51
|
Kawashima S, Funakoshi T, Sato Y, Saito N, Ohsawa H, Kurita K, Nagata K, Yoshida M, Ishigami A. Protective effect of pre- and post-vitamin C treatments on UVB-irradiation-induced skin damage. Sci Rep 2018; 8:16199. [PMID: 30385817 PMCID: PMC6212420 DOI: 10.1038/s41598-018-34530-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Several studies have reported the effects of vitamin C (L-ascorbic acid, AA) on ultraviolet B (UVB)-induced cell damage using cultured keratinocytes. However, the epidermis consists of multiple cell layers, and the effect of AA on UVB-induced damage to the human epidermis remains unclear. Therefore, we investigated the effect of AA on UVB-induced skin damage using reconstituted human epidermis. The reconstituted human epidermal surface was treated with 100 and 500 mM AA and cultured for 3 h before (pre-AA treatment) or after (post-AA treatment) 120 mJ/cm2 UVB irradiation. Pre- and post-AA treatments of the epidermal surface suppressed UVB-induced cell death, apoptosis, DNA damage, reactive oxygen species (ROS) production, and the inflammatory response by downregulating tumour necrosis factor-α (TNF-α) expression and release. Moreover, the pre-AA treatment was more effective at preventing UVB-induced skin damage than the post-AA treatment. In summary, pre- and post-AA treatments of the epidermis prevent UVB-induced damage.
Collapse
Affiliation(s)
- Saki Kawashima
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.,Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan
| | - Tomoko Funakoshi
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Yasunori Sato
- Department of Bioenvironmental Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Ishikawa, 920-1181, Japan
| | | | | | | | - Kisaburo Nagata
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.
| |
Collapse
|
52
|
Mogulevtseva JA, Mezentsev AV, Bruskin SA. Impact of Metalloproteinase 1 Deficiency Induced by Specific Small Hairpin RNA on the Physiological Effects of Tumor Necrosis Factor. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418080094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
Kim HL, Woo SM, Choi WR, Kim HS, Yi C, Kim KH, Cheng J, Yang SH, Suh JW. Scopoletin downregulates MMP‑1 expression in human fibroblasts via inhibition of p38 phosphorylation. Int J Mol Med 2018; 42:2285-2293. [PMID: 30015831 DOI: 10.3892/ijmm.2018.3757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/29/2018] [Indexed: 11/06/2022] Open
Abstract
Irradiation of keratinocytes by ultraviolet B induces cytokine production, which in turn activates fibroblasts to produce cytokines and increase matrix metallopeptidase (MMP)‑1 protein expression. The present study investigated the effect and potential mechanisms of scopoletin on the regulation of MMP‑1 expression in fibroblasts. Scopoletin was isolated from Artemisia capillaris crude extract. Treatment of fibroblasts with scopoletin resulted in a decrease in the protein expression of MMP‑1 following stimulation with human keratinocyte (HaCaT) conditioned medium. To further explore the mechanism underlying this effect, the expression levels of proteins in the mitogen‑activated protein kinase (MAPK) and nuclear factor‑κB (NF‑κB) signaling pathways were evaluated via western blot analysis. The mRNA expression levels of interleukin (IL)‑1α and tumor necrosis factor (TNF) α were evaluated via reverse transcription‑quantitative polymerase chain reaction. The effect of scopoletin on cell viability was assessed with the MTT assay. The results demonstrated that scopoletin treatment markedly decreased MMP‑1, IL‑1α and TNFα mRNA expression in fibroblasts stimulated with HaCaT conditioned medium (40 mJ/cm2), without any apparent cell cytotoxicity, and in a dose‑dependent manner. In addition, western blot analysis demonstrated that scopoletin reduced the phosphorylation of p38 MAPK in fibroblasts. In summary, the present study demonstrated that scopoletin inhibited MMP‑1 and proinflammatory cytokine expression by inhibiting p38 MAPK phosphorylation. These findings suggest that scopoletin may have potential as a therapeutic agent to prevent and treat photoaging of the skin.
Collapse
Affiliation(s)
- Hae-Lim Kim
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Gyeonggi 17058, Republic of Korea
| | - Sung Min Woo
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Gyeonggi 17058, Republic of Korea
| | - Woo Rin Choi
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Gyeonggi 17058, Republic of Korea
| | - Hong-Suk Kim
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Gyeonggi 17058, Republic of Korea
| | - Chunsik Yi
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi 17058, Republic of Korea
| | - Kyung-Hyeon Kim
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Gyeonggi 17058, Republic of Korea
| | - Jinhua Cheng
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi 17058, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Joo-Won Suh
- Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Gyeonggi 17058, Republic of Korea
| |
Collapse
|
54
|
Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv Drug Deliv Rev 2018; 129:95-117. [PMID: 29627369 DOI: 10.1016/j.addr.2018.03.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.
Collapse
|
55
|
Long-term exposure to TNF-α leads human skin fibroblasts to a p38 MAPK- and ROS-mediated premature senescence. Biogerontology 2018; 19:237-249. [DOI: 10.1007/s10522-018-9753-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/23/2018] [Indexed: 11/25/2022]
|
56
|
Kataoka K, Maehara N, Ayabe Y, Murata H, Huh NH, Sakaguchi M. Tumor necrosis factor-α downregulates the REIC/Dkk-3 tumor suppressor gene in normal human skin keratinocytes. Mol Med Rep 2018; 17:6661-6666. [PMID: 29512745 DOI: 10.3892/mmr.2018.8676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 07/14/2016] [Indexed: 11/05/2022] Open
Abstract
Our previous studies revealed that REIC/Dkk-3 was expressed various tissues, including skin keratinocytes. The aim of the present study was to identify the factors that regulate the expression of the dickkopf Wnt signaling pathway inhibitor 3 (REIC/Dkk‑3) tumor suppressor gene in normal human skin keratinocytes (NHKs). Several growth factors and cytokines that have previously been reported to be involved in the growth and differentiation of keratinocytes were screened as potential regulators. Western blot analysis was performed using protein from NHKs cultured with/without various factors including the epidermal growth factor, tumor necrosis factor‑α, transforming growth factor‑β, interleukin (IL)‑1F9, IL‑6, IL‑8 and Ca2+. The results indicated that only TNF‑α downregulated REIC/Dkk‑3 expression in NHKs. Subsequently, TNF‑α was confirmed to reduce the expression levels of REIC/Dkk‑3 in mouse skin tissue and hair culture models. TNF‑α‑mediated downregulation of REIC/Dkk‑3 expression in NHKs was abrogated by the addition of a TNF‑α‑specific antibody. In conclusion, the results indicate that TNF‑α downregulates REIC/Dkk‑3 expression in normal skin keratinocytes.
Collapse
Affiliation(s)
- Ken Kataoka
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700‑0005, Japan
| | - Natsumi Maehara
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Yuki Ayabe
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700‑0005, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Nam-Ho Huh
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| |
Collapse
|
57
|
Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal 2018; 12:35-43. [PMID: 29455303 DOI: 10.1007/s12079-018-0459-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/31/2018] [Indexed: 01/22/2023] Open
Abstract
The dermal extracellular matrix (ECM) comprises the bulk of skin and confers strength and resiliency. In young skin, fibroblasts produce and adhere to the dermal ECM, which is composed primarily of type I collagen fibrils. Adherence allows fibroblasts to spread and exert mechanical force on the surrounding ECM. In this state, fibroblasts display a "youthful" phenotype characterized by maintenance of the composition and structural organization of the dermal ECM. During aging, fibroblast-ECM interactions become disrupted due to fragmentation of collagen fibrils. This disruption causes loss of fibroblast spreading and mechanical force, which inextricably lead to an "aged" phenotype; fibroblasts synthesize less ECM proteins and more matrix-degrading metalloproteinases. This imbalance of ECM homeostasis further drives collagen fibril fragmentation in a self-perpetuating cycle. This article summarizes age-related changes in the dermal ECM and the mechanisms by which these changes alter the interplay between fibroblasts and their extracellular matrix microenvironment that drive the aging process in human skin.
Collapse
|
58
|
Kim J, Lee J, Shin S, Cho A, Heo Y. Molecular Mechanism of Atopic Dermatitis Induction Following Sensitization and Challenge with 2,4-Dinitrochlorobenzene in Mouse Skin Tissue. Toxicol Res 2018; 34:7-12. [PMID: 29371996 PMCID: PMC5776911 DOI: 10.5487/tr.2018.34.1.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
Laboratory animal models have been developed to investigate preventive or therapeutic effect of medicinal products, or occurrence or progression mechanism of atopic dermatitis (AD), a pruritic and persistent inflammatory skin disease. The murine model with immunologic phenomena resembling human AD was introduced, which demonstrated skewedness toward predominance of type-2 helper T cell reactivity and pathophysiological changes similar as human AD following 2,4-dinitrochlorobenzene (DNCB) sensitization and challenge. Molecular mechanism on the DNCB-mediated AD was further evaluated. Skin tissues were collected from mice treated with DNCB, and each tissue was equally divided into two sections; one for protein and the other for mRNA analysis. Expression of filaggrin, an important protein for keratinocyte integrity, was evaluated through SDS-PAGE. Level of mRNA expression for cytokines was determined through semi-quantitative reverse transcriptase polymerase chain reaction. Expression of filaggrin protein was significantly enhanced in the mice treated with DNCB compared with the vehicle (acetone : olive oil = 4 : 1 mixture) treatment group or the normal group without any treatment. Level of tumor necrosis factor-alpha and interleukin-18 mRNA expression, cytokines involved in activity of type-1 helper T (TH1) cell, was significantly downregulated in the AD group compared with other control groups. These results suggest that suppression of TH1 cell-mediated immune response could be reflected into the skin tissue of mice treated with DNCB for AD induction, and disturbance of keratinocyte integrity might evoke a compensatory mechanism.
Collapse
Affiliation(s)
- JiYoun Kim
- Department of Occupational Health, Catholic University of Daegu, Gyeongsan, Korea
| | - JaeHee Lee
- Department of Occupational Health, Catholic University of Daegu, Gyeongsan, Korea
| | - SoJung Shin
- Department of Occupational Health, Catholic University of Daegu, Gyeongsan, Korea
| | - AhRang Cho
- Department of Occupational Health, Catholic University of Daegu, Gyeongsan, Korea
| | - Yong Heo
- Department of Occupational Health, Catholic University of Daegu, Gyeongsan, Korea
| |
Collapse
|
59
|
CCN4/WISP1 controls cutaneous wound healing by modulating proliferation, migration and ECM expression in dermal fibroblasts via α5β1 and TNFα. Matrix Biol 2018; 68-69:533-546. [PMID: 29330021 DOI: 10.1016/j.matbio.2018.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 02/01/2023]
Abstract
Understanding the mechanisms that control cutaneous wound healing is crucial to successfully manage repair of damaged skin. The goal of the current study was to uncover novel extracellular matrix (ECM) components that control the wound healing process. Full thickness skin defects were created in mice and used to show CCN4 up-regulation during wound-healing as early as 1 day after surgery, suggesting a role in inflammation and subsequent dermal migration and proliferation. To determine how CCN4 could regulate wound healing we used Ccn4-KO mice and showed they had delayed wound closure accompanied by reduced expression of Col1a1 and Fn mRNA. Boyden chamber assays using Ccn4-deficient dermal fibroblasts showed they have reduced migration and proliferation compared to WT counterparts. To confirm CCN4 has a role in proliferation and migration of dermal cells, siRNA knockdown and transduction of CCN4 adenoviral transduction were used and resulted in reduced or enhanced migration of human adult dermal fibroblast (hADF) cells respectively. The induced migration of the dermal fibroblasts by CCN4 appears to work via α5β1 integrin receptors that further stimulates down-stream ERK/JNK signaling. The regulation of CCN4 by TNF-α prompted us look further at their potential relationship. Treatment of hADFs with CCN4 and TNF-α alone or together showed CCN4 counteracted the inhibition of TNF-α on COL1A1 and FN mRNA expression and the stimulation of TNF-α on MMP-1 and MMP3 mRNA expression. CCN4 appeared to counterbalance the effects of TNF-α by inhibiting downstream NF-κB/p-65 signaling. Taken together we show CCN4 stimulates dermal fibroblast cell migration, proliferation and inhibits TNF-α stimulation, all of which could regulate wound healing.
Collapse
|
60
|
Wu MH, Shih MH, Hsu WB, Dubey NK, Lee WF, Lin TY, Hsieh MY, Chen CF, Peng KT, Huang TJ, Shi CS, Guo RS, Cai CJ, Chung CY, Wong CH. Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model. PLoS One 2017; 12:e0186784. [PMID: 29059223 PMCID: PMC5653328 DOI: 10.1371/journal.pone.0186784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/06/2017] [Indexed: 12/29/2022] Open
Abstract
This study evaluates the sustained analgesic effect of ketorolac-eluting thermosensitive biodegradable hydrogel in the plantar incisional pain model of the rat hind-paw. A ketorolac-embedded 2, 2'-Bis (2-oxazolin) (BOX) linking methoxy-poly(ethylene glycol) and poly(lactide-co-glycolide) (mPEG-PLGA) diblock copolymer (BOX copolymer) was synthesized as keto-hydrogel based on optimal sol-gel phase transition and in vitro drug release profile. The effect of keto-hydrogel on postoperative pain (POP) was assessed using the established plantar incisional pain model in hind-paw of rats and compared to that of ketorolac solution. Pain and sensory threshold, as well as pain scoring, were evaluated with behavioral tests by means of anesthesiometer and incapacitance apparatus, respectively. Pro-inflammatory cytokine levels (TNF-α, IL-6, VEGF, and IL-1β) around incisional wounds were measured by ELISA. Tissue histology was assessed using hematoxylin and eosin and Masson’s trichrome staining. Ten mg/mL (25 wt%) keto-hydrogel showed a sol-gel transition at 26.4°C with a 10-day sustained drug release profile in vitro. Compared to ketorolac solution group, the concentration of ketorolac in tissue fluid was higher in the keto-hydrogel group during the first 18 h of application. Keto-hydrogel elevated pain and sensory threshold, increased weight-bearing capacity, and significantly reduced the levels of TNF-α, IL-6, and IL-1β while enhanced VEGF in tissue fluid. Histologic analysis reveals greater epithelialization and collagen deposition around wound treated with keto-hydrogel. In conclusion, our study suggests that keto-hydrogel is an ideal compound to treat POP with a secondary gain of improved incisional wound healing.
Collapse
Affiliation(s)
- Meng-Huang Wu
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Hung Shih
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wei-Bin Hsu
- Sports Medicine Center, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Navneet Kumar Dubey
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wen-Fu Lee
- Department of Chemical Engineering, Tatung University, Taipei, Taiwan
| | - Tsai-Yu Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Meng-Yow Hsieh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
- Institute of Biomedical Engineering, College of Engineering, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Fu Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Tsung-Jen Huang
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Shyang Guo
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chang-Jhih Cai
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chung-Hang Wong
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- * E-mail:
| |
Collapse
|
61
|
Alam S, Pal A, Singh D, Ansari KM. Topical application of Nexrutine inhibits ultraviolet B-induced cutaneous inflammatory responses in SKH-1 hairless mouse. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2017; 34:82-90. [PMID: 28857273 DOI: 10.1111/phpp.12348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Ultraviolet B (UVB) radiation is the major contributor to skin inflammation which leads to the development of skin cancer. Hence, in this study, we studied the effect of Nexrutine (NX) on UVB-induced cutaneous inflammation and its mediators. METHODS Ultraviolet absorption spectra of NX were measured by spectrophotometer. To conduct the photoprotective studies, SKH-1 hairless mice were topically treated with NX, 30 minutes before to the UVB (180 mJ/cm2 ) exposure. Twenty hours of post-UVB irradiation, mouse skin was used for edema measurements, H & E staining, myeloperoxidase (MPO) activity, and estimation of plasma cytokines. In addition, expression levels of inflammatory cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were also determined by Western blot analysis. RESULTS Nexrutine displayed absorbance over the UVB spectrum. NX significantly decreased the UVB-induced epidermal edema, skin thickness, leukocyte infiltration, number of the sunburn, and TUNEL-positive cells. NX treatment also decreased the number of mast cells, MPO activity, expression of pro-inflammatory cytokines, and inflammation mediator protein in mouse skin. CONCLUSION These results provide evidences that NX inhibits the UVB-induced cutaneous inflammatory responses in SKH-1 mouse skin.
Collapse
Affiliation(s)
- Shamshad Alam
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Anu Pal
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Dhirendra Singh
- Animal House Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Kausar Mahmood Ansari
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
62
|
Aleksandrov AP, Mirkov I, Zolotarevski L, Ninkov M, Mileusnic D, Kataranovski D, Kataranovski M. Oral warfarin intake affects skin inflammatory cytokine responses in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:93-98. [PMID: 28704755 DOI: 10.1016/j.etap.2017.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Warfarin is an anticoagulant used in prevention/prophylaxis of thromboembolism. Besides the effects on coagulation, non-hemorrhagic reactions have also been documented. Although cutaneous reactions were reported in some patients, the impact on skin immunity was not explored. In the present paper, the effect of 30-day oral warfarin intake on skin cytokine responses in rats was analyzed. Increased release of inflammatory cytokines (TNF, IL-1β and IL-10) was noted by skin explants from rats which received warfarin, but without effect on IL-6. No impact on epidermal cell cytokine secretion was seen, except a tendency of an increase of IL-6 response to stimulation with microbial product lipopolysaccharide (LPS). Topical application of contact allergen dinitrochlorobenzene (DNCB) resulted in slight (numerical solely) increase of TNF release by skin explants of warfarin-treated animals, while epidermal cells responded by increased secretion of all four cytokines examined. The data presented provide new information on the potential of oral warfarin to modulate skin innate immune activity.
Collapse
Affiliation(s)
- Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | | | - Marina Ninkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Dina Mileusnic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Dragan Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia; Institute of Zoology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia; Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
63
|
Mugade M, Patole M, Pokharkar V. Bioengineered mannan sulphate capped silver nanoparticles for accelerated and targeted wound healing: Physicochemical and biological investigations. Biomed Pharmacother 2017; 91:95-110. [DOI: 10.1016/j.biopha.2017.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022] Open
|
64
|
Freitas-Rodríguez S, Folgueras AR, López-Otín C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2015-2025. [PMID: 28499917 DOI: 10.1016/j.bbamcr.2017.05.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/28/2022]
Abstract
Proteases are a set of enzymes that have been involved in multiple biological processes throughout evolution. Among them, extracellular matrix (ECM) remodeling has emerged as one of the most relevant functions exerted by these proteins, being essential in the regulation of critical events such as embryonic development or tissue homeostasis. Hence, it is not surprising that dysregulation in any protease function that affects ECM homeostasis may contribute to the aging process. Matrix metalloproteinases (MMPs) are one of the most important families of proteases involved in the tight control of ECM remodeling over time. In this review, we will discuss how MMPs and other proteases alter ECM composition and mechanical properties in aging, thereby affecting stem cell niches and the development of senescent phenotypes. Finally, we will summarize recent findings that associate MMPs with the development of age-related diseases, such as neurodegenerative disorders.
Collapse
Affiliation(s)
- Sandra Freitas-Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alicia R Folgueras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer, Spain.
| |
Collapse
|
65
|
Park HC, Jung TK, Kim MJ, Yoon KS. Protective effect of Cornus walteri Wangerin leaf against UVB irradiation induced photoaging in human reconstituted skin. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:445-449. [PMID: 27609754 DOI: 10.1016/j.jep.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/30/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus walteri Wangerin has been used in oriental traditional medicine for the treatment of antidiarrheal and inflammation. AIM OF THE STUDY The efficacy of Cornus walteri Wangerin on skin anti-photoaging was investigated. MATERIALS AND METHODS Hydrolyzed Cornus walteri Wangerin leaf was tested for the anti-photoaging effects against ultraviolet B (UVB)-induced matrix metalloproteinase (MMP)-1, pro-inflammatory cytokines using human reconstituted skin (KeraSkin™-FT) and also tested for elastase activity in vitro. The MMP-1 and pro-inflammatory cytokine levels of the extract were evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS The extract of hydrolyzed Cornus walteri Wangerin leaf (CWE) had the elastase inhibitory activity (IC50: 0.457mg/mL). CWE inhibited MMP-1 expression up to 61% in comparison with the control group which was not treated using CWE, but exposed to UVB. CWE also showed an inhibitory effect on releasing pro-inflammatory cytokines (IL-6 and IL-8) in KeraSkin™-FT (30% and 57% inhibition at dose of 50μg/mL, respectively). CONCLUSION CWE is a promising anti-photoaging agent for the treatment of UVB-induced skin.
Collapse
Affiliation(s)
- Hyun-Chul Park
- R&D Center, Saimdang Cosmetics Co., Ltd., 143, Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, South Korea.
| | - Taek Kyu Jung
- R&D Center, Saimdang Cosmetics Co., Ltd., 143, Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, South Korea.
| | - Mi Jin Kim
- R&D Center, Saimdang Cosmetics Co., Ltd., 143, Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, South Korea.
| | - Kyung-Sup Yoon
- R&D Center, Saimdang Cosmetics Co., Ltd., 143, Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, South Korea.
| |
Collapse
|
66
|
Pérez-Sánchez A, Barrajón-Catalán E, Herranz-López M, Castillo J, Micol V. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model. J Dermatol Sci 2016; 84:169-177. [PMID: 27528586 DOI: 10.1016/j.jdermsci.2016.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Solar ultraviolet (UV) radiation is one of the main causes of a variety of cutaneous disorders, including photoaging and skin cancer. Its UVB component (280-315nm) leads to oxidative stress and causes inflammation, DNA damage, p53 induction and lipid and protein oxidation. Recently, an increase in the use of plant polyphenols with antioxidant and anti-inflammatory properties has emerged to protect human skin against the deleterious effects of sunlight. OBJECTIVE This study evaluates the protective effects of lemon balm extract (LBE) (Melissa Officinalis, L) and its main phenolic compound rosmarinic acid (RA) against UVB-induced damage in human keratinocytes. METHODS The LBE composition was determined by HPLC analysis coupled to photodiode array detector and ion trap mass spectrometry with electrospray ionization (HPLC-DAD-ESI-IT-MS/MS). Cell survival, ROS generation and DNA damage were determined upon UVB irradiation in the presence of LBE. The melanogenic capacity of LBE was also determined. RESULTS RA and salvianolic acid derivatives were the major compounds, but caffeic acid and luteolin glucuronide were also found in LBE. LBE and RA significantly increased the survival of human keratinocytes upon UVB radiation, but LBE showed a stronger effect. LBE significantly decreased UVB-induced intracellular ROS production. Moreover, LBE reduced UV-induced DNA damage and the DNA damage response (DDR), which were measured as DNA strand breaks in the comet assay and histone H2AX activation, respectively. Finally, LBE promoted melanogenesis in the cell model. CONCLUSIONS These results suggest that LBE may be considered as a candidate for the development of oral/topical photoprotective ingredients against UVB-induced skin damage.
Collapse
Affiliation(s)
- Almudena Pérez-Sánchez
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain; INVITROTECNIA S.L., Santiago Grisolía 2, 28760 Tres Cantos, Madrid, Spain
| | - María Herranz-López
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain
| | - Julián Castillo
- Nutrafur S.A., Camino Viejo de Pliego, km.2, 30820 Alcantarilla, Murcia, Spain; Department of Food Technology and Nutrition, Universidad Católica San Antonio, Murcia, Spain
| | - Vicente Micol
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avenida de la Universidad s/n, E-03202 Elche, Alicante, Spain; CIBER (CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III), Spain.
| |
Collapse
|
67
|
Yao R, Tanaka M, Misawa E, Saito M, Nabeshima K, Yamauchi K, Abe F, Yamamoto Y, Furukawa F. Daily Ingestion ofAloe VeraGel Powder Containing Aloe Sterols Prevents Skin Photoaging in OVX Hairless Mice. J Food Sci 2016; 81:H2849-H2857. [DOI: 10.1111/1750-3841.13527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/07/2016] [Accepted: 09/10/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Ruiqing Yao
- Functional Food Research Dept, Food Science & Technology Inst; Morinaga Milk Industry Co., Ltd; Higashihara 5-1-83 Zama Kanagawa 252-8583 Japan
| | - Miyuki Tanaka
- Functional Food Research Dept, Food Science & Technology Inst; Morinaga Milk Industry Co., Ltd; Higashihara 5-1-83 Zama Kanagawa 252-8583 Japan
| | - Eriko Misawa
- Functional Food Research Dept, Food Science & Technology Inst; Morinaga Milk Industry Co., Ltd; Higashihara 5-1-83 Zama Kanagawa 252-8583 Japan
| | - Marie Saito
- Functional Food Research Dept, Food Science & Technology Inst; Morinaga Milk Industry Co., Ltd; Higashihara 5-1-83 Zama Kanagawa 252-8583 Japan
| | - Kazumi Nabeshima
- Functional Food Research Dept, Food Science & Technology Inst; Morinaga Milk Industry Co., Ltd; Higashihara 5-1-83 Zama Kanagawa 252-8583 Japan
| | - Koji Yamauchi
- Functional Food Research Dept, Food Science & Technology Inst; Morinaga Milk Industry Co., Ltd; Higashihara 5-1-83 Zama Kanagawa 252-8583 Japan
| | - Fumiaki Abe
- Functional Food Research Dept, Food Science & Technology Inst; Morinaga Milk Industry Co., Ltd; Higashihara 5-1-83 Zama Kanagawa 252-8583 Japan
| | - Yuki Yamamoto
- Dept. of Dermatology; Wakayama Medical Univ; 811-1, Kimiidera Wakayama 641-0012 Japan
| | - Fukumi Furukawa
- Dept. of Dermatology; Wakayama Medical Univ; 811-1, Kimiidera Wakayama 641-0012 Japan
| |
Collapse
|
68
|
Gyöngyösi N, Lőrincz K, Keszeg A, Haluszka D, Bánvölgyi A, Tátrai E, Kárpáti S, Wikonkál NM. Photosensitivity of murine skin greatly depends on the genetic background: clinically relevant dose as a new measure to replace minimal erythema dose in mouse studies. Exp Dermatol 2016; 25:519-25. [DOI: 10.1111/exd.12984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nóra Gyöngyösi
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - Kende Lőrincz
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - András Keszeg
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - Dóra Haluszka
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - András Bánvölgyi
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - Erika Tátrai
- Department of Ophthalmology; Semmelweis University School of Medicine; Budapest Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| | - Norbert M. Wikonkál
- Department of Dermatology, Dermatooncology and Venerology; Semmelweis University School of Medicine; Budapest Hungary
| |
Collapse
|
69
|
Kim EJ, Kim YK, Kim MK, Kim S, Kim JY, Lee DH, Chung JH. UV-induced inhibition of adipokine production in subcutaneous fat aggravates dermal matrix degradation in human skin. Sci Rep 2016; 6:25616. [PMID: 27161953 PMCID: PMC4861907 DOI: 10.1038/srep25616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/20/2016] [Indexed: 12/18/2022] Open
Abstract
Ultraviolet (UV) exposure to the human skin reduces triglycerides contents and lipid synthesis in the subcutaneous (SC) fat. Because adiponectin and leptin are the most abundant adipokines from the SC fat, we aim to investigate how they interact with UV exposure and skin aging. The expressions of adiponectin and leptin were significantly decreased in SC fat of sun-exposed forearm skin, in comparison with that of sun-protected buttock skin of the same elderly individuals, indicating that chronic UV exposure decreases both adipokines. Acute UV irradiation also decreased the expressions of adiponectin and leptin in SC fat. The expressions of adiponectin receptor 1/2 and leptin receptor were significantly decreased in the dermis as well as in SC fat. Moreover, while exogenous adiponectin and leptin administration prevented UV- and TNF-α induced matrix metalloproteinase (MMP)-1 expression, they also increased UV- and TNF-α induced reduction of type 1 procollagen production. Silencing of adiponectin, leptin or their receptors led to an increased MMP-1 and a decreased type 1 procollagen expression, which was reversed by treatment with recombinant human adiponectin or leptin. In conclusion, UV exposure decreases the expression of adiponectin and leptin, leading to the exacerbation of photoaging by stimulating MMP-1 expression and inhibiting procollagen synthesis.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Yeon Kyung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Min-Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Sungsoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Jin Yong Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea.,Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
70
|
Kandhare AD, Alam J, Patil MVK, Sinha A, Bodhankar SL. Wound healing potential of naringin ointment formulation via regulating the expression of inflammatory, apoptotic and growth mediators in experimental rats. PHARMACEUTICAL BIOLOGY 2016; 54:419-32. [PMID: 25894211 DOI: 10.3109/13880209.2015.1038755] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Wound healing is a consequence of a complex process involving inflammatory, proliferative, and remodeling phases. Naringin, a flavanone glycoside, is associated with modulation of various oxido-inflammatory and growth factors. AIM The aim of this study is to evaluate the wound-healing activity of naringin ointment formulation (NOF) on experimental wound models. MATERIALS AND METHODS A soft paraffin-based cream containing 1, 2, and 4% (w/w) naringin was formulated and evaluated for physicochemical characters. Excision wounds and incisions wounds were used to study the topical effect of NOF for 20 d (once a day) on various biochemical, molecular, and histological parameters. RESULTS NOF (2 and 4%, w/w) treatment showed a significant decrease (p < 0.05) in wound area and epithelization period whereas the rate of wound contraction increased significantly (p < 0.05). The altered levels of oxido-nitrosative stress (SOD, GSH, MDA, MPO, and NO) were significantly (p < 0.05) restored by NOF. Treatment produced a significant increase (p < 0.05) in tensile strength, hydroxyproline content, and protein content. TNF-α, IL-1β, IL-6, IL-8, NF-κB, smad-7, and Bax mRNA expression were significantly down-regulated (p < 0.05) by NOF, whereas polymerase gamma (pol-γ), smad-3, VEGF and TGF-β, and collagen-1 mRNA expressions were significantly up-regulated (p < 0.05) by NOF. Histological alterations in wound skin were also restored by NOF. CONCLUSION NOF exerts wound healing potential via down-regulated expression of inflammatory (NF-κB, TNF-α, and ILs), apoptotic (pol-γ and Bax), and up-regulated growth factor (VEGF and TGF-β) expression, thus modulating collagen-1 expression to induce angiogenesis leading to wound healing.
Collapse
Affiliation(s)
- Amit D Kandhare
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Javed Alam
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Mithun V K Patil
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Akanksha Sinha
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| | - Subhash L Bodhankar
- a Department of Pharmacology , Poona College of Pharmacy, Bharati Vidyapeeth Deemed University , Pune , Maharashtra , India
| |
Collapse
|
71
|
Singh A, Singh A, Bauer SJ, Wheeler DL, Havighurst TC, Kim K, Verma AK. Genetic deletion of TNFα inhibits ultraviolet radiation-induced development of cutaneous squamous cell carcinomas in PKCε transgenic mice via inhibition of cell survival signals. Carcinogenesis 2015; 37:72-80. [PMID: 26586792 DOI: 10.1093/carcin/bgv162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/14/2015] [Indexed: 11/14/2022] Open
Abstract
Protein kinase C epsilon (PKCε), a Ca(2+)-independent phospholipid-dependent serine/threonine kinase, is among the six PKC isoforms (α, δ, ε, η, μ, ζ) expressed in both mouse and human skin. Epidermal PKCε level dictates the susceptibility of PKCε transgenic (TG) mice to the development of cutaneous squamous cell carcinomas (SCC) elicited either by repeated exposure to ultraviolet radiation (UVR) or by using the DMBA initiation-TPA (12-O-tetradecanoylphorbol-13-acetate) tumor promotion protocol (Wheeler,D.L. et al. (2004) Protein kinase C epsilon is an endogenous photosensitizer that enhances ultraviolet radiation-induced cutaneous damage and development of squamous cell carcinomas. Cancer Res., 64, 7756-7765). Histologically, SCC in TG mice, like human SCC, is poorly differentiated and metastatic. Our earlier studies to elucidate mechanisms of PKCε-mediated development of SCC, using either DMBA-TPA or UVR, indicated elevated release of cytokine TNFα. To determine whether TNFα is essential for the development of SCC in TG mice, we generated PKCε transgenic mice/TNFα-knockout (TG/TNFαKO) by crossbreeding TNFαKO with TG mice. We now present that deletion of TNFα in TG mice inhibited the development of SCC either by repeated UVR exposures or by the DMBA-TPA protocol. TG mice deficient in TNFα elicited both increase in SCC latency and decrease in SCC incidence. Inhibition of UVR-induced SCC development in TG/TNFαKO was accompanied by inhibition of (i) the expression levels of TNFα receptors TNFRI and TNFRII and cell proliferation marker ornithine decarboxylase and metastatic markers MMP7 and MMP9, (ii) the activation of transcription factors Stat3 and NF-kB and (iii) proliferation of hair follicle stem cells and epidermal hyperplasia. The results presented here provide the first genetic evidence that TNFα is linked to PKCε-mediated sensitivity to DMBA-TPA or UVR-induced development of cutaneous SCC.
Collapse
Affiliation(s)
| | | | | | | | - Thomas C Havighurst
- Department of Biostatistics and Medical Informatics, Paul P. Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, Paul P. Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|
72
|
TNF-α -308 G/A as a risk marker of cervical cancer progression in the Polish population. Mol Diagn Ther 2015; 19:53-7. [PMID: 25614219 DOI: 10.1007/s40291-015-0130-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE There are inconclusive data on the tumor necrosis factor-α (TNF-α) -308 G/A (rs1800629) polymorphism as a risk factor for cervical carcinogenesis. METHODS Using high-resolution melting curve analysis, we investigated the prevalence of the TNF-α -308 G/A transition (rs1800629) in patients with cervical cancer (n = 362) and control subjects (n = 399). RESULTS The p trend value calculated for the TNF-α -308 G/A transition was statistically significant (p trend = 0.026) for all patients. Logistic regression analysis with adjustment for age demonstrated that the A/A versus G/G genotype was significantly associated with cervical tumors. The adjusted odds ratio (OR) was 1.599 (95 % confidence interval [CI] 1.017-2.513; p = 0.042). Stratification of patients on the basis of the tumor stage revealed no contribution of the TNF-α -308 G/A transition to cervical cancer in stages I and II. However, we found a significant trend for the p value, as well as the contribution of TNF-α -308 G/A to cervical cancer, in stages III and IV. The p trend value was 0.003 in this group of patients. Moreover, logistic regression analysis with adjustment for age demonstrated that the adjusted OR for A/A versus G/G was 2.014 (95 % CI 1.122-3.613; p = 0.019) and the adjusted OR for A/A or A/G versus G/G was 1.583 (95 % CI 1.025-2.444; p = 0.038) for cervical cancer in stages III and IV. CONCLUSION Our results indicate that the TNF-α -308 G/A transition is a risk factor for cervical cancer, particularly in stages III and IV.
Collapse
|
73
|
Robinson E, Werth V. The role of cytokines in the pathogenesis of cutaneous lupus erythematosus. Cytokine 2015; 73:326-34. [DOI: 10.1016/j.cyto.2015.01.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
|
74
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the development of autoantibodies and immunologic attack of different organ systems, including the skin. This review aims to provide an overview of some of the pathogenic processes that may be important in the development of SLE, specifically cutaneous lupus erythematosus, and then illustrates how therapies might be tailored to modify these processes and treat disease.
Collapse
Affiliation(s)
- Mark G Kirchhof
- Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8, Canada
| | - Jan P Dutz
- Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8, Canada; Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
75
|
Abstract
The rise in solar ultraviolet radiation on the earth's surface has led to a depletion of stratospheric ozone over recent decades, thus accelerating the need to protect human skin against the harmful effects of UV radiation such as erythema, edema, hyperpigmentation, photoaging, and skin cancer. There are many different ways to protect skin against UV radiation's harmful effects. The most popular way to reduce the amount of UV radiation penetrating the skin is topical application of sunscreen products that contain UV absorbing or reflecting active molecules. Based on their protection mechanism, the active molecules in sunscreens are broadly divided into inorganic and organic agents. Inorganic sunscreens reflect and scatter UV and visible radiation, while organic sunscreens absorb UV radiation and then re-emit energy as heat or light. These synthetic molecules have limited concentration according to regulation concern. Several natural compounds with UV absorption property have been used to substitute for or to reduce the quantity of synthetic sunscreen agents. In addition to UV absorption property, most natural compounds were found to act as antioxidants, anti-inflammatory, and immunomodulatory agents, which provide further protection against the damaging effects of UV radiation exposure. Compounds derived from natural sources have gained considerable attention for use in sunscreen products and have bolstered the market trend toward natural cosmetics. This adds to the importance of there being a wide selection of active molecules in sunscreen formulations. This paper summarizes a number of natural products derived from propolis, plants, algae, and lichens that have shown potential photoprotection properties against UV radiation exposure-induced skin damage.
Collapse
Affiliation(s)
- Nisakorn Saewan
- School of Cosmetic Science, Mae Fah Luang University, Muang, Chiangrai, Thailand
| | | |
Collapse
|
76
|
Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur J Cell Biol 2014; 94:12-21. [PMID: 25457675 PMCID: PMC4300401 DOI: 10.1016/j.ejcb.2014.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/09/2014] [Accepted: 10/09/2014] [Indexed: 12/02/2022] Open
Abstract
Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10 ng/ml) in the absence or presence of the nonselective MMP inhibitor GM6001 for 8 days. The basal culture conditions promoted type I collagen catabolism that was accelerated by TNF-α (p < 0.005) and accomplished by MMPs (p < 0.005). Levels of the collagenases MMP-8 and MMP-13 were insignificant and neither MMP-2 nor MMP-14 were associated with increased collagen degradation. TNF-α increased secretion of MMP-1 (p < 0.01) but had no impact on MMP-1 quantities in the tissue. Immunohistochemical analysis confirmed similar tissue MMP-1 expression with or without TNF-α with epidermis being the major source of MMP-1. Increased tissue-derived collagenolytic activity with TNF-α exposure was blocked by neutralizing MMP-1 monoclonal antibody and was not due to down-regulation of tissue inhibitor of metalloproteinase-1. TNF-α increased production (p < 0.01), tissue levels (p < 0.005) and catalytic activity of the endogenous MMP-1 activator MMP-3. Type I collagen degradation correlated with MMP-3 tissue levels (rs = 0.68, p < 0.05) and was attenuated with selective MMP-3 inhibitor. Type I collagen formation was down-regulated in cultured compared with native skin explants but was not reduced further by TNF-α. TNF-α had no significant effect on epidermal apoptosis. Our data indicate that TNF-α augments collagenolytic activity of MMP-1, possibly through up-regulation of MMP-3 leading to gradual loss of type I collagen in human skin.
Collapse
|
77
|
Popov Aleksandrov A, Tusup M, Mirkov I, Djokic J, Ninkov M, Zolotarevski L, Kataranovski D, Kataranovski M. Proinflammatory cytokine responses in skin and epidermal cells following epicutaneous administration of anticoagulant rodenticide warfarin in rats. Cutan Ocul Toxicol 2014; 34:149-55. [DOI: 10.3109/15569527.2014.928307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
78
|
Kandhare AD, Ghosh P, Bodhankar SL. Naringin, a flavanone glycoside, promotes angiogenesis and inhibits endothelial apoptosis through modulation of inflammatory and growth factor expression in diabetic foot ulcer in rats. Chem Biol Interact 2014; 219:101-12. [DOI: 10.1016/j.cbi.2014.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/13/2014] [Accepted: 05/20/2014] [Indexed: 12/19/2022]
|
79
|
Zaleska M, Olszewski WL, Durlik M, Miller NE. Signaling proteins are represented in tissue fluid/lymph from soft tissues of normal human legs at concentrations different from serum. Lymphat Res Biol 2014; 11:203-10. [PMID: 24364843 DOI: 10.1089/lrb.2013.0014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The mobile intercellular fluid flowing to and in the lymphatics contains filtered plasma products and substances synthesized and excreted by tissue cells. Among them are signaling proteins such as cytokines, chemokines, enzymes, and growth factors. They act locally in autocrine and paracrine systems regulating cell metabolism, proliferation, and formation of the ground matrix. They play an immunoregulatory role in infections, wound healing, and tumor cell growth. METHODS AND RESULTS In this study we measured the concentration of selected cytokines, chemokines, tissue enzymes, and growth factors in tissue fluid/lymph drained from normal human leg soft tissues. Legs exposed to infections and trauma often result in development of lymphedema. Lymph was drained from superficial calf lymphatics using microsurgical techniques. Our studies showed generally higher concentrations of cytokines, chemokines, enzymes, and growth factors in lymph than in serum. The total protein L/S ratio was 0.22, whereas that of various lymph signaling proteins ranged between 1 and 10. CONCLUSIONS This indicates that in addition to proteins filtered from blood, local cells contribute to lymph concentration by own production, depending on the actual cell requirement. Moreover, there were major individual differences of lymph levels with simultaneous stable serum levels. This suggests existence of a local autonomous regulatory humoral mechanism in tissues, not reflected in serum.
Collapse
Affiliation(s)
- Marzanna Zaleska
- 1 Department of Surgical Research, Transplantation and Epigenetics, Medical Research Center , Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
80
|
Miyata M, Ichihara M, Tajima O, Sobue S, Kambe M, Sugiura K, Furukawa K, Furukawa K. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6. Biochem Biophys Res Commun 2014; 445:504-10. [PMID: 24548412 DOI: 10.1016/j.bbrc.2014.02.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/07/2014] [Indexed: 11/28/2022]
Abstract
Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.
Collapse
Affiliation(s)
- Maiko Miyata
- Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501, Japan; Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Masatoshi Ichihara
- Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501, Japan
| | - Orie Tajima
- Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501, Japan
| | - Sayaka Sobue
- Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501, Japan
| | - Mariko Kambe
- Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan.
| | - Keiko Furukawa
- Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501, Japan; Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan
| |
Collapse
|
81
|
Protective effect of Vaccinium myrtillus extract against UVA- and UVB-induced damage in a human keratinocyte cell line (HaCaT cells). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 132:27-35. [PMID: 24577051 DOI: 10.1016/j.jphotobiol.2014.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/25/2022]
Abstract
Recently, the field of skin protection have shown a considerable interest in the use of botanicals. Vaccinium myrtillus contains several polyphenols and anthocyanins with multiple pharmacological properties. The purpose of our study was to examine whether a water-soluble V. myrtillus extract (dry matter 12.4%; total polyphenols 339.3mg/100 g fw; total anthocyanins 297.4 mg/100 g fw) was able to reduce UVA- and UVB-induced damage using a human keratinocyte cell line (HaCaT). HaCaT cells were pretreated for 1h with extract in a serum-free medium and then irradiated with UVA (8-40 J/cm(2)) and UVB (0.008-0.72 J/cm(2)) rays. All experiments were performed 24h after the end of irradiation, except for oxidative stress tests. The extract was able to reduce the UVB-induced cytotoxicity and genotoxicity (studied by comet and micronucleous assays) at lower doses. V. myrtillus extract reduced lipid peroxidation UVB-induced, but had no effect against the ROS UVB-produced. With UVA-induced damage V. myrtillus reduced genotoxicity as well as the unbalance of redox intracellular status. Moreover our extract reduced the UVA-induced apoptosis, but had no effect against the UVB one. V. myrtillus extract showed its free radical scavenging properties reducing oxidative stress and apoptotic markers, especially in UVA-irradiated cells.
Collapse
|
82
|
Moura LI, Dias AM, Leal EC, Carvalho L, de Sousa HC, Carvalho E. Chitosan-based dressings loaded with neurotensin--an efficient strategy to improve early diabetic wound healing. Acta Biomater 2014; 10:843-57. [PMID: 24121197 DOI: 10.1016/j.actbio.2013.09.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our results show that MPC has the best fluid handling capacity and delivery profile, also being non-toxic to Raw 264.7 and HaCaT cells. NT-loaded and non-loaded MPC dressings were applied to control/diabetic wounds to evaluate their in vitro/in vivo performance. The results show that the former induced more rapid healing (50% wound area reduction) in the early phases of wound healing in diabetic mice. A NT-loaded MPC foam also reduced expression of the inflammatory cytokine TNF-α (P<0.001) and decreased the amount of inflammatory infiltrate on day 3. On day 10 MMP-9 was reduced in diabetic skin (P<0.001), significantly increasing fibroblast migration and collagen (COL1A1, COL1A2 and COL3A1) expression and deposition. These results suggest that MPC-based dressings may work as an effective support for sustained NT release to reduce DFUs.
Collapse
|
83
|
Kim MJ, Johnson WA. ROS-mediated activation of Drosophila larval nociceptor neurons by UVC irradiation. BMC Neurosci 2014; 15:14. [PMID: 24433322 PMCID: PMC3898224 DOI: 10.1186/1471-2202-15-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/09/2014] [Indexed: 11/24/2022] Open
Abstract
Background The complex Drosophila larval peripheral nervous system, capable of monitoring sensory input from the external environment, includes a family of multiple dendritic (md) neurons with extensive dendritic arbors tiling the inner surface of the larval body wall. The class IV multiple dendritic (mdIV) neurons are the most complex with dendritic nerve endings forming direct intimate contacts with epithelial cells of the larval body wall. Functioning as polymodal mechanonociceptors with the ability to respond to both noxious mechanical stimulation and noxious heat, the mdIV neurons are also activated by nanomolar levels of the endogenous reactive oxygen species (ROS), H2O2. Although often associated with tissue damage related to oxidative stress, endogenous ROS have also been shown to function as signaling molecules at lower concentrations. The overall role of ROS in sensory signaling is poorly understood but the acutely sensitive response of mdIV neurons to ROS-mediated activation is consistent with a routine role in the regulation of mdIV neuronal activity. Larvae respond to short wavelength ultraviolet (UVC) light with an immediate and visual system-independent writhing and twisting of the body previously described as a nociceptive response. Molecular and cellular mechanisms mediating this response and potential relationships with ROS generation are not well understood. We have used the UVC-induced writhing response as a model for investigation of the proposed link between endogenous ROS production and mdIV neuron function in the larval body wall. Results Transgenic inactivation of mdIV neurons caused a strong suppression of UVC-induced writhing behavior consistent with a key role for the mdIV neurons as mediators of the behavioral response. Direct imaging of ROS-activated fluorescence showed that UVC irradiation caused a significant increase in endogenous ROS levels in the larval body wall and transgenic overexpression of antioxidant enzymes strongly suppressed the UVC-induced writhing response. Direct electrophysiological recordings demonstrated that UVC irradiation also increased neuronal activity of the mdIV neurons. Conclusions Results obtained using UVC irradiation to induce ROS generation provide evidence that UVC-induced writhing behavior is mediated by endogenous production of ROS capable of activating mdIV mechanonociceptors in the larval body wall.
Collapse
Affiliation(s)
| | - Wayne A Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Roy J, and Lucille A, Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
84
|
Hasegawa T, Shimada S, Ishida H, Nakashima M. Chafuroside B, an Oolong tea polyphenol, ameliorates UVB-induced DNA damage and generation of photo-immunosuppression related mediators in human keratinocytes. PLoS One 2013; 8:e77308. [PMID: 24116222 PMCID: PMC3792907 DOI: 10.1371/journal.pone.0077308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 12/16/2022] Open
Abstract
Chafuroside B was recently isolated as a new polyphenolic constituent of oolong tea leaves. However, the effects of chafuroside B on skin function have not been examined. In this study, we investigated the protective effects of chafuroside B against UVB-induced DNA damage, apoptosis and generation of photo-immunosuppression related mediators in cultured normal human epidermal keratinocytes (NHEK). Chafuroside B at 1 µM attenuated both UVB-induced apoptosis, evaluated in terms of caspase-3/7 activity, and UVB-induced DNA damage, evaluated in terms of formation of cyclobutane pyrimidine dimers (CPD), in NHEK exposed to UVB (20 mJ/cm2). In addition, chafuroside B at 0.3 or 1 µM suppressed the UVB-induced production of interleukin (IL)-10, tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2), as determined by ELISA, and conversely enhanced IL-12 mRNA expression and production, as measured by RT-PCR and ELISA. Further, chafuroside B at 1 µM also suppressed UVB-induced expression of receptor activator of nuclear factor κB ligand (RANKL) mRNA. These results indicate that chafuroside B promotes repair of UVB-induced DNA damage and ameliorates the generation of IL-10, TNF-α, PGE2, and RANKL, all of which are UVB-induced immunosuppression related mediators. These effects of chafuroside B may be mediated at least in part through induction of IL-12 synthesis in human keratinocytes. Because chafuroside B might have practical value as a photoprotective agent, a further study of the in vivo effects of chafuroside B seems warranted.
Collapse
Affiliation(s)
- Tatsuya Hasegawa
- Functional Food Research and Development Center, Shiseido Research Center, Yokohama, Kanagawa, Japan
- * E-mail:
| | - Shoichiro Shimada
- Functional Food Research and Development Center, Shiseido Research Center, Yokohama, Kanagawa, Japan
| | - Hitoshi Ishida
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Masaya Nakashima
- Functional Food Research and Development Center, Shiseido Research Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
85
|
Camara-Lemarroy CR, Salas-Alanis JC. The role of tumor necrosis factor-α in the pathogenesis of vitiligo. Am J Clin Dermatol 2013; 14:343-50. [PMID: 23912226 DOI: 10.1007/s40257-013-0039-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vitiligo is an acquired immune disorder of the skin characterized by the presence of white depigmented macules. Its immunopathogenesis is not completely understood, but inflammatory alterations in the skin microenvironment, and particularly increased expression of the cytokine tumor necrosis factor-α (TNFα), are thought to be essential regulators of melanocyte dysfunction and death. In this article we review the evidence that implicates TNFα in the pathogenesis of vitiligo, including studies on serum and tissue levels of TNFα, TNFα gene polymorphisms, in vitro studies, and therapeutic trials using TNFα inhibitors. TNFα emerges as a complex mediator with apparently conflicting roles in vitiligo.
Collapse
Affiliation(s)
- Carlos R Camara-Lemarroy
- Departamento de Medicina Interna, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Madero y Gonzalitos S/N, Monterrey, NL, 64700, Mexico,
| | | |
Collapse
|
86
|
A comparative study of UV-induced cell signalling pathways in human keratinocyte-derived cell lines. Arch Dermatol Res 2013; 305:817-33. [PMID: 24071771 DOI: 10.1007/s00403-013-1412-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 01/01/2023]
Abstract
Ultraviolet (UV) radiation can activate the p38 mitogen-activated protein kinase (MAPK), Jun N-terminal kinase (JNK) and nuclear factor-κB (NFκB) pathways in skin cells. HaCaT cells are widely used as a primary keratinocyte substitute to study these pathways. However, like most squamous cell carcinomas (SCCs), it contains a dysfunctional p53. It is unclear if HaCaT cells activate these signalling pathways similarly to SCC cells (Colo16) or to primary human epidermal keratinocytes (HEK). In this study, the UV activation (UVA, UVB, UVA+B, UVB+A) of p38 MAPK, JNK and NFκB pathways, and TNFα secretion by HEK, HaCaT and Colo16 cells were investigated. The signalling pathway activation was UV-type and dose-dependent with UVB+A radiation inducing a high p38 and JNK activation. HaCaT cells exhibited 2- to 4-fold higher activity of the p38 (771% at 60 min) and JNK (794% at 30 min) pathways following UVB+A radiation than did HEK cells (p38: 367% at 15 min and JNK: 184% at 30 min). While both HaCaT and Colo16 cells did not activate the NFκB pathway, Colo16 cells had a lower p38 and higher JNK activity than HaCaT cells. Irradiated HaCaT cells produced less TNFα (UVB: 3.5 pg/ml), while HEK cells produced the most (UVB: 1,296 pg/ml). When co-exposed to IL1α, irradiated HaCaT had the greatest fold of TNFα release (UVB: 16.2-fold, UVA+B: 8.9-fold and UVB+A: 6.1-fold). The pattern of activation and TNFα secretion of HaCaT cells mirrored that of Colo16 cells. It is likely that the presence of molecular alterations in HaCaT cells may be responsible for its different responses to that seen for HEK cells. The results of this study suggest caution in using HaCaT cells as a substitute for normal keratinocytes in investigating UV-induced cells signalling pathways.
Collapse
|
87
|
Chong SZ, Tan KW, Wong FHS, Chua YL, Tang Y, Ng LG, Angeli V, Kemeny DM. CD8 T cells regulate allergic contact dermatitis by modulating CCR2-dependent TNF/iNOS-expressing Ly6C+ CD11b+ monocytic cells. J Invest Dermatol 2013; 134:666-676. [PMID: 24061165 DOI: 10.1038/jid.2013.403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/25/2013] [Accepted: 09/08/2013] [Indexed: 12/23/2022]
Abstract
Monocytes and their derived cells have critical roles in inflammation and immune defense. However, their function in skin diseases such as allergic contact dermatitis remains poorly defined. Using a model of contact hypersensitivity (CHS) toward 2,4-dinitrochlorobenzene, we show that Ly6C+ CD11b+ monocytic cells participate in the pathophysiology of CHS and their accumulation is regulated by effector CD8 T cells. These Ly6C+ CD11b+ monocytic cells are the primary contributors of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) and derive from Ly6C(hi)CCR2+ monocytes, as they were absent in non-inflamed skin and accumulate as a consequence of inflammation in a C-C chemokine receptor type 2 (CCR2)-dependent manner. Importantly, CCR2(-/-) mice, or wild-type mice depleted of monocytes via clodronate liposomes, display a marked decrease in TNF-α and iNOS expression accompanied by attenuated skin inflammation. Using transgenic mice and antibody depletion, we show that effector CD8 T cells regulate the accumulation of Ly6C+ CD11b+ monocytic cells through IL-17 and activate them for TNF-α and iNOS through IFN-γ. CD8 T cell-derived IFN-γ was also critical for the accumulation of the major histocompatibility complex II-expressing Ly6C+ CD11b+ subset, which expressed intermediate levels of CD11c and costimulatory molecules. Taken together, our findings provide further insight into the pathophysiology of allergic contact dermatitis by showing that CD8 T cells regulate the inflammatory cascade through TNF/iNOS-expressing Ly6C+ CD11b+ monocytic cells.
Collapse
Affiliation(s)
- Shu Zhen Chong
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.
| | - Kar Wai Tan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Fiona H S Wong
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yen Leong Chua
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yafang Tang
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Veronique Angeli
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - David M Kemeny
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| |
Collapse
|
88
|
Zingler S, Erber R, Lux CJ, Seeberger R, Bister D, Ludwig B. Biocompatibility of gold and stainless steel chains used for forced eruption of impacted teeth – an in vitro investigation. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:159-68. [DOI: 10.1016/j.oooo.2013.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/06/2013] [Accepted: 02/19/2013] [Indexed: 02/01/2023]
|
89
|
Parlet CP, Schlueter AJ. Mechanisms by which chronic ethanol feeding impairs the migratory capacity of cutaneous dendritic cells. Alcohol Clin Exp Res 2013; 37:2098-107. [PMID: 23895590 DOI: 10.1111/acer.12201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 04/22/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Chronic alcoholism is associated with increased incidence and severity of skin infection. Cutaneous dendritic cells (CDCs) play a pivotal role in skin immunity, and chronic ethanol (EtOH) feeding in mice has been shown to inhibit CDC migration to skin-draining lymph nodes (dLNs) following epicutaneous sensitization. Because CDC subsets differentially initiate T-cell responses, it is important to determine how EtOH feeding affects migration of each subset and identify mechanisms responsible for observed defects. METHODS Mice received EtOH in the drinking water for ≥ 16 weeks. Baseline numbers of CDC subsets and their migration to the dLNs following fluorescein 5-isothiocyanate (FITC) sensitization were assessed by flow cytometry. Epidermal cell suspension and skin explant cultures were used to measure the impact of EtOH upon molecules that influence CDC migration. Cytokine arrays performed on explant culture supernatants assessed local production of inflammatory cytokines. RESULTS Chronic EtOH feeding reduced migration of all CDC subsets to the dLNs following FITC sensitization. Reduced migration of dermal-resident CDCs did not correspond with reduced baseline numbers of these cells. For Langerhans cells (LCs), EtOH-induced migratory dysfunction corresponded with delayed down-regulation of E-cadherin, chemokine receptor 1 (CCR1), and CCR6 and impaired up-regulation of matrix metalloproteinases (MMPs) 2 and 9. In skin explant assays, EtOH blunted CDC mobilization following stimulation with CCL21/CPG 1826. No alteration in CD54 or CCR7 expression was observed, but production of skin-derived tumor necrosis factor alpha (TNF-α) was reduced. Poor migratory responses in vitro could be improved by supplementing explant cultures from EtOH-fed mice with TNF-α. CONCLUSIONS Chronic EtOH consumption does not alter baseline dermal-resident CDC numbers. However, like LCs, migratory responsiveness of dermal CDCs was decreased following FITC sensitization. Inefficient down-regulation of both CCRs and adhesion molecules and the inability to up-regulate MMPs indicate that EtOH impedes LC acquisition of a promigratory phenotype. These defects, combined with improvement of the migratory defect with in vitro TNF-α replacement, demonstrate intrinsic as well as environmental contributions to defective CDC migration. These findings provide novel mechanisms to explain the observed increased incidence and severity of skin infections in chronic alcoholics.
Collapse
Affiliation(s)
- Corey P Parlet
- Department of Pathology and Interdisciplinary Graduate Program in Immunology , University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
90
|
Lou JS, Chen XE, Zhang Y, Gao ZW, Chen TP, Zhang GQ, Ji C. Photoprotective and immunoregulatory capacity of ginsenoside Rg1 in chronic ultraviolet B-irradiated BALB/c mouse skin. Exp Ther Med 2013; 6:1022-1028. [PMID: 24137309 PMCID: PMC3797320 DOI: 10.3892/etm.2013.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/15/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the photoprotective and immunoregulatory capacities of ginsenoside Rg1 in skin irradiated by chronic ultraviolet B (UVB) and to verify the potential mechanisms of action. BALB/c mice were pretreated with a topical application of ginsenoside Rg1 and irradiated with different doses of UVB daily for 30 consecutive days. Following chronic UVB irradiation, there were significant pathological changes in the skin of the BALB/c mice, including hyperkeratosis, acanthosis, sponge-like edematization and sunburn occurring in the epidermis, while edema, telangiectasis and inflammatory cell infiltration were observed in the papillary layer of the dermis. Treatment with ginsenoside Rg1 was able to reduce such changes induced by UVB irradiation. The number of p53 protein-positive stained cells following UVB irradiation was also observed by immunohistochemical analysis. Ginsenoside Rg1 downregulated the p53 protein expression induced by UVB irradiation, leading to reductions of 69.50, 23.53 and 12.93% at doses of 30, 60 and 120 mJ/cm2, respectively. Using reverse transcription polymerase chain reaction (RT-PCR), reductions in the levels of interferon (IFN)-γ mRNA expression were detected following UVB exposure; reductions of 19.6, 36.3 and 39.6% were observed following UVB irradiation at doses of 30, 60 and 120 mJ/cm2, respectively. The interleukin (IL)-10 mRNA expression levels increased by 40.1, 71.0 and 89.4% and the tumor necrosis factor (TNF)-α mRNA expression levels increased by 36.4, 18.4 and 8.6% following UVB irradiation at doses of 30, 60 and 120 mJ/cm2, respectively. However, pretreatment with ginsenoside Rg1 was observed to markedly attenuate the UVB irradiation-induced effects on the mRNA expression levels of the three cytokines. The topical application of ginsenoside Rg1 was able to protect the irradiated skin from UVB injury and reduce UVB-induced p53 protein expression. Ginsenoside Rg1 also demonstrated a potential regulatory effect on the UVB-induced local expression of the mRNA of the cytokines IFN-γ, IL-10 and TNF-α, which may be important in its immunoregulatory and inflammatory mechanisms.
Collapse
Affiliation(s)
- Jin-Shu Lou
- Department of Medical Oncology, The 86th Hospital of the Dangtu, Dangtu, Anhui 243100
| | | | | | | | | | | | | |
Collapse
|
91
|
Lee CW, Ko HH, Lin CC, Chai CY, Chen WT, Yen FL. Artocarpin attenuates ultraviolet B-induced skin damage in hairless mice by antioxidant and anti-inflammatory effect. Food Chem Toxicol 2013; 60:123-9. [PMID: 23871788 DOI: 10.1016/j.fct.2013.07.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/13/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022]
Abstract
Artocarpin, a prenylated flavonoid isolated from an agricultural plant Artocarpus communis, has been documented to possess anti-inflammation and anticancer activities. As oxidative stress and inflammation promote the development of ultraviolet B (UVB) irradiation-induced photodamage, the aim of the present study was to evaluate the photoprotective effect of artocarpin on UVB-induced skin damage in hairless mice. Artocarpin at a topical dose of 0.05% and 0.1% showed a significant photoprotective effect by decreasing histopathological changes, such as desquamation, epidermal thicken and sunburn cell formation, but 0.1% of artocarpin administration did not show better effect. Regarding the antioxidant activities, artocarpin exhibited a significant effect (P<0.05) by decreasing levels of reactive species oxygen and lipid peroxidation. In addition, artocarpin can significant decrease the level of tumor necrosis factor-α and interleukin-1β for downregulating the inflammation protein, including the synthesis of cytosolic phospholipase A2 and cyclooxygenase-2 (P<0.05). In conclusion, these data suggest that artocarpin can prevent skin damage from UVB irradiation-induced photodamage in hairless mice and this is likely mediated through its antioxidant and anti-inflammation mechanisms. Therefore, we suggested that artocarpin could be a useful photoprotective agent in medicine and/or cosmetics.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung Institute of Technology, Chia-Yi, Taiwan
| | | | | | | | | | | |
Collapse
|
92
|
Calzavara-Pinton P, Sala R, Arisi M, Rossi M, Venturini M, Ortel B. Synergism between narrowband ultraviolet B phototherapy and etanercept for the treatment of plaque-type psoriasis. Br J Dermatol 2013; 169:130-6. [DOI: 10.1111/bjd.12277] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - R. Sala
- Department of Dermatology; University of Brescia; Brescia Italy
| | - M. Arisi
- Department of Dermatology; University of Brescia; Brescia Italy
| | - M.T. Rossi
- Department of Dermatology; University of Brescia; Brescia Italy
| | - M. Venturini
- Department of Dermatology; University of Brescia; Brescia Italy
| | - B. Ortel
- Department of Dermatology; NorthShore University HealthSystem; Chicago IL U.S.A
| |
Collapse
|
93
|
IL-11, IL-1α, IL-6, and TNF-α are induced by solar radiation in vitro and may be involved in facial subcutaneous fat loss in vivo. J Dermatol Sci 2013; 71:58-66. [DOI: 10.1016/j.jdermsci.2013.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 02/19/2013] [Accepted: 03/13/2013] [Indexed: 12/22/2022]
|
94
|
Borg M, Brincat S, Camilleri G, Schembri-Wismayer P, Brincat M, Calleja-Agius J. The role of cytokines in skin aging. Climacteric 2013; 16:514-21. [PMID: 23659624 DOI: 10.3109/13697137.2013.802303] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cutaneous aging is one of the major noticeable menopausal complications that most women want to fight in their quest for an eternally youthful skin appearance. It may contribute to some maladies that occur in aging which, despite not being life-threatening, affect the well-being, psychological state and quality of life of aged women. Skin aging is mainly affected by three factors: chronological aging, decreased levels of estrogen after menopause, and environmental factors. Aged skin is characterized by a decrease in collagen content and skin thickness which result in dry, wrinkled skin that is easily bruised and takes a longer time to heal. Cytokines play a crucial role in the manifestation of these features of old skin. The pro-inflammatory cytokine tumor necrosis factor-alpha inhibits collagen synthesis and enhances collagen degradation by increasing the production of MMP-9. It also lowers the skin immunity and thus increases the risk of cutaneous infections in old age. Deranged levels of several interleukins and interferons also affect the aging process. The high level of CCN1 protein in aged skin gives dermal fibroblasts an 'age-associated secretory phenotype' that causes abnormal homeostasis of skin collagen and leads to the loss of the function and integrity of skin. Further research is required especially to establish the role of cytokines in the treatment of cutaneous aging.
Collapse
Affiliation(s)
- M Borg
- * Department of Anatomy, Faculty of Medicine and Surgery, University of Malta
| | | | | | | | | | | |
Collapse
|
95
|
Brochu C, Cabrita MA, Melanson BD, Hamill JD, Lau R, Pratt MAC, McKay BC. NF-κB-dependent role for cold-inducible RNA binding protein in regulating interleukin 1β. PLoS One 2013; 8:e57426. [PMID: 23437386 PMCID: PMC3578848 DOI: 10.1371/journal.pone.0057426] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/21/2013] [Indexed: 12/31/2022] Open
Abstract
The cold inducible RNA binding protein (CIRBP) responds to a wide array of cellular stresses, including short wavelength ultraviolet light (UVC), at the transcriptional and post-translational level. CIRBP can bind the 3'untranslated region of specific transcripts to stabilize them and facilitate their transport to ribosomes for translation. Here we used RNA interference and oligonucleotide microarrays to identify potential downstream targets of CIRBP induced in response to UVC. Twenty eight transcripts were statistically increased in response to UVC and these exhibited a typical UVC response. Only 5 of the 28 UVC-induced transcripts exhibited a CIRBP-dependent pattern of expression. Surprisingly, 3 of the 5 transcripts (IL1B, IL8 and TNFAIP6) encoded proteins important in inflammation with IL-1β apparently contributing to IL8 and TNFAIP6 expression in an autocrine fashion. UVC-induced IL1B expression could be inhibited by pharmacological inhibition of NFκB suggesting that CIRBP was affecting NF-κB signaling as opposed to IL1B mRNA stability directly. Bacterial lipopolysaccharide (LPS) was used as an activator of NF-κB to further study the potential link between CIRBP and NFκB. Transfection of siRNAs against CIRBP reduced the extent of the LPS-induced phosphorylation of IκBα, NF-κB DNA binding activity and IL-1β expression. The present work firmly establishes a novel link between CIRBP and NF-κB signaling in response to agents with diverse modes of action. These results have potential implications for disease states associated with inflammation.
Collapse
Affiliation(s)
- Christian Brochu
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Miguel A. Cabrita
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Brian D. Melanson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Jeffrey D. Hamill
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Rosanna Lau
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Bruce C. McKay
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
- * E-mail:
| |
Collapse
|
96
|
Tongkao-on W, Gordon-Thomson C, Dixon KM, Song EJ, Luu T, Carter SE, Sequeira VB, Reeve VE, Mason RS. Novel vitamin D compounds and skin cancer prevention. DERMATO-ENDOCRINOLOGY 2013; 5:20-33. [PMID: 24494039 PMCID: PMC3897591 DOI: 10.4161/derm.23939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/09/2013] [Indexed: 01/10/2023]
Abstract
As skin cancer is one of the most costly health issues in many countries, particularly in Australia, the possibility that vitamin D compounds might contribute to prevention of this disease is becoming increasingly more attractive to researchers and health communities. In this article, important epidemiologic, mechanistic and experimental data supporting the chemopreventive potential of several vitamin D-related compounds are explored. Evidence of photoprotection by the active hormone, 1α,25dihydroxyvitamin D3, as well as a derivative of an over-irradiation product, lumisterol, a fluorinated analog and bufalin, a potential vitamin D-like compound, are provided. The aim of this article is to understand how vitamin D compounds contribute to UV adaptation and potentially, skin cancer prevention.
Collapse
Affiliation(s)
- Wannit Tongkao-on
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Clare Gordon-Thomson
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Katie M. Dixon
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Eric J. Song
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Tan Luu
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Sally E. Carter
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| | - Vanessa B. Sequeira
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Kensington, NSW Australia
| | - Vivienne E. Reeve
- Department of Faculty of Veterinary Science; The University of Sydney; Sydney, NSW Australia
| | - Rebecca S. Mason
- Department of Physiology Anatomy & Histology; Bosch Institute; The University of Sydney; Sydney, NSW Australia
| |
Collapse
|
97
|
Tumor necrosis factor activation of vagal afferent terminal calcium is blocked by cannabinoids. J Neurosci 2012; 32:5237-41. [PMID: 22496569 DOI: 10.1523/jneurosci.6220-11.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The early proinflammatory cytokine tumor necrosis factor (TNF) is released in significant quantities by the activated immune system in response to infection, leukemia, autoimmune disorders, and radiation sickness. Nausea, emesis, and anorexia are common features of these disorders. TNF action on vagal afferent terminals in the brainstem is a likely cause of the malaise associated with these disorders. Our previous work has shown that TNF action to excite vagal afferents occurs as a result of sensitization of ryanodine channels in afferent nerve terminals. For millennia, cannabinoids (CB) have been used to combat the visceral malaise associated with chronic disease, although the mechanism of action has not been clear. Previous work in culture systems suggests that CB1 agonists can suppress neurotransmission by downregulating ryanodine channels through a protein kinase A (PKA)-dependent mechanism. Laser confocal calcium imaging methods were used to directly examine effects of CB1 cannabinoid agonists and TNF on visceral afferent signaling in the rat hindbrain. CB1 agonists blocked the effects of TNF to amplify vagal afferent responsiveness; blockade of PKA with H89 also eliminated the TNF amplification effect. These results help to explain the effectiveness of cannabinoids in blocking the malaise generated by TNF-releasing disease processes by opposing effects on ryanodine channels.
Collapse
|
98
|
Deng Z, Sui G, Rosa PM, Zhao W. Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells. PLoS One 2012; 7:e36739. [PMID: 22606284 PMCID: PMC3351464 DOI: 10.1371/journal.pone.0036739] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 04/09/2012] [Indexed: 12/04/2022] Open
Abstract
Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation.
Collapse
Affiliation(s)
- Zhiyong Deng
- Department of Radiation Oncology and Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Guangchao Sui
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Paulo Mottin Rosa
- Department of Radiation Oncology and Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Weiling Zhao
- Department of Radiation Oncology and Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
99
|
Alexaki VI, Pelekanou V, Notas G, Venihaki M, Kampa M, Dessirier V, Sabour-Alaoui S, Stathopoulos EN, Tsapis A, Castanas E. B-cell maturation antigen (BCMA) activation exerts specific proinflammatory effects in normal human keratinocytes and is preferentially expressed in inflammatory skin pathologies. Endocrinology 2012; 153:739-49. [PMID: 22166983 DOI: 10.1210/en.2011-1504] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
TNFα is known to be expressed in human skin, regulating immune-related responses. Here we report that human normal skin keratinocytes express the members of the TNF superfamily members A proliferation-inducing ligand (APRIL; TNFSF13), B cell-activating factor (BAFF; TNFSF13B), and their receptors, B cell maturation antigen (BCMA; TNFRSF17) and transmembrane activator, calcium-modulator, and cyclophilin ligand interactor (TACI; TNFRSF13B), in a distinct spatial pattern. Our data show a differential expression of these molecules within epidermal layers and skin appendages, whereas the BAFF-specific receptor BAFFR (TNFRSF13C) is absent. Importantly, APRIL and BCMA but not BAFF or TACI are up-regulated in inflammatory skin lesions of psoriasis and squamous cell carcinomas. To explore the functional significance of this system in the skin, we assayed these receptors and ligands in cultured primary keratinocytes and HaCaT cells. We show that both cell types express BAFF, APRIL, BCMA, and TACI. Furthermore, APRIL and/or BAFF trigger nuclear factor-κB activation and IL-6 and granulocyte macrophage colony-stimulating factor (GM-CSF) expression through functional BCMA receptors, an activation inhibited by anti-BCMA short hairpin RNA. However, BAFF and/or APRIL do not induce IL-8 or TNFα production. Our data advance BCMA as an inflammation-related TNFSFR member in keratinocytes, of potential importance in the management of inflammatory skin conditions.
Collapse
Affiliation(s)
- Vassilia-Ismini Alexaki
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, P.O. Box 2208, Heraklion 71003, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Yao Y, Harrison KA, Al-Hassani M, Murphy RC, Rezania S, Konger RL, Travers JB. Platelet-activating factor receptor agonists mediate xeroderma pigmentosum A photosensitivity. J Biol Chem 2012; 287:9311-21. [PMID: 22303003 DOI: 10.1074/jbc.m111.332395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To date, oxidized glycerophosphocholines (Ox-GPCs) with platelet-activating factor (PAF) activity produced non-enzymatically have not been definitively demonstrated to mediate any known disease processes. Here we provide evidence that these Ox-GPCs play a pivotal role in the photosensitivity associated with the deficiency of the DNA repair protein xeroderma pigmentosum type A (XPA). It should be noted that XPA-deficient cells are known to have decreased antioxidant defenses. These studies demonstrate that treatment of human XPA-deficient fibroblasts with the pro-oxidative stressor ultraviolet B (UVB) radiation resulted in increased reactive oxygen species and PAF receptor (PAF-R) agonistic activity in comparison with gene-corrected cells. The UVB irradiation-generated PAF-R agonists were inhibited by antioxidants. UVB irradiation of XPA-deficient (Xpa-/-) mice also resulted in increased PAF-R agonistic activity and skin inflammation in comparison with control mice. The increased UVB irradiation-mediated skin inflammation and TNF-α production in Xpa-/- mice were blocked by systemic antioxidants and by PAF-R antagonists. Structural characterization of PAF-R-stimulating activity in UVB-irradiated XPA-deficient fibroblasts using mass spectrometry revealed increased levels of sn-2 short-chain Ox-GPCs along with native PAF. These studies support a critical role for PAF-R agonistic Ox-GPCs in the pathophysiology of XPA photosensitivity.
Collapse
Affiliation(s)
- Yongxue Yao
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|