.0816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease primarily involved in mediating thrombus breakdown and regulating catabolism of amyloid-beta (Aβ). The aim of this study is to investigate age-dependent decline of endogenous tPA and the effects of tPA decline on glymphatic function and cognitive outcome in mice. Male, young (3m), adult (6m) and middle-aged (12m) C57/BL6 (wild type) and tPA knockout (tPA-/-) mice were subject to a battery of cognitive tests and white matter (WM) integrity, neuroinflammation, and glymphatic function were evaluated. Adult WT mice exhibit significantly decreased brain tPA level compared to young WT mice and middle-aged WT mice have significantly lower brain tPA levels than young and adult WT mice. Middle-aged WT mice exhibit significant neuroinflammation, reduced WM integrity and increased thrombin deposition compared to young and adult mice, and increased blood brain barrier (BBB) permeability and reduced cognitive ability compared to young WT mice. In comparison to adult WT mice, adult tPA-/- mice exhibit significant BBB leakage, decreased dendritic spine density, increased thrombin deposition, neuroinflammation, and impaired functioning of the glymphatic system. Compared to age-matched WT mice, adult and middle-aged tPA-/- mice exhibit significantly increased D-Dimer expression and decreased perivascular Aquaporin-4 expression. Compared to age-matched WT mice, young, adult and middle-aged tPA-/- mice exhibit significant cognitive impairment, axonal damage, and increased deposition of amyloid precursor protein (APP), Aβ, and fibrin. Endogenous tPA may play an important role in contributing to aging induced cognitive decline, axonal/WM damage, BBB disruption and glymphatic dysfunction in the brain.
Collapse
Affiliation(s)
- Peng Yu
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,2Neurology, Henry Ford Hospital, Detroit, MI, USA.,3Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | | | - Michael Chopp
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA.,4Department of Physics, Oakland University, Rochester, MI, USA
| | | | - Yi Shen
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Linlin Liang
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA.,5Reproductive Medical Center, Henan Provincial People's Hospital, Zhengzhou, China
| | - Julie Landschoot-Ward
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Zhongwu Liu
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Rongcai Jiang
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jieli Chen
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
87
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
88
|
Chantran Y, Capron J, Alamowitch S, Aucouturier P. Anti-Aβ Antibodies and Cerebral Amyloid Angiopathy Complications. Front Immunol 2019; 10:1534. [PMID: 31333665 PMCID: PMC6620823 DOI: 10.3389/fimmu.2019.01534] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) corresponds to the deposition of amyloid material in the cerebral vasculature, leading to structural modifications of blood vessel walls. The most frequent form of sporadic CAA involves fibrillar β-amyloid peptide (Aβ) deposits, mainly the 40 amino acid form (Aβ1-40), which are commonly found in the elderly with or without Alzheimer's disease. Sporadic CAA usually remains clinically silent. However, in some cases, acute complications either hemorrhagic or inflammatory can occur. Similar complications occurred after active or passive immunization against Aβ in experimental animal models exhibiting CAA, and in subjects with Alzheimer's disease during clinical trials. The triggering of these adverse events by active immunization and monoclonal antibody administration in CAA-bearing individuals suggests that analogous mechanisms could be involved during spontaneous CAA complications, drawing particular attention to the role of anti-Aβ antibodies. However, antibodies that react with several monomeric and aggregated forms of Aβ spontaneously occur in virtually all human individuals, hence being part of the "natural antibody" repertoire. Natural antibodies are usually described as having low-affinity and high cross-reactivity toward microbial components and autoantigens. Although frequently of the IgM class, they also belong to IgG and IgA isotypes. They likely display homeostatic functions and protective roles in aging. Until recently, the peculiar properties of these natural antibodies have hindered proper analysis of the Aβ-reactive antibody repertoire and the study of their implication in CAA complications. Herein, we review and comment the evidences of an auto-immune nature of spontaneous CAA complications, and discuss implications for forthcoming research and clinical practice.
Collapse
Affiliation(s)
- Yannick Chantran
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département d'Immunologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jean Capron
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département de Neurologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Sonia Alamowitch
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département de Neurologie, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Pierre Aucouturier
- Sorbonne Université, Inserm, UMRS 938, Hôpital St-Antoine, AP-HP, Paris, France.,Département d'Immunologie Biologique, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|
89
|
Nizari S, Carare RO, Romero IA, Hawkes CA. 3D Reconstruction of the Neurovascular Unit Reveals Differential Loss of Cholinergic Innervation in the Cortex and Hippocampus of the Adult Mouse Brain. Front Aging Neurosci 2019; 11:172. [PMID: 31333445 PMCID: PMC6620643 DOI: 10.3389/fnagi.2019.00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence supports a role for cerebrovasculature dysfunction in the etiology of Alzheimer’s disease (AD). Blood vessels in the brain are composed of a collection of cells and acellular material that comprise the neurovascular unit (NVU). The NVU in the hippocampus and cortex receives innervation from cholinergic neurons that originate in the basal forebrain. Death of these neurons and their nerve fibers is an early feature of AD. However, the effect of the loss of cholinergic innervation on the NVU is not well characterized. The purpose of this study was to evaluate the effect of the loss of cholinergic innervation of components of the NVU at capillaries, arteries and veins in the hippocampus and cortex. Adult male C57BL/6 mice received an intracerebroventricular injection of the immunotoxin p75NTR mu-saporin to induce the loss of cholinergic neurons. Quadruple labeling immunohistochemistry and 3D reconstruction were carried out to characterize specific points of contact between cholinergic fibers and collagen IV, smooth muscle cells and astrocyte endfeet. Innate differences were observed between vessels of the hippocampus and cortex of control mice, including a greater amount of cholinergic contact with perivascular astrocytes in hippocampal capillaries and a thicker basement membrane in hippocampal veins. Saporin treatment induced a loss of cholinergic innervation at the arterial basement membrane and smooth muscle cells of both the hippocampus and the cortex. In the cortex, there was an additional loss of innervation at the astrocytic endfeet. The current results suggest that cortical arteries are more strongly affected by cholinergic denervation than arteries in the hippocampus. This regional variation may have implications for the etiology of the vascular pathology that develops in AD.
Collapse
Affiliation(s)
- Shereen Nizari
- School of Life, Health and Chemical Science, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Roxana O Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ignacio A Romero
- School of Life, Health and Chemical Science, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Cheryl A Hawkes
- School of Life, Health and Chemical Science, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
90
|
Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP, Castaño-Díez D, Schweighauser G, Graff-Meyer A, Goldie KN, Sütterlin R, Huisman E, Ingrassia A, Gier YD, Rozemuller AJM, Wang J, Paepe AD, Erny J, Staempfli A, Hoernschemeyer J, Großerüschkamp F, Niedieker D, El-Mashtoly SF, Quadri M, Van IJcken WFJ, Bonifati V, Gerwert K, Bohrmann B, Frank S, Britschgi M, Stahlberg H, Van de Berg WDJ, Lauer ME. Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat Neurosci 2019; 22:1099-1109. [PMID: 31235907 DOI: 10.1038/s41593-019-0423-2] [Citation(s) in RCA: 551] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Abstract
Parkinson's disease, the most common age-related movement disorder, is a progressive neurodegenerative disease with unclear etiology. Key neuropathological hallmarks are Lewy bodies and Lewy neurites: neuronal inclusions immunopositive for the protein α-synuclein. In-depth ultrastructural analysis of Lewy pathology is crucial to understanding pathogenesis of this disease. Using correlative light and electron microscopy and tomography on postmortem human brain tissue from Parkinson's disease brain donors, we identified α-synuclein immunopositive Lewy pathology and show a crowded environment of membranes therein, including vesicular structures and dysmorphic organelles. Filaments interspersed between the membranes and organelles were identifiable in many but not all α-synuclein inclusions. Crowding of organellar components was confirmed by stimulated emission depletion (STED)-based super-resolution microscopy, and high lipid content within α-synuclein immunopositive inclusions was corroborated by confocal imaging, Fourier-transform coherent anti-Stokes Raman scattering infrared imaging and lipidomics. Applying such correlative high-resolution imaging and biophysical approaches, we discovered an aggregated protein-lipid compartmentalization not previously described in the Parkinsons' disease brain.
Collapse
Affiliation(s)
- Sarah H Shahmoradian
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland.,Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Amanda J Lewis
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Christel Genoud
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jürgen Hench
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Tim E Moors
- Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam, The Netherlands
| | - Paula P Navarro
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Daniel Castaño-Díez
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Gabriel Schweighauser
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Kenneth N Goldie
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Rosmarie Sütterlin
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Evelien Huisman
- Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam, The Netherlands
| | - Angela Ingrassia
- Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam, The Netherlands
| | - Yvonne de Gier
- Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Amsterdam Neuroscience, VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands
| | - Jing Wang
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland
| | - Anne De Paepe
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Johannes Erny
- Roche Pharma Research and Early Development, Preclinical CMC, Roche Innovation Center Basel, Basel, Switzerland
| | - Andreas Staempfli
- Roche Pharma Research and Early Development, Preclinical CMC, Roche Innovation Center Basel, Basel, Switzerland
| | - Joerg Hoernschemeyer
- Roche Pharma Research and Early Development, Preclinical CMC, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | | | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Klaus Gerwert
- Department of Biophysics, Ruhr University, Bochum, Germany
| | - Bernd Bohrmann
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area/Neuroscience Discovery, Roche Innovation Center Basel, Basel, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Basel, Switzerland.
| | - Wilma D J Van de Berg
- Amsterdam Neuroscience, VU University Medical Center, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam, The Netherlands.
| | - Matthias E Lauer
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
91
|
Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH, Meschia JF. CNS small vessel disease: A clinical review. Neurology 2019; 92:1146-1156. [PMID: 31142635 PMCID: PMC6598791 DOI: 10.1212/wnl.0000000000007654] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/13/2019] [Indexed: 11/15/2022] Open
Abstract
CNS small vessel disease (CSVD) causes 25% of strokes and contributes to 45% of dementia cases. Prevalence increases with age, affecting about 5% of people aged 50 years to almost 100% of people older than 90 years. Known causes and risk factors include age, hypertension, branch atheromatous disease, cerebral amyloid angiopathy, radiation exposure, immune-mediated vasculitides, certain infections, and several genetic diseases. CSVD can be asymptomatic; however, depending on location, lesions can cause mild cognitive dysfunction, dementia, mood disorders, motor and gait dysfunction, and urinary incontinence. CSVD is diagnosed on the basis of brain imaging biomarkers, including recent small subcortical infarcts, white matter hyperintensities, lacunes, cerebral microbleeds, enlarged perivascular spaces, and cerebral atrophy. Advanced imaging modalities can detect signs of disease even earlier than current standard imaging techniques. Diffusion tensor imaging can identify altered white matter connectivity, and blood oxygenation level-dependent imaging can identify decreased vascular reactivity. Pathogenesis is thought to begin with an etiologically specific insult, with or without genetic predisposition, which results in dysfunction of the neurovascular unit. Uncertainties regarding pathogenesis have delayed development of effective treatment. The most widely accepted approach to treatment is to intensively control well-established vascular risk factors, of which hypertension is the most important. With better understanding of pathogenesis, specific therapies may emerge. Early identification of pathologic characteristics with advanced imaging provides an opportunity to forestall progression before emergence of symptoms.
Collapse
Affiliation(s)
- Rocco J Cannistraro
- From the Department of Neurology (R.J.C., M.B., B.H.E., J.F.M.), Department of Laboratory Medicine and Pathology (D.W.D.), Department of Neuroscience (D.W.D.), and Department of Radiology (E.H.M.), Mayo Clinic, Jacksonville, FL
| | - Mohammed Badi
- From the Department of Neurology (R.J.C., M.B., B.H.E., J.F.M.), Department of Laboratory Medicine and Pathology (D.W.D.), Department of Neuroscience (D.W.D.), and Department of Radiology (E.H.M.), Mayo Clinic, Jacksonville, FL
| | - Benjamin H Eidelman
- From the Department of Neurology (R.J.C., M.B., B.H.E., J.F.M.), Department of Laboratory Medicine and Pathology (D.W.D.), Department of Neuroscience (D.W.D.), and Department of Radiology (E.H.M.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Neurology (R.J.C., M.B., B.H.E., J.F.M.), Department of Laboratory Medicine and Pathology (D.W.D.), Department of Neuroscience (D.W.D.), and Department of Radiology (E.H.M.), Mayo Clinic, Jacksonville, FL
| | - Erik H Middlebrooks
- From the Department of Neurology (R.J.C., M.B., B.H.E., J.F.M.), Department of Laboratory Medicine and Pathology (D.W.D.), Department of Neuroscience (D.W.D.), and Department of Radiology (E.H.M.), Mayo Clinic, Jacksonville, FL
| | - James F Meschia
- From the Department of Neurology (R.J.C., M.B., B.H.E., J.F.M.), Department of Laboratory Medicine and Pathology (D.W.D.), Department of Neuroscience (D.W.D.), and Department of Radiology (E.H.M.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
92
|
Saito S, Yamamoto Y, Ihara M. Development of a Multicomponent Intervention to Prevent Alzheimer's Disease. Front Neurol 2019; 10:490. [PMID: 31139139 PMCID: PMC6518668 DOI: 10.3389/fneur.2019.00490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in vascular risk management have successfully reduced the prevalence of Alzheimer's Disease (AD) in several epidemiologic investigations. It is now widely accepted that cerebrovascular disease is both directly and indirectly involved in AD pathogenesis. Herein, we review the non-pharmacological and pharmacological therapeutic approaches for AD treatment. MIND [Mediterranean and DASH (Dietary Approaches to Stop Hypertension) Intervention for Neurodegenerative Delay] diet is an important dietary treatment for prevention of AD. Multi domain intervention including diet, exercise, cognitive training, and intensive risk managements also prevented cognitive decline in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) study. To confirm these favorable effects of life-style intervention, replica studies are being planned worldwide. Promotion of β-amyloid (Aβ) clearance has emerged as a promising pharmacological approach because insufficient removal of Aβ is more important than excessive Aβ production in the pathogenesis of the majority of AD patients. Most AD brains exhibit accompanying cerebral amyloid angiopathy, and Aβ distribution in cerebral amyloid angiopathy closely corresponds with the intramural periarterial drainage (IPAD) route, emphasizing the importance of Aβ clearance. In view of these facts, promotion of the major vascular-mediated Aβ elimination systems, including capillary transcytosis, the glymphatic system, and IPAD, have emerged as new treatment strategies in AD. In particular, the beneficial effects of cilostazol were shown in several clinical observation studies, and cilostazol facilitated IPAD in a rodent AD model. The COMCID (Cilostazol for prevention of Conversion from MCI to Dementia) trial, evaluating the efficacy of cilostazol for patients with mild cognitive impairment is currently ongoing in Japan. Such therapeutic approaches involving maintenance of cerebrovascular integrity and promotion of vascular-mediated Aβ clearance have the potential to be mainstream treatments for sporadic AD.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
93
|
Bourassa P, Tremblay C, Schneider JA, Bennett DA, Calon F. Beta-amyloid pathology in human brain microvessel extracts from the parietal cortex: relation with cerebral amyloid angiopathy and Alzheimer's disease. Acta Neuropathol 2019; 137:801-823. [PMID: 30729296 DOI: 10.1007/s00401-019-01967-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/13/2023]
Abstract
Several pieces of evidence suggest that blood-brain barrier (BBB) dysfunction is implicated in the pathophysiology of Alzheimer's disease (AD), exemplified by the frequent occurrence of cerebral amyloid angiopathy (CAA) and the defective clearance of Aβ peptides. However, the specific role of brain microvascular cells in these anomalies remains elusive. In this study, we validated by Western, ELISA and immunofluorescence analyses a procedure to generate microvasculature-enriched fractions from frozen samples of human cerebral cortex. We then investigated Aβ and proteins involved in its clearance or production in microvessel extracts generated from the parietal cortex of 60 volunteers in the Religious Orders Study. Volunteers were categorized as AD (n = 38) or controls (n = 22) based on the ABC scoring method presented in the revised guidelines for the neuropathological diagnosis of AD. Higher ELISA-determined concentrations of vascular Aβ40 and Aβ42 were found in persons with a neuropathological diagnosis of AD, in apoE4 carriers and in participants with advanced parenchymal CAA, compared to respective age-matched controls. Vascular levels of two proteins involved in Aβ clearance, ABCB1 and neprilysin, were lower in persons with AD and positively correlated with cognitive function, while being inversely correlated to vascular Aβ40. In contrast, BACE1, a protein necessary for Aβ production, was increased in individuals with AD and in apoE4 carriers, negatively correlated to cognitive function and positively correlated to Aβ40 in microvessel extracts. The present report indicates that concentrating microvessels from frozen human brain samples facilitates the quantitative biochemical analysis of cerebrovascular dysfunction in CNS disorders. Data generated overall show that microvessels extracted from individuals with parenchymal CAA-AD contained more Aβ and BACE1 and less ABCB1 and neprilysin, evidencing a pattern of dysfunction in brain microvascular cells contributing to CAA and AD pathology and symptoms.
Collapse
Affiliation(s)
- Philippe Bourassa
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, Boulevard Laurier, Room T2-67, Quebec, QC, G1V 4G2, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, Boulevard Laurier, Room T2-67, Quebec, QC, G1V 4G2, Canada
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Quebec, QC, Canada.
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, 2705, Boulevard Laurier, Room T2-67, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
94
|
Munger EL, Edler MK, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Sherwood CC, Raghanti MA. Astrocytic changes with aging and Alzheimer's disease-type pathology in chimpanzees. J Comp Neurol 2019; 527:1179-1195. [PMID: 30578640 PMCID: PMC6401278 DOI: 10.1002/cne.24610] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 01/01/2023]
Abstract
Astrocytes are the main homeostatic cell of the central nervous system. In addition, astrocytes mediate an inflammatory response when reactive to injury or disease known as astrogliosis. Astrogliosis is marked by an increased expression of glial fibrillary acidic protein (GFAP) and cellular hypertrophy. Some degree of astrogliosis is associated with normal aging and degenerative conditions such as Alzheimer's disease (AD) and other dementing illnesses in humans. The recent observation of pathological markers of AD (amyloid plaques and neurofibrillary tangles) in aged chimpanzee brains provided an opportunity to examine the relationships among aging, AD-type pathology, and astrocyte activation in our closest living relatives. Stereologic methods were used to quantify GFAP-immunoreactive astrocyte density and soma volume in layers I, III, and V of the prefrontal and middle temporal cortex, as well as in hippocampal fields CA1 and CA3. We found that the patterns of astrocyte activation in the aged chimpanzee brain are distinct from humans. GFAP expression does not increase with age in chimpanzees, possibly indicative of lower oxidative stress loads. Similar to humans, chimpanzee layer I astrocytes in the prefrontal cortex are susceptible to AD-like changes. Both prefrontal cortex layer I and hippocampal astrocytes exhibit a high degree of astrogliosis that is positively correlated with accumulation of amyloid beta and tau proteins. However, unlike humans, chimpanzees do not display astrogliosis in other cortical layers. These results demonstrate a unique pattern of cortical aging in chimpanzees and suggest that inflammatory processes may differ between humans and chimpanzees in response to pathology.
Collapse
Affiliation(s)
- Emily L. Munger
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio,Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - William D. Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia
| | | | - Joseph M. Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Elliott J. Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York,New York Consortium in Evolutionary Primatology, New York, New York
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
95
|
Catak C, Zedde M, Malik R, Janowitz D, Soric V, Seegerer A, Krebs A, Düring M, Opherk C, Linn J, Wollenweber FA. Decreased CSF Levels of ß-Amyloid in Patients With Cortical Superficial Siderosis. Front Neurol 2019; 10:439. [PMID: 31105644 PMCID: PMC6498501 DOI: 10.3389/fneur.2019.00439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Cortical superficial siderosis (cSS) represents a key neuroimaging marker of cerebral amyloid angiopathy (CAA) that is associated with intracranial hemorrhages and cognitive impairment. Nevertheless, the association between cSS and core cerebrospinal fluid (CSF) biomarkers for dementia remain unclear. Methods: One hundred and one patients with probable (79%, 80/101) or possible (21%, 21/101) CAA according to the modified Boston criteria and mild cognitive impairment according to Petersen criteria were prospectively included between 2011 and 2016. CSF analyses of ß-amyloid 42, ß-amyloid 40, total tau and phosphorylated tau were performed using sandwich-type enzyme-linked immunosorbent-assay. All patients received MRI and Mini-Mental-State Examination (MMSE). Logistic regression analysis was used to adjust for possible confounders. Results: cSS was present in 61% (62/101). Of those, 53% (33/62) had disseminated cSS and 47% (29/62) focal cSS. ß-amyloid 42 was lower in patients with cSS than in patients without cSS (OR 0.2; 95% CI 0.08–0.6; p = 0.0052) and lower in patients with disseminated cSS than in those with focal cSS (OR 0.02; 95% CI 0.003–0.2; p = 0.00057). Presence of cSS had no association with regard to ß-amyloid 40, total tau and phosphorylated tau. Conclusions: Our results demonstrate that the presence and extent of cSS are associated with reduced CSF ß-amyloid 42 levels. Further studies are needed to investigate the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Cihan Catak
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Rainer Malik
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Vivian Soric
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Anna Seegerer
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Krebs
- MVZ Labor PD Dr. Volkmann und Kollegen, Gesellschaft Bürgerlichen Rechts, Karlsruhe, Germany
| | - Marco Düring
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Christian Opherk
- Klinik für Neurologie, SLK-Kliniken Heilbronn GmbH, Heilbronn, Germany
| | - Jennifer Linn
- Institut und Poliklinik für Neuroradiologie, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Frank A Wollenweber
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
96
|
Chan VTT, Sun Z, Tang S, Chen LJ, Wong A, Tham CC, Wong TY, Chen C, Ikram MK, Whitson HE, Lad EM, Mok VCT, Cheung CY. Spectral-Domain OCT Measurements in Alzheimer's Disease: A Systematic Review and Meta-analysis. Ophthalmology 2019; 126:497-510. [PMID: 30114417 PMCID: PMC6424641 DOI: 10.1016/j.ophtha.2018.08.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
TOPIC OCT is a noninvasive tool to measure specific retinal layers in the eye. The relationship of retinal spectral-domain (SD) OCT measurements with Alzheimer's disease (AD) and mild cognitive impairment (MCI) remains unclear. Hence, we conducted a systematic review and meta-analysis to examine the SD OCT measurements in AD and MCI. CLINICAL RELEVANCE Current methods of diagnosing early AD are expensive and invasive. Retinal measurements of SD OCT, which are noninvasive, technically simple, and inexpensive, are potential biomarkers of AD. METHODS We conducted a literature search in PubMed and Excerpta Medica Database to identify studies published before December 31, 2017, that assessed the associations between AD, MCI, and measurements of SD OCT: ganglion cell-inner plexiform layer (GC-IPL), ganglion cell complex (GCC), macular volume, and choroidal thickness, in addition to retinal nerve fiber layer (RNFL) and macular thickness. We used a random-effects model to examine these relationships. We also conducted meta-regression and assessed heterogeneity, publication bias, and study quality. RESULTS We identified 30 eligible studies, involving 1257 AD patients, 305 MCI patients, and 1460 controls, all of which were cross-sectional studies. In terms of the macular structure, AD patients showed significant differences in GC-IPL thickness (standardized mean difference [SMD], -0.46; 95% confidence interval [CI], -0.80 to -0.11; I2 = 71%), GCC thickness (SMD, -0.84; 95% CI, -1.10 to -0.57; I2 = 0%), macular volume (SMD, -0.58; 95% CI, -1.03 to -0.14; I2 = 80%), and macular thickness of all inner and outer sectors (SMD range, -0.52 to -0.74; all P < 0.001) when compared with controls. Peripapillary RNFL thickness (SMD, -0.67; 95% CI, -0.95 to -0.38; I2 = 89%) and choroidal thickness (SMD range, -0.88 to -1.03; all P < 0.001) also were thinner in AD patients. CONCLUSIONS Our results confirmed the associations between retinal measurements of SD OCT and AD, highlighting the potential usefulness of SD OCT measurements as biomarkers of AD.
Collapse
Affiliation(s)
- Victor T T Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Zihan Sun
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shumin Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Adrian Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Republic of Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Republic of Singapore
| | - Christopher Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore, Republic of Singapore; Department of Pharmacology, National University of Singapore, Singapore, Republic of Singapore
| | - M Kamran Ikram
- Departments of Neurology and Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Heather E Whitson
- Duke University Medical Center, Durham, North Carolina; Geriatrics Research Education and Clinical Center (GRECC), Durham VA Medical Center, Durham, North Carolina
| | | | - Vincent C T Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong, China
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
97
|
Neuropathological and genetic characteristics of a post-mortem series of cases with dementia with Lewy bodies clinically suspected of Creutzfeldt-Jakob's disease. Parkinsonism Relat Disord 2019; 63:162-168. [PMID: 30777654 DOI: 10.1016/j.parkreldis.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/03/2019] [Accepted: 02/12/2019] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The disease course of dementia with Lewy bodies (DLB) can be rapidly progressive, clinically resembling Creutzfeldt-Jakob's disease (CJD). To better understand factors contributing to this rapidly progressive disease course, we describe load and distribution of neuropathology, and the presence of possible disease-associated genetic defects in a post-mortem series of DLB cases clinically suspected of CJD. METHODS We included pathologically confirmed DLB cases with a disease duration of 3.5 years or less from the Dutch Surveillance Center for Prion Diseases, collected between 1998 and 2014. Lewy body disease (LBD) and Alzheimer's disease (AD)-related pathology were staged and semi-quantitatively scored in selected brain regions. Whole exome sequencing analysis of known disease-associated genes, copy number analysis, APOE ε genotyping and C9orf72 repeat expansion analysis were performed to identify defects in genes with a well-established involvement in Parkinson's disease or AD. RESULTS Diffuse LBD was present in nine cases, transitional LBD in six cases and brainstem-predominant LBD in one case. Neocortical alpha-synuclein load was significantly higher in cases with intermediate-to-high than in cases with low-to-none AD-related pathology (p = 0.007). We found two GBA variants (p.D140H and p.E326K) in one patient and two heterozygous rare variants of unknown significance in SORL1 in two patients. CONCLUSION A high load of neocortical alpha-synuclein pathology was present in most, but not all DLB cases. Additional burden from presence of concomitant pathologies, synergistic effects and specific genetic defects in the known disease-associated genes may have contributed to the rapid disease progression.
Collapse
|
98
|
Liu S, Suzuki H, Ito H, Korenaga T, Akatsu H, Meno K, Uchida K. Serum levels of proteins involved in amyloid-β clearance are related to cognitive decline and neuroimaging changes in mild cognitive impairment. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:85-97. [PMID: 30671532 PMCID: PMC6335589 DOI: 10.1016/j.dadm.2018.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction Amyloid-β (Aβ) clearance is important for damage prevention in Alzheimer's disease. We investigated the utility of Aβ clearance proteins as biomarkers for mild cognitive impairment (MCI). Methods Serum apolipoprotein (apo) A-I, compliment protein C3 (C3), transthyretin, and cholesterol levels were measured in 273 subjects, and we analyzed the relationship between these levels and brain atrophy and cerebral blood flow in 63 clinically diagnosed mild cognitive impairment, Alzheimer's disease, and nondemented disease control subjects. Results ApoA-I and transthyretin levels and the active form of C3:native form of C3 ratio achieved an area under the curve of 0.89 (sensitivity: 83%, specificity: 90%) for detecting late mild cognitive impairment. Atrophy was associated with decreased apoA-I and high-density lipoprotein levels. Subjects with reduced cerebral blood flow had lower levels of active form of C3, apoA-I, high-density lipoprotein, and total cholesterol. Low native form of C3 and high active form of C3 levels were found in the hippocampi of patients with Alzheimer's disease. Discussion Aβ clearance proteins in the serum are potential biomarkers for mild cognitive impairment evaluation.
Collapse
Affiliation(s)
- Shan Liu
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideaki Suzuki
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Hitomi Ito
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Tatsumi Korenaga
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | | | - Kohji Meno
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Division, MCBI. Inc., Ibaraki, Japan
| | - Kazuhiko Uchida
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding author. Tel.: +81-29-853-3210; Fax: +81-50-3730-7456.
| |
Collapse
|
99
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
100
|
De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System. Front Cell Neurosci 2018; 12:459. [PMID: 30534057 PMCID: PMC6275309 DOI: 10.3389/fncel.2018.00459] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Coagulation and the immune system interact in several physiological and pathological conditions, including tissue repair, host defense, and homeostatic maintenance. This network plays a key role in diseases of the central nervous system (CNS) by involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and molecular pathways (protease activity, complement factors, platelet granule content). Endothelial damage prompts platelet activation and the coagulation cascade as the first physiological step to support the rescue of damaged tissues, a flawed rescuing system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial cells are sensitive to the damage and indeed can release or respond to chemokines and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors (including platelet-derived growth factor, vascular endothelial growth factor, and brain-derived neurotrophic factor) with platelet activation, change in capillary permeability, migration or differentiation of leukocytes. Thrombin, plasmin, activated complement factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular transduction through complement or protease-activated receptors. Impairment of the neuro-immune hemostasis network induces acute or chronic CNS pathologies related to the neurovascular unit, either directly or by the systemic activation of its main steps. Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit, in this review we thoroughly analyzed the influence of neuro-immune hemostasis on these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive and maladaptive plasticity and discuss the relevance of these events in inflammatory, cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the solid reviewed data, we hypothesize a model of neuro-immune hemostatic network based on protein–protein interactions. In addition, we propose that, to better understand and favor the maintenance of adaptive plasticity, it would be useful to construct predictive molecular models, able to enlighten the regulating logic of the complex molecular network, which belongs to different cellular domains. A modeling approach would help to define how nodes of the network interact with basic cellular functions, such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic systems biology models might help to elucidate the fine structure of molecular events generated by blood coagulation and neuro-immune responses in several CNS diseases, thereby opening the way to more effective treatments.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Michele Papa
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|