51
|
Thome AD, Atassi F, Wang J, Faridar A, Zhao W, Thonhoff JR, Beers DR, Lai EC, Appel SH. Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:41. [PMID: 33986285 PMCID: PMC8119976 DOI: 10.1038/s41531-021-00188-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a pathological hallmark of Parkinson's disease (PD). Chronic pro-inflammatory responses contribute to the loss of neurons in the neurodegenerative process. The present study was undertaken to define the peripheral innate and adaptive immune contributions to inflammation in patients with PD. Immunophenotyping revealed a shift of peripheral myeloid and lymphoid cells towards a pro-inflammatory phenotype. Regulatory T cells (Tregs) were reduced in number, and their suppression of T responder proliferation decreased. The PD Tregs did not suppress activated pro-inflammatory myeloid cells. Ex vivo expansion of Tregs from patients with PD restored and enhanced their suppressive functions while expanded Tregs displayed increased expression of foxp3, il2ra (CD25), nt5e (CD73), il10, il13, ctla4, pdcd1 (PD1), and gzmb. Collectively, these findings documented a shift towards a pro-inflammatory peripheral immune response in patients with PD; the loss of Treg suppressive functions may contribute significantly to this response, supporting PD as a disorder with extensive systemic pro-inflammatory responses. The restoration and enhancement of Treg suppressive functions following ex vivo expansion may provide a potential cell therapeutic approach for patients with PD.
Collapse
Affiliation(s)
- Aaron D. Thome
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Farah Atassi
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Jinghong Wang
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Alireza Faridar
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Weihua Zhao
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Jason R. Thonhoff
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - David R. Beers
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Eugene C. Lai
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Stanley H. Appel
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| |
Collapse
|
52
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
53
|
George S, Tyson T, Rey NL, Sheridan R, Peelaerts W, Becker K, Schulz E, Meyerdirk L, Burmeister AR, von Linstow CU, Steiner JA, Galvis MLE, Ma J, Pospisilik JA, Labrie V, Brundin L, Brundin P. T Cells Limit Accumulation of Aggregate Pathology Following Intrastriatal Injection of α-Synuclein Fibrils. JOURNAL OF PARKINSONS DISEASE 2021; 11:585-603. [PMID: 33579871 PMCID: PMC8150548 DOI: 10.3233/jpd-202351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND α-Synuclein (α-syn) is the predominant protein in Lewy-body inclusions, which are pathological hallmarks of α-synucleinopathies, such as Parkinson's disease (PD) and multiple system atrophy (MSA). Other hallmarks include activation of microglia, elevation of pro-inflammatory cytokines, as well as the activation of T and B cells. These immune changes point towards a dysregulation of both the innate and the adaptive immune system. T cells have been shown to recognize epitopes derived from α-syn and altered populations of T cells have been found in PD and MSA patients, providing evidence that these cells can be key to the pathogenesis of the disease.ObjectiveTo study the role of the adaptive immune system with respect to α-syn pathology. METHODS We injected human α-syn preformed fibrils (PFFs) into the striatum of immunocompromised mice (NSG) and assessed accumulation of phosphorylated α-syn pathology, proteinase K-resistant α-syn pathology and microgliosis in the striatum, substantia nigra and frontal cortex. We also assessed the impact of adoptive transfer of naïve T and B cells into PFF-injected immunocompromised mice. RESULTS Compared to wildtype mice, NSG mice had an 8-fold increase in phosphorylated α-syn pathology in the substantia nigra. Reconstituting the T cell population decreased the accumulation of phosphorylated α-syn pathology and resulted in persistent microgliosis in the striatum when compared to non-transplanted mice. CONCLUSION Our work provides evidence that T cells play a role in the pathogenesis of experimental α-synucleinopathy.
Collapse
Affiliation(s)
- Sonia George
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Trevor Tyson
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Nolwen L Rey
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-aux-Roses, France
| | - Rachael Sheridan
- Flow Cytometry Core Facility, Van Andel Institute, Grand Rapids, MI, USA
| | - Wouter Peelaerts
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Katelyn Becker
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Schulz
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Lindsay Meyerdirk
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Amanda R Burmeister
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Viviane Labrie
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Michigan State University - College of Human Medicine, Department of Psychiatry, Grand Rapids, MI, USA
| | - Lena Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Michigan State University - College of Human Medicine, Department of Psychiatry, Grand Rapids, MI, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA.,Michigan State University - College of Human Medicine, Department of Psychiatry, Grand Rapids, MI, USA
| |
Collapse
|
54
|
Mechanisms of Neurodegeneration in Various Forms of Parkinsonism-Similarities and Differences. Cells 2021; 10:cells10030656. [PMID: 33809527 PMCID: PMC7999195 DOI: 10.3390/cells10030656] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world’s aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.
Collapse
|
55
|
Kouli A, Camacho M, Allinson K, Williams-Gray CH. Neuroinflammation and protein pathology in Parkinson's disease dementia. Acta Neuropathol Commun 2020; 8:211. [PMID: 33272323 PMCID: PMC7713145 DOI: 10.1186/s40478-020-01083-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/15/2020] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.
Collapse
|
56
|
Marmion DJ, Rutkowski AA, Chatterjee D, Hiller BM, Werner MH, Bezard E, Kirik D, McCown T, Gray SJ, Kordower JH. Viral-based rodent and nonhuman primate models of multiple system atrophy: Fidelity to the human disease. Neurobiol Dis 2020; 148:105184. [PMID: 33221532 DOI: 10.1016/j.nbd.2020.105184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare and extremely debilitating progressive neurodegenerative disease characterized by variable combinations of parkinsonism, cerebellar ataxia, dysautonomia, and pyramidal dysfunction. MSA is a unique synucleinopathy, in which alpha synuclein-rich aggregates are present in the cytoplasm of oligodendroglia. The precise origin of the alpha synuclein (aSyn) found in the glial cytoplasmic inclusions (GCIs) as well the mechanisms of neurodegeneration in MSA remain unclear. Despite this fact, cell and animal models of MSA rely on oligodendroglial overexpression of aSyn. In the present study, we utilized a novel oligotrophic AAV, Olig001, to overexpress aSyn specifically in striatal oligodendrocytes of rats and nonhuman primates in an effort to further characterize our novel viral vector-mediated MSA animal models. Using two cohorts of animals with 10-fold differences in Olig001 vector titers, we show a dose-dependent formation of MSA-like pathology in rats. High titer of Olig001-aSyn in these animals were required to produce the formation of pS129+ and proteinase K resistant aSyn-rich GCIs, demyelination, and neurodegeneration. Using this knowledge, we injected high titer Olig001 in the putamen of cynomolgus macaques. After six months, histological analysis showed that oligodendroglial overexpression of aSyn resulted in the formation of hallmark GCIs throughout the putamen, demyelination, a 44% reduction of striatal neurons and a 12% loss of nigral neurons. Furthermore, a robust inflammatory response similar to MSA was produced in Olig001-aSyn NHPs, including microglial activation, astrogliosis, and a robust infiltration of T cells into the CNS. Taken together, oligodendroglial-specific viral vector-mediated overexpression of aSyn in rats and nonhuman primates faithfully reproduces many of the pathological disease hallmarks found in MSA. Future studies utilizing these large animal models of MSA would prove extremely valuable as a pre-clinical platform to test novel therapeutics that are so desperately needed for MSA.
Collapse
Affiliation(s)
- David J Marmion
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Angela A Rutkowski
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Diptaman Chatterjee
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Benjamin M Hiller
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Erwan Bezard
- University of Bordeaux, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France; CNRS, Neurodegenerative Diseases Institute, UMR 5293, F-33000 Bordeaux, France
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, Lund 221 00, Sweden
| | - Thomas McCown
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
57
|
Harms AS, Kordower JH, Sette A, Lindestam Arlehamn CS, Sulzer D, Mach RH. Inflammation in Experimental Models of α-Synucleinopathies. Mov Disord 2020; 36:37-49. [PMID: 33009855 DOI: 10.1002/mds.28264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation has long been associated with central nervous system pathology in α-synucleinopathy disorders including Parkinson's disease and multiple system atrophy. In the past decade, research-focused efforts in preclinical and experimental models have rallied around this idea, and considerable effort has been made to delineate critical neuroinflammatory processes. In this article, we discuss challenges in preclinical research, notably the use of animal models to recapitulate and dissect disease phenotypes as well as the need for more sensitive, reliable radiotracers to detect on-target efficacy of immunomodulatory treatments in both human Parkinson's disease as well as preclinical models. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ashley S Harms
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - David Sulzer
- Department of Neurology, Columbia University Medical Center, New York, New York, USA.,Department of Psychiatry, Columbia University Medical Center, New York, New York, USA.,Department of Pharmacology, Columbia University Medical Center, New York, New York, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
58
|
Sulzer D, Antonini A, Leta V, Nordvig A, Smeyne RJ, Goldman JE, Al-Dalahmah O, Zecca L, Sette A, Bubacco L, Meucci O, Moro E, Harms AS, Xu Y, Fahn S, Ray Chaudhuri K. COVID-19 and possible links with Parkinson's disease and parkinsonism: from bench to bedside. NPJ Parkinsons Dis 2020; 6:18. [PMID: 32885037 PMCID: PMC7441399 DOI: 10.1038/s41531-020-00123-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
This Viewpoint discusses insights from basic science and clinical perspectives on coronavirus disease 2019 (COVID-19)/severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in the brain, with a particular focus on Parkinson's disease. Major points include that neuropathology studies have not answered the central issue of whether the virus enters central nervous system neurons, astrocytes or microglia, and the brain vascular cell types that express virus have not yet been identified. Currently, there is no clear evidence for human neuronal or astrocyte expression of angiotensin-converting enzyme 2 (ACE2), the major receptor for viral entry, but ACE2 expression may be activated by inflammation, and a comparison of healthy and infected brains is important. In contrast to the 1918 influenza pandemic and avian flu, reports of encephalopathy in COVID-19 have been slow to emerge, and there are so far no documented reports of parkinsonism apart from a single case report. We recommend consensus guidelines for the clinical treatment of Parkinson's patients with COVID-19. While a role for the virus in causing or exacerbating Parkinson's disease appears unlikely at this time, aggravation of specific motor and non-motor symptoms has been reported, and it will be important to monitor subjects after recovery, particularly for those with persisting hyposmia.
Collapse
Affiliation(s)
- David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY 10032 USA
| | - Angelo Antonini
- Department of Neuroscience, Parkinson and Movement Disorders Unit, University of Padua, Padua, Italy
| | - Valentina Leta
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, SE5 9RS UK
| | - Anna Nordvig
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY 10032 USA
| | - Richard J. Smeyne
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - James E. Goldman
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY 10032 USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY 10032 USA
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92093 USA
- Department of Medicine, University of California, San Diego, CA 92093 USA
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102 USA
- Center of Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA 19102 USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102 USA
| | - Elena Moro
- Department of Neurology, Grenoble Alpes University Hospital, Grenoble, France
- Grenoble Institute of Neurosciences GIN-INSERM U1216/CEA/UGA, Grenoble, France
- Grenoble Alpes University, Grenoble, France
| | - Ashley S. Harms
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Yaqian Xu
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Stanley Fahn
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY 10032 USA
| | - K. Ray Chaudhuri
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London, SE5 8AF UK
- Parkinson’s Foundation Centre of Excellence, King’s College Hospital, Denmark Hill, London, SE5 9RS UK
| |
Collapse
|
59
|
Conway KS, Camelo-Piragua S, Fisher-Hubbard A, Perry WR, Shakkottai VG, Venneti S. Multiple system atrophy pathology is associated with primary Sjögren's syndrome. JCI Insight 2020; 5:138619. [PMID: 32644976 PMCID: PMC7455075 DOI: 10.1172/jci.insight.138619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/01/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Our objective was to investigate whether primary Sjögren’s syndrome (pSS) is associated with multiple system atrophy (MSA). METHODS We performed a retrospective cohort study assessing (a) rates of MSA in a cohort of patients with pSS and (b) rates of pSS in a cohort of patients with MSA. These data were compared with rates in respective control groups. We additionally reviewed the neuropathologic findings in 2 patients with pSS, cerebellar degeneration, parkinsonism, and autonomic dysfunction. RESULTS Our cohort of 308 patients with pSS had a greater incidence of MSA compared with 4 large population-based studies and had a significantly higher prevalence of at least probable MSA (1% vs. 0%, P = 0.02) compared with 776 patients in a control cohort of patients with other autoimmune disorders. Our cohort of 26 autopsy-proven patients with MSA had a significantly higher prevalence of pSS compared with a cohort of 115 patients with other autopsy-proven neurodegenerative disorders (8% vs. 0%, P = 0.03). The 2 patients we described with pSS and progressive neurodegenerative disease showed classic MSA pathology at autopsy. CONCLUSION Our findings provide evidence for an association between MSA and pSS that is specific to both pSS, among autoimmune disorders, and MSA, among neurodegenerative disorders. The 2 cases we describe of autopsy-proven MSA support that MSA pathology can explain neurologic disease in a subset of patients with pSS. These findings together support the hypothesis that systemic autoimmune disease plays a role in neurodegeneration. FUNDING The Michigan Brain Bank is supported in part through NIH grant P30AG053760. This single-center retrospective cohort study shows an association between primary Sjogren’s syndrome and multiple system atrophy pathology.
Collapse
Affiliation(s)
- Kyle S Conway
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sandra Camelo-Piragua
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amanda Fisher-Hubbard
- Department of Pathology, Homer Stryker M.D. School of Medicine, Western Michigan University, Kalamazoo, Michigan, USA
| | - William R Perry
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vikram G Shakkottai
- Department of Neurology, Department of Molecular and Integrative Physiology Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sriram Venneti
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
60
|
Wang H, Wang W, Yi Z, Zhao P, Zhang H, Pan P. Inflammatory cytokine levels in multiple system atrophy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21509. [PMID: 32756187 PMCID: PMC7402900 DOI: 10.1097/md.0000000000021509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) is a fatal neurodegenerative disease that progresses very rapidly and has a poor prognosis. Some studies indicate that the level of inflammatory cytokines may be related to MSA. However, no consistent conclusion has been drawn yet. The purpose of our research is to perform a meta-analysis to investigate whether the level of inflammatory cytokines is altered in MSA. METHODS Case-control studies on inflammatory cytokine levels in MSA will be searched in the following 3 databases: PubMed, Embase, and Web of Science from the database start time to March 17, 2020. Two independent authors will conduct research selection, data extraction, and quality evaluation. Data synthesis, subgroup analysis, sensitivity analysis, and the meta-analysis will be performed using Stata15.0 software. RESULTS This study will provide a comprehensive review of all studies on inflammatory cytokine levels in MSA. CONCLUSION To the best of our knowledge, this study will be the first meta-analysis that provides the quantitative evidence of inflammatory cytokine levels in MSA. REGISTRATION NUMBER INPLASY202060034.
Collapse
Affiliation(s)
- HongZhou Wang
- Department of Neurology, Kunshan Hospital, Affiliated to Jiangsu University, Kunshan
| | - WanHua Wang
- Department of Neurology, Kunshan Hospital, Affiliated to Jiangsu University, Kunshan
| | - ZhongQuan Yi
- Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng
| | - PanWen Zhao
- Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng
| | - Hui Zhang
- Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng
| | - PingLei Pan
- Department of Neurology and Department of Central Laboratory, Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, PR China
| |
Collapse
|
61
|
Iba M, Kim C, Sallin M, Kwon S, Verma A, Overk C, Rissman RA, Sen R, Sen JM, Masliah E. Neuroinflammation is associated with infiltration of T cells in Lewy body disease and α-synuclein transgenic models. J Neuroinflammation 2020; 17:214. [PMID: 32680537 PMCID: PMC7368752 DOI: 10.1186/s12974-020-01888-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND α-Synuclein (α-syn) is a pre-synaptic protein which progressively accumulates in neuronal and non-neuronal cells in neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy. Recent evidence suggests that aberrant immune activation may be involved in neurodegeneration in PD/DLB. While previous studies have often focused on the microglial responses, less is known about the role of the peripheral immune system in these disorders. METHODS To understand the involvement of the peripheral immune system in PD/DLB, we evaluated T cell populations in the brains of α-syn transgenic (tg) mice (e.g., Thy1 promoter line 61) and DLB patients. RESULTS Immunohistochemical analysis showed perivascular and parenchymal infiltration by CD3+/CD4+ helper T cells, but not cytotoxic T cells (CD3+/CD8+) or B cells (CD20+), in the neocortex, hippocampus, and striatum of α-syn tg mice. CD3+ cells were found in close proximity to the processes of activated astroglia, particularly in areas of the brain with significant astrogliosis, microgliosis, and expression of pro-inflammatory cytokines. In addition, a subset of CD3+ cells co-expressed interferon γ. Flow cytometric analysis of immune cells in the brains of α-syn tg mice revealed that CD1d-tet+ T cells were also increased in the brains of α-syn tg mice suggestive of natural killer T cells. In post-mortem DLB brains, we similarly detected increased numbers of infiltrating CD3+/CD4+ T cells in close proximity with blood vessels. CONCLUSION These results suggest that infiltrating adaptive immune cells play an important role in neuroinflammation and neurodegeneration in synucleinopathies and that modulating peripheral T cells may be a viable therapeutic strategy for PD/DLB.
Collapse
Affiliation(s)
- Michiyo Iba
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Changyoun Kim
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michelle Sallin
- Laboratory of Clinical Investigation, Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Somin Kwon
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anjali Verma
- Laboratory of Clinical Investigation, Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, Gene Regulation Section, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jyoti Misra Sen
- Laboratory of Clinical Investigation, Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20814, USA.
| |
Collapse
|
62
|
Cao B, Chen X, Zhang L, Wei Q, Liu H, Feng W, Chen Y, Shang H. Elevated Percentage of CD3 + T-Cells and CD4 +/CD8 + Ratios in Multiple System Atrophy Patients. Front Neurol 2020; 11:658. [PMID: 32733370 PMCID: PMC7358310 DOI: 10.3389/fneur.2020.00658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
α-synuclein is involved in the pathogenesis of multiple system atrophy (MSA) and can be regulated by peripheral immune activation (PIA). We aimed to clarify the correlations between PIA and the prevalence of MSA and to analyze the role of PIA in the progression of the disease. A total of 321 patients with probable MSA and 321 age- and gender-matched healthy controls were included in this study. Lymphocyte subsets, including CD3+, CD4+, and CD8+ cells, and the levels of immunoglobulins IgG, IgM, and IgA were evaluated. The proportions of CD3+ and CD4+ T-lymphocytes were significantly increased in MSA patients compared with those of normal controls. In addition, the ratio of CD4+ to CD8+ cells was significantly increased in male MSA patients and IgG concentrations were decreased in female MSA patients. Furthermore, the concentrations of IgM in female MSA patients were dynamically different at various disease stages and gradually decreased from the early stage until the end stage of the disease (p = 0.029). Other detected immunological indexes were not significantly different during the entire disease course. In this study, high proportions of CD3+ and CD4+ T-lymphocytes and decreased IgG levels were associated with an increased risk for MSA in a Chinese patient population. In addition, PIA may be involved in the progression of MSA.
Collapse
Affiliation(s)
- Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Weihua Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
63
|
Tang J, Tang Y, Yi I, Chen DF. The role of commensal microflora-induced T cell responses in glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2020; 256:79-97. [PMID: 32958216 DOI: 10.1016/bs.pbr.2020.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade, new evidence has become increasingly more compelling that commensal microflora profoundly influences the maturation and function of resident immune cells in host physiology. The concept of gut-retina axis is actively being explored. Studies have revealed a critical role of commensal microbes linked with neuronal stress, immune responses, and neurodegeneration in the retina. Microbial dysbiosis changes the blood-retina barrier permeability and modulates T cell-mediated autoimmunity to contribute to the pathogenesis of retinal diseases, such as glaucoma. Heat shock proteins (HSPs), which are evolutionarily conserved, are thought to function both as neuroprotectant and pathogenic antigens of T cells contributing to cell protection and tissue damage, respectively. Activated microglia recruit and interact with T cells during this process. Glaucoma, characterized by the progressive loss of retinal ganglion cells, is the leading cause of irreversible blindness. With nearly 70 million people suffering glaucoma worldwide, which doubles the number of patients with Alzheimer's disease, it represents the most frequent neurodegenerative disease of the central nervous system (CNS). Thus, understanding the mechanism of neurodegeneration in glaucoma and its association with the function of commensal microflora may help unveil the secrets of many neurodegenerative disorders in the CNS and develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Yizhen Tang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Irvin Yi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
64
|
Mészáros L, Hoffmann A, Wihan J, Winkler J. Current Symptomatic and Disease-Modifying Treatments in Multiple System Atrophy. Int J Mol Sci 2020; 21:E2775. [PMID: 32316335 PMCID: PMC7215736 DOI: 10.3390/ijms21082775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare, severe, and rapidly progressive neurodegenerative disorder categorized as an atypical parkinsonian syndrome. With a mean life expectancy of 6-9 years after diagnosis, MSA is clinically characterized by parkinsonism, cerebellar ataxia, autonomic failure, and poor l-Dopa responsiveness. Aside from limited symptomatic treatment, there is currently no disease-modifying therapy available. Consequently, distinct pharmacological targets have been explored and investigated in clinical studies based on MSA-related symptoms and pathomechanisms. Parkinsonism, cerebellar ataxia, and autonomic failure are the most important symptoms targeted by symptomatic treatments in current clinical trials. The most prominent pathological hallmark is oligodendroglial cytoplasmic inclusions containing alpha-synuclein, thus classifying MSA as synucleinopathy. Additionally, myelin and neuronal loss accompanied by micro- and astrogliosis are further distinctive features of MSA-related neuropathology present in numerous brain regions. Besides summarizing current symptomatic treatment strategies in MSA, this review critically reflects upon potential cellular targets and disease-modifying approaches for MSA such as (I) targeting α-syn pathology, (II) intervening neuroinflammation, and (III) neuronal loss. Although these single compound trials are aiming to interfere with distinct pathogenetic steps in MSA, a combined approach may be necessary to slow down the rapid progression of the oligodendroglial associated synucleinopathy.
Collapse
Affiliation(s)
| | | | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.M.); (A.H.); (J.W.)
| |
Collapse
|