51
|
Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy. Sci Rep 2015; 5:17535. [PMID: 26657343 PMCID: PMC4675991 DOI: 10.1038/srep17535] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/02/2015] [Indexed: 01/25/2023] Open
Abstract
Follistatin is an inhibitor of TGF-β superfamily ligands that repress skeletal muscle growth and promote muscle wasting. Accordingly, follistatin has emerged as a potential therapeutic to ameliorate the deleterious effects of muscle atrophy. However, it remains unclear whether the anabolic effects of follistatin are conserved across different modes of non-degenerative muscle wasting. In this study, the delivery of a recombinant adeno-associated viral vector expressing follistatin (rAAV:Fst) to the hind-limb musculature of mice two weeks prior to denervation or tenotomy promoted muscle hypertrophy that was sufficient to preserve muscle mass comparable to that of untreated sham-operated muscles. However, administration of rAAV:Fst to muscles at the time of denervation or tenotomy did not prevent subsequent muscle wasting. Administration of rAAV:Fst to innervated or denervated muscles increased protein synthesis, but markedly reduced protein degradation only in innervated muscles. Phosphorylation of the signalling proteins mTOR and S6RP, which are associated with protein synthesis, was increased in innervated muscles administered rAAV:Fst, but not in treated denervated muscles. These results demonstrate that the anabolic effects of follistatin are influenced by the interaction between muscle fibres and motor nerves. These findings have important implications for understanding the potential efficacy of follistatin-based therapies for non-degenerative muscle wasting.
Collapse
|
52
|
Kuo YT, Shih PH, Kao SH, Yeh GC, Lee HM. Pyrroloquinoline Quinone Resists Denervation-Induced Skeletal Muscle Atrophy by Activating PGC-1α and Integrating Mitochondrial Electron Transport Chain Complexes. PLoS One 2015; 10:e0143600. [PMID: 26646764 PMCID: PMC4672922 DOI: 10.1371/journal.pone.0143600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Denervation-mediated skeletal muscle atrophy results from the loss of electric stimulation and leads to protein degradation, which is critically regulated by the well-confirmed transcriptional co-activator peroxisome proliferator co-activator 1 alpha (PGC-1α). No adequate treatments of muscle wasting are available. Pyrroloquinoline quinone (PQQ), a naturally occurring antioxidant component with multiple functions including mitochondrial modulation, demonstrates the ability to protect against muscle dysfunction. However, it remains unclear whether PQQ enhances PGC-1α activation and resists skeletal muscle atrophy in mice subjected to a denervation operation. This work investigates the expression of PGC-1α and mitochondrial function in the skeletal muscle of denervated mice administered PQQ. The C57BL6/J mouse was subjected to a hindlimb sciatic axotomy. A PQQ-containing ALZET® osmotic pump (equivalent to 4.5 mg/day/kg b.w.) was implanted subcutaneously into the right lower abdomen of the mouse. In the time course study, the mouse was sacrificed and the gastrocnemius muscle was prepared for further myopathological staining, energy metabolism analysis, western blotting, and real-time quantitative PCR studies. We observed that PQQ administration abolished the denervation-induced decrease in muscle mass and reduced mitochondrial activities, as evidenced by the reduced fiber size and the decreased expression of cytochrome c oxidase and NADH-tetrazolium reductase. Bioenergetic analysis demonstrated that PQQ reprogrammed the denervation-induced increase in the mitochondrial oxygen consumption rate (OCR) and led to an increase in the extracellular acidification rate (ECAR), a measurement of the glycolytic metabolism. The protein levels of PGC-1α and the electron transport chain (ETC) complexes were also increased by treatment with PQQ. Furthermore, PQQ administration highly enhanced the expression of oxidative fibers and maintained the type II glycolytic fibers. This pre-clinical in vivo study suggests that PQQ may provide a potent therapeutic benefit for the treatment of denervation-induced atrophy by activating PGC-1α and maintaining the mitochondrial ETC complex in skeletal muscles.
Collapse
Affiliation(s)
- Yung-Ting Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ping-Hsiao Shih
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Huei Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Geng-Chang Yeh
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Mo Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
53
|
Wang H, Xu X, Sun Z, Luo S. Safety and Efficacy of Selective Neurectomy of the Gastrocnemius Muscle for Calf Reduction in 300 Cases. Aesthetic Plast Surg 2015. [PMID: 26198015 DOI: 10.1007/s00266-015-0535-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Liposuction alone is not always sufficient to correct the shape of the lower leg, and muscle reduction may be necessary. OBJECTIVE To assess the outcomes of a new technique of selective neurectomy of the gastrocnemius muscle to correct calf hypertrophy. METHODS Between October 2007 and May 2010, 300 patients underwent neurectomy of the medial and lateral heads of the gastrocnemius muscle at the Department of Cosmetic and Plastic Surgery, the Second People's Hospital of Guangdong Province (Guangzhou, China) to correct the shape of their lower legs. Follow-up data from these 300 patients were analyzed retrospectively. Cosmetic results were evaluated independently by the surgeon, the patient, and a third party. Preoperative and postoperative calf circumferences were compared. The Fugl-Meyer motor function assessment was evaluated 3 months after surgery. RESULTS The average reduction in calf circumference was 3.2 ± 1.2 cm. The Fugl-Meyer scores were normal in all patients both before and 3 months after surgery. A normal calf shape was achieved in all patients. Six patients complained of fatigue while walking and four of scar pigmentation, but in all cases, this resolved within 6 months. Calf asymmetry was observed in only two patients. CONCLUSION The present series suggests that neurectomy of the medial and lateral heads of the gastrocnemius muscle may be safe and effective for correcting the shape of the calves. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Haibin Wang
- Department of Cosmetic and Plastic Surgery, The Second People's Hospital of Guangdong Province, Guangzhou, 510317, China
| | | | | | | |
Collapse
|
54
|
Histological study on the role of bone marrow-derived mesenchymal stem cells on the sciatic nerve and the gastrocnemius muscle in a model of sciatic nerve crush injury in albino rats. ACTA ACUST UNITED AC 2015. [DOI: 10.1097/01.ehx.0000470653.67231.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
55
|
Bachasson D, Singh A, Shah S, Lane JG, Ward SR. The role of the peripheral and central nervous systems in rotator cuff disease. J Shoulder Elbow Surg 2015; 24:1322-35. [PMID: 26189809 PMCID: PMC4508670 DOI: 10.1016/j.jse.2015.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/19/2015] [Accepted: 04/04/2015] [Indexed: 02/01/2023]
Abstract
Rotator cuff (RC) disease is an extremely common condition associated with shoulder pain, reduced functional capacities, and impaired quality of life. It primarily involves alterations in tendon health and mechanical properties that can ultimately lead to tendon failure. RC tendon tears induce progressive muscle changes that have a negative impact on surgical reparability of the RC tendons and clinical outcomes. At the same time, a significant base of clinical data suggests a relatively weak relationship between RC integrity and clinical presentation, emphasizing the multifactorial aspects of RC disease. This review aims to summarize the potential contribution of peripheral, spinal, and supraspinal neural factors that may (1) exacerbate structural and functional muscle changes induced by tendon tear, (2) compromise the reversal of these changes during surgery and rehabilitation, (3) contribute to pain generation and persistence of pain, (4) impair shoulder function through reduced proprioception, kinematics, and muscle recruitment, and (5) help explain interindividual differences and response to treatment. Given the current clinical and scientific interest in peripheral nerve injury in the context of RC disease and surgery, we carefully reviewed this body of literature with a particular emphasis on suprascapular neuropathy that has generated a large number of studies in the past decade. Within this process, we highlight the gaps in current knowledge and suggest research avenues for scientists and clinicians.
Collapse
Affiliation(s)
- Damien Bachasson
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Anshuman Singh
- Department of Orthopaedics, Kaiser Permanente Southern California, San Diego, CA, USA
| | - Sameer Shah
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Samuel R. Ward
- Department of Radiology, University of California San Diego, La Jolla, CA, USA,Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
56
|
Vascularized versus nonvascularized facial nerve grafts using a new rabbit model. Plast Reconstr Surg 2015; 135:331e-339e. [PMID: 25626818 DOI: 10.1097/prs.0000000000000992] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The use of vascularized nerve graft models has been limited because of the complexity of the operation. The authors sought to develop a simple and effective rabbit model for facial nerve repair and evaluated its advantages over conventional nerve grafts. METHODS Rabbits were divided into three groups consisting of six rabbits each. The central auricular nerve and its nutrient vessels were used as a vascularized graft. Rabbits were grafted with a vascularized facial nerve graft (vascularized nerve graft group), with a free nerve graft (free nerve graft group), or with a vascularized nerve graft and a free nerve graft on each side of the face (vascularized nerve graft/free nerve graft group). Four months after surgery, facial performance and electrophysiologic monitoring were evaluated. The rabbits were then killed to prepare the nerve specimens for histologic, immunohistochemical, and transmission electron microscope study. RESULTS At 4 months after the facial nerve repair, the functional recovery of the facial nerve was observed and analyzed. The side grafted with vascularized nerve graft was superior to the side grafted with free nerve graft. Regenerated nerve fibers were observed in all groups, and rabbits grafted with vascularized nerve grafts had more regenerated axons than those that underwent free nerve grafting, although the regenerated nerves were not as good as the natural nerves. CONCLUSIONS This study demonstrates that it is feasible to establish a vascularized nerve graft model in rabbits. The model offers the obvious advantages of operability and reliability. The vascularized nerve graft is demonstrated to have a superior value for facial nerve repair.
Collapse
|
57
|
Ostrovidov S, Ahadian S, Ramon-Azcon J, Hosseini V, Fujie T, Parthiban SP, Shiku H, Matsue T, Kaji H, Ramalingam M, Bae H, Khademhosseini A. Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. J Tissue Eng Regen Med 2014; 11:582-595. [PMID: 25393357 DOI: 10.1002/term.1956] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/19/2014] [Accepted: 08/28/2014] [Indexed: 01/16/2023]
Abstract
Engineered muscle tissues demonstrate properties far from native muscle tissue. Therefore, fabrication of muscle tissues with enhanced functionalities is required to enable their use in various applications. To improve the formation of mature muscle tissues with higher functionalities, we co-cultured C2C12 myoblasts and PC12 neural cells. While alignment of the myoblasts was obtained by culturing the cells in micropatterned methacrylated gelatin (GelMA) hydrogels, we studied the effects of the neural cells (PC12) on the formation and maturation of muscle tissues. Myoblasts cultured in the presence of neural cells showed improved differentiation, with enhanced myotube formation. Myotube alignment, length and coverage area were increased. In addition, the mRNA expression of muscle differentiation markers (Myf-5, myogenin, Mefc2, MLP), muscle maturation markers (MHC-IId/x, MHC-IIa, MHC-IIb, MHC-pn, α-actinin, sarcomeric actinin) and the neuromuscular markers (AChE, AChR-ε) were also upregulated. All these observations were amplified after further muscle tissue maturation under electrical stimulation. Our data suggest a synergistic effect on the C2C12 differentiation induced by PC12 cells, which could be useful for creating improved muscle tissue. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Samad Ahadian
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Javier Ramon-Azcon
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Toshinori Fujie
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - S Prakash Parthiban
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Tomokazu Matsue
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan.,Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Murugan Ramalingam
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan.,Centre for Stem Cell Research, A unit of the Institute for Stem Cell Biology and Regenerative Medicine, Christian Medical College Campus, Vellore, India.,Institut National de la Santé et de la Recherche Médicale U977, Faculté de Chirurgie Dentaire, Université de Strasbourg, France
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Seoul, Republic of Korea
| | - Ali Khademhosseini
- Advanced Institute for Materials Research (WPI), Tohoku University, Sendai, Japan.,Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea.,Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
58
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
59
|
Blanqué R, Lepescheux L, Auberval M, Minet D, Merciris D, Cottereaux C, Clément-Lacroix P, Delerive P, Namour F. Characterization of GLPG0492, a selective androgen receptor modulator, in a mouse model of hindlimb immobilization. BMC Musculoskelet Disord 2014; 15:291. [PMID: 25185887 PMCID: PMC4167280 DOI: 10.1186/1471-2474-15-291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022] Open
Abstract
Background Muscle wasting is a hallmark of many chronic conditions but also of aging and results in a progressive functional decline leading ultimately to disability. Androgens, such as testosterone were proposed as therapy to counteract muscle atrophy. However, this treatment is associated with potential cardiovascular and prostate cancer risks and therefore not acceptable for long-term treatment. Selective Androgen receptor modulators (SARM) are androgen receptor ligands that induce muscle anabolism while having reduced effects in reproductive tissues. Therefore, they represent an alternative to testosterone therapy. Our objective was to demonstrate the activity of SARM molecule (GLPG0492) on a immobilization muscle atrophy mouse model as compared to testosterone propionate (TP) and to identify putative biomarkers in the plasma compartment that might be related to muscle function and potentially translated into the clinical space. Methods GLPG0492, a non-steroidal SARM, was evaluated and compared to TP in a mouse model of hindlimb immobilization. Results GLPG0492 treatment partially prevents immobilization-induced muscle atrophy with a trend to promote muscle fiber hypertrophy in a dose-dependent manner. Interestingly, GLPG0492 was found as efficacious as TP at reducing muscle loss while sparing reproductive tissues. Furthermore, gene expression studies performed on tibialis samples revealed that both GLPG0492 and TP were slowing down muscle loss by negatively interfering with major signaling pathways controlling muscle mass homeostasis. Finally, metabolomic profiling experiments using 1H-NMR led to the identification of a plasma GLPG0492 signature linked to the modulation of cellular bioenergetic processes. Conclusions Taken together, these results unveil the potential of GLPG0492, a non-steroidal SARM, as treatment for, at least, musculo-skeletal atrophy consecutive to coma, paralysis, or limb immobilization. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-291) contains supplementary material, which is available to authorized users.
Collapse
|
60
|
Lee SH, Oh BM, Lee G, Choi H, Cheon GJ, Lee SU. Feasibility of 18F-FDG PET as a noninvasive diagnostic tool of muscle denervation: a preliminary study. J Nucl Med 2014; 55:1737-40. [PMID: 25104824 DOI: 10.2967/jnumed.114.140731] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED The purpose of this study was to confirm glucose hypermetabolism in denervated muscle and investigate the feasibility of (18)F-FDG PET scanning for the detection of muscle denervation. METHOD A sciatic neuropathy model in rats was created by nerve resection of the left sciatic nerve and sham operation on the other side. Eight days after denervation, small-animal PET/CT scans of the hindlimbs were acquired. Muscle denervation was confirmed by electrophysiologic and histologic study. RESULTS All rats showed increased (18)F-FDG uptake in the muscles of the left (denervated) lower legs. The calculated maximum lesion-to-normal counts ratio of the left lower leg anterolateral (left, 11.02 ± 2.08; right, 1.81 ± 0.40, n = 6, P < 0.01) and posterior (left, 9.81 ± 4.58; right, 1.87 ± 0.44, n = 6, P < 0.01) compartment were significantly increased. The electrophysiologic and histologic study verified muscle denervation. CONCLUSION Glucose hypermetabolism in muscle denervation is an obvious phenomenon. (18)F-FDG PET scanning can be used to visualize muscle denervation.
Collapse
Affiliation(s)
- Seung Hak Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Gangpyo Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea; and
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea; and
| | - Shi-Uk Lee
- Department of Rehabilitation Medicine, Seoul National University Boramae Medical Center, Seoul, South Korea
| |
Collapse
|
61
|
Ferry A, Joanne P, Hadj-Said W, Vignaud A, Lilienbaum A, Hourdé C, Medja F, Noirez P, Charbonnier F, Chatonnet A, Chevessier F, Nicole S, Agbulut O, Butler-Browne G. Advances in the understanding of skeletal muscle weakness in murine models of diseases affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers. Neuromuscul Disord 2014; 24:960-72. [PMID: 25042397 DOI: 10.1016/j.nmd.2014.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 06/01/2014] [Indexed: 12/13/2022]
Abstract
Disease processes and trauma affecting nerve-evoked muscle activity, motor neurons, synapses and myofibers cause different levels of muscle weakness, i.e., reduced maximal force production in response to voluntary activation or nerve stimulation. However, the mechanisms of muscle weakness are not well known. Using murine models of amyotrophic lateral sclerosis (SOD1(G93A) transgenic mice), congenital myasthenic syndrome (AChE knockout mice and Musk(V789M/-) mutant mice), Schwartz-Jampel syndrome (Hspg2(C1532YNEO/C1532YNEO) mutant mice) and traumatic nerve injury (Neurotomized wild-type mice), we show that the reduced maximal activation capacity (the ability of the nerve to maximally activate the muscle) explains 52%, 58% and 100% of severe weakness in respectively SOD1(G93A), Neurotomized and Musk mice, whereas muscle atrophy only explains 37%, 27% and 0%. We also demonstrate that the impaired maximal activation capacity observed in SOD1, Neurotomized, and Musk mice is not highly related to Hdac4 gene upregulation. Moreover, in SOD1 and Neurotomized mice our results suggest LC3, Fn14, Bcl3 and Gadd45a as candidate genes involved in the maintenance of the severe atrophic state. In conclusion, our study indicates that muscle weakness can result from the triggering of different signaling pathways. This knowledge may be helpful in designing therapeutic strategies and finding new drug targets for amyotrophic lateral sclerosis, congenital myasthenic syndrome, Schwartz-Jampel syndrome and nerve injury.
Collapse
Affiliation(s)
- Arnaud Ferry
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France; Université Paris Descartes, Sorbonne Paris Cité, Paris F-75006, France.
| | - Pierre Joanne
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC 4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris F-75013, France
| | - Wahiba Hadj-Said
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Alban Vignaud
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Alain Lilienbaum
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC 4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris F-75013, France
| | - Christophe Hourdé
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Fadia Medja
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| | - Philippe Noirez
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Biologie de la Nutrition EA 2498, Paris, France
| | - Frederic Charbonnier
- Université Paris Descartes, Sorbonne Paris Cité, CESeM, UMR 8194 CNRS, Paris F-75006, France
| | - Arnaud Chatonnet
- Universités Montpellier 1 et 2, INRA, UMR 866, Montpellier, France
| | - Frederic Chevessier
- Universitätsklinikum Erlangen, Neuropathologisches Institut, Erlangen, Germany
| | - Sophie Nicole
- Université Pierre et Marie Curie - Paris 6, INSERM U975, Centre de recherche de l'Institut Cerveau Moelle, CNRS UMR 7225, Paris, France
| | - Onnik Agbulut
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC 4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, Paris F-75013, France
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris F-75013, France
| |
Collapse
|
62
|
Kung TA, Langhals NB, Martin DC, Johnson PJ, Cederna PS, Urbanchek MG. Regenerative Peripheral Nerve Interface Viability and Signal Transduction with an Implanted Electrode. Plast Reconstr Surg 2014; 133:1380-1394. [DOI: 10.1097/prs.0000000000000168] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Abstract
The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.
Collapse
|
64
|
Pond A, Marcante A, Zanato R, Martino L, Stramare R, Vindigni V, Zampieri S, Hofer C, Kern H, Masiero S, Piccione F. History, Mechanisms and Clinical Value of Fibrillation Analyses in Muscle Denervation and Reinnervation by Single Fiber Electromyography and Dynamic Echomyography. Eur J Transl Myol 2014; 24:3297. [PMID: 26913128 PMCID: PMC4749004 DOI: 10.4081/ejtm.2014.3297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This work reviews history, current clinical relevance and future of fibrillation, a functional marker of skeletal muscle denervated fibers. Fibrillations, i.e., spontaneous contraction, in denervated muscle were first described during the nineteenth century. It is known that alterations in membrane potential are responsible for the phenomenon and that they are related to changes in electrophysiological factors, cellular metabolism, cell turnover and gene expression. They are known to inhibit muscle atrophy to some degree and are used to diagnose neural injury and reinnervation that are occurring in patients. Electromyography (EMG) is useful in determining progress, prognosis and efficacy of therapeutic interventions and their eventual change. For patients with peripheral nerve injury, and thus without the option of volitional contractions, electrical muscle stimulation may be helpful in preserving the contractility and extensibility of denervated muscle tissue and in retarding/counteracting muscle atrophy. It is obvious from the paucity of recent literature that research in this area has declined over the years. This is likely a consequence of the decrease in funding available for research and the fact that the fibrillations do not appear to cause serious health issues. Nonetheless, further exploration of them as diagnostic tools in long-term denervation is merited, in particular if Single Fiber EMG (SFEMG) is combined with Dynamic Echomyography (DyEM), an Ultra Sound muscle approach we recently designed and developed to explore denervated and reinnervating muscles.
Collapse
Affiliation(s)
- Amber Pond
- Anatomy Department, Southern Illinois University School of Medicine, Carbondale, IL USA
| | - Andrea Marcante
- CIR-Myo, Rehabilitation and Physical Medicine Unit, Department of Neurosciences, University of Padova, Italy
| | - Riccardo Zanato
- CIR-Myo, Radiology, Department of Medicine, University of Padova, Italy
| | - Leonora Martino
- CIR-Myo, Radiology, Department of Medicine, University of Padova, Italy
| | - Roberto Stramare
- CIR-Myo, Radiology, Department of Medicine, University of Padova, Italy
| | - Vincenzo Vindigni
- CIR-Myo, Plastic Surgery, Department of Neuroscience, University of Padova, Italy
| | | | - Christian Hofer
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | | | - Stefano Masiero
- CIR-Myo, Rehabilitation and Physical Medicine Unit, Department of Neurosciences, University of Padova, Italy
| | - Francesco Piccione
- Clinical Neurophysiology, San Camillo Hospital I.R.C.C.S., Venezia-Lido, Italy
| |
Collapse
|
65
|
Abstract
This review concentrates on the biology of long-term denervated muscle, especially as it relates to newer techniques for restoring functional mass. After denervation, muscle passes through three stages: 1) immediate loss of voluntary function and rapid loss of mass, 2) increasing atrophy and loss of sarcomeric organization, and 3) muscle fiber degeneration and replacement of muscle by fibrous connective tissue and fat. Parallel to the overall program of atrophy and degeneration is the proliferation and activation of satellite cells, and the appearance of neomyogenesis within the denervated muscle. Techniques such as functional electrical stimulation take advantage of this capability to restore functional mass to a denervated muscle.
Collapse
Affiliation(s)
- Bruce M Carlson
- Institute of Gerontology, University of Michigan , Ann Arbor, Michigan, USA
| |
Collapse
|
66
|
Mukund K, Mathewson M, Minamoto V, Ward SR, Subramaniam S, Lieber RL. Systems analysis of transcriptional data provides insights into muscle's biological response to botulinum toxin. Muscle Nerve 2014; 50:744-58. [PMID: 24536034 DOI: 10.1002/mus.24211] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION This study provides global transcriptomic profiling and analysis of botulinum toxin A (BoNT-A)-treated muscle over a 1-year period. METHODS Microarray analysis was performed on rat tibialis anterior muscles from 4 groups (n = 4/group) at 1, 4, 12, and 52 weeks after BoNT-A injection compared with saline-injected rats at 12 weeks. RESULTS Dramatic transcriptional adaptation occurred at 1 week with a paradoxical increase in expression of slow and immature isoforms, activation of genes in competing pathways of repair and atrophy, impaired mitochondrial biogenesis, and increased metal ion imbalance. Adaptations of the basal lamina and fibrillar extracellular matrix (ECM) occurred by 4 weeks. The muscle transcriptome returned to its unperturbed state 12 weeks after injection. CONCLUSIONS Acute transcriptional adaptations resemble denervated muscle with some subtle differences, but resolved more quickly compared with denervation. Overall, gene expression across time correlates with the generally accepted BoNT-A time course and suggests that the direct action of BoNT-A in skeletal muscle is relatively rapid.
Collapse
Affiliation(s)
- Kavitha Mukund
- Bioinformatics and System Biology Graduate Program, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
67
|
Jiang Z, Zhu Y, Xu L, Xu JG, Gu YD. Functional Changes in Motor Endplates of the Target Muscle after Amputation of the C7 Nerve Root. NEUROPHYSIOLOGY+ 2014. [DOI: 10.1007/s11062-014-9406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
68
|
Park S, Brisson BK, Liu M, Spinazzola JM, Barton ER. Mature IGF-I excels in promoting functional muscle recovery from disuse atrophy compared with pro-IGF-IA. J Appl Physiol (1985) 2013; 116:797-806. [PMID: 24371018 DOI: 10.1152/japplphysiol.00955.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy.
Collapse
Affiliation(s)
- Soohyun Park
- Department of Anatomy and Cell Biology, School of Dental Medicine
| | | | | | | | | |
Collapse
|
69
|
Kang C, Ji LL. Muscle immobilization and remobilization downregulates PGC-1α signaling and the mitochondrial biogenesis pathway. J Appl Physiol (1985) 2013; 115:1618-25. [DOI: 10.1152/japplphysiol.01354.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prolonged immobilization (IM) results in skeletal muscle atrophy accompanied by increased reactive oxygen species (ROS) generation, inflammation, and protein degradation. However, the biological consequence of remobilizing such muscle has been studied only sparsely. In this study, we examined the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-controlled mitochondrial biogenesis pathway and inflammatory response in mice subjected to 2 wk of hindlimb IM followed by 5 days of remobilization (RM). We hypothesized that ROS generation and activation of redox-sensitive signaling pathways play important roles in the etiology of muscle injury. FVB/N mice (age 2 mo) were randomly assigned to either 14 days of IM by casting one of the hindlimbs ( n = 7), IM followed by 5 days of RM with casting removed ( n = 7), or to a control group (Con; n = 7). Muscle to body weight ratios of three major leg muscles were significantly decreased as a result of IM. Two ubiquitin-proteasome pathway enzymes, muscle atrophy F-box (MAFb or atrogin-1) and muscle ring finger-1 (MuRF-1), were upregulated with IM and maintained at high levels during RM. Protein contents of PGC-1α and nuclear respiratory factors 1 and 2 in tibialis anterior (TA) muscle were reduced by 50% ( P < 0.01) in IM vs. Con, with no recovery observed during RM. IM suppressed mitochondrial transcription factor A and cytochrome- c content by 57% and 63% ( P < 0.01), respectively, and cytochrome- c oxidase activity by 58% ( P < 0.05). Furthermore, mitochondrial DNA content was reduced by 71% ( P < 0.01) with IM. None of these changes were reversed after RM. With RM, TA muscle showed a 2.3-fold ( P < 0.05) higher H2O2 content and a 4-fold ( P < 0.01) higher 8-isoprostane content compared with Con, indicating oxidative stress. Tumor necrosis factor-α and interleukin-6 levels in TA muscle were 4- and 3-fold higher ( P < 0.05), respectively, in IM and RM vs. CON. The nuclear factor-κB (NF-κB) pathway activation was observed only after RM, but not after IM alone. These data indicate an increase in ROS generation during the initial phase of muscle RM that could activate the NF-κB pathway, and elicit inflammation and oxidative stress. These events may hinder muscle recovery from IM-induced mitochondrial deterioration and protein loss.
Collapse
Affiliation(s)
- Chounghun Kang
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota at Twin Cities, Minneapolis, Minnesota
| | - Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota at Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
70
|
Kim S, Kim K. The effects of exercise and conjugated linoleic acid intake on IGF-1 and pro-inflammatory cytokines in atrophied skeletal muscle of rats. Integr Med Res 2013; 2:166-173. [PMID: 28664069 PMCID: PMC5481707 DOI: 10.1016/j.imr.2013.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Conjugated linoleic acid (CLA) can be proposed as an effective nutrient for skeletal muscle atrophy. However, the research related to this is still insufficient. This study was carried out to analyze the mRNA expression of IGF-1 and cytokines in atrophied skeletal muscle of rats. METHODS Forty-two rats were randomly divided into seven groups, each group containing six rats. Sham-Pre and USN-Pre groups underwent a sham operation and a unilateral sciatic nerve (USN) cut, and were sacrificed 1 week later. Other groups had 4 weeks of treatment exercise and CLA intake, and then their blood, liver, and skeletal muscles were sampled after sacrifice. RESULTS Among the treatment groups, the group treated with both exercise and CLA (USN-EC) showed the lowest body weight. Groups with the sciatic nerve cut showed significantly (p < 0.05) lower muscle weight than groups with the sham operation. However, exercise and CLA intake had no effect on muscle weight. Regarding IGF-1 mRNA, the USN-EC group showed significantly higher expressions in the red muscle of the gastrocnemius and liver than the Sham-Pre and USN-CLA groups. Regarding TNF-α pro-inflammatory cytokine, there was no particular trend; however, the expression of IL-1β mRNA increased in the white muscle of the gastrocnemius muscle and tibialis anterior muscle after sciatic nerve cut, but showed a decrease with exercise and CLA treatment. Particularly in the gastrocnemius white muscle, the group treated with both exercise and CLA showed a significant decrease as compared to groups without treatment after sciatic nerve cut so that positive effects can be expected. CONCLUSION It is thought that combining treadmill training with CLA partially influences pro-inflammatory cytokines, so that this can act positively on improving skeletal muscle atrophy caused by sciatic nerve cut.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Physical Education, Keimyung University, Daegu, Korea
| | - Kijin Kim
- Department of Physical Education, Keimyung University, Daegu, Korea
| |
Collapse
|
71
|
Valladares D, Almarza G, Contreras A, Pavez M, Buvinic S, Jaimovich E, Casas M. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy. PLoS One 2013; 8:e75340. [PMID: 24282497 PMCID: PMC3839923 DOI: 10.1371/journal.pone.0075340] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/11/2013] [Indexed: 12/20/2022] Open
Abstract
ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.
Collapse
Affiliation(s)
- Denisse Valladares
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gonzalo Almarza
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ariel Contreras
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Pavez
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sonja Buvinic
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Ciencias Básicas y Comunitarias, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mariana Casas
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
72
|
Broch-Lips M, Pedersen TH, Riisager A, Schmitt-John T, Nielsen OB. Neuro-muscular function in the wobbler murine model of primary motor neuronopathy. Exp Neurol 2013; 248:406-15. [DOI: 10.1016/j.expneurol.2013.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/16/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
|
73
|
Hernández-Ochoa EO, Schachter TN, Schneider MF. Elevated nuclear Foxo1 suppresses excitability of skeletal muscle fibers. Am J Physiol Cell Physiol 2013; 305:C643-53. [PMID: 23804205 DOI: 10.1152/ajpcell.00003.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Forkhead box O 1 (Foxo1) controls the expression of proteins that carry out processes leading to skeletal muscle atrophy, making Foxo1 of therapeutic interest in conditions of muscle wasting. The transcription of Foxo1-regulated proteins is dependent on the translocation of Foxo1 to the nucleus, which can be repressed by insulin-like growth factor-1 (IGF-1) treatment. The role of Foxo1 in muscle atrophy has been explored at length, but whether Foxo1 nuclear activity affects skeletal muscle excitation-contraction (EC) coupling has not yet been examined. Here, we use cultured adult mouse skeletal muscle fibers to investigate the effects of Foxo1 overexpression on EC coupling. Fibers expressing Foxo1-green fluorescent protein (GFP) exhibit an inability to contract, impaired propagation of action potentials, and ablation of calcium transients in response to electrical stimulation compared with fibers expressing GFP alone. Evaluation of the transverse (T)-tubule system morphology, the membranous system involved in the radial propagation of the action potential, revealed an intact T-tubule network in fibers overexpressing Foxo1-GFP. Interestingly, long-term IGF-1 treatment of Foxo1-GFP fibers, which maintains Foxo1-GFP outside the nucleus, prevented the loss of normal calcium transients, indicating that Foxo1 translocation and the atrogenes it regulates affect the expression of proteins involved in the generation and/or propagation of action potentials. A reduction in the sodium channel Nav1.4 expression in fibers overexpressing Foxo1-GFP was also observed in the absence of IGF-1. We conclude that increased nuclear activity of Foxo1 prevents the normal muscle responses to electrical stimulation and that this indicates a novel capability of Foxo1 to disable the functional activity of skeletal muscle.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
74
|
Yang B, Jiang JH, Zhou YC, Zhang Y, Li ST. Denervation stage differentially influences resistance to neuromuscular blockers in rat gastrocnemius. J Surg Res 2013; 180:266-73. [DOI: 10.1016/j.jss.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
|
75
|
Jonsson S, Wiberg R, McGrath AM, Novikov LN, Wiberg M, Novikova LN, Kingham PJ. Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery. PLoS One 2013; 8:e56484. [PMID: 23409189 PMCID: PMC3567071 DOI: 10.1371/journal.pone.0056484] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/10/2013] [Indexed: 12/14/2022] Open
Abstract
Despite advances in surgical techniques for peripheral nerve repair, functional restitution remains incomplete. The timing of surgery is one factor influencing the extent of recovery but it is not yet clearly defined how long a delay may be tolerated before repair becomes futile. In this study, rats underwent sciatic nerve transection before immediate (0) or 1, 3, or 6 months delayed repair with a nerve graft. Regeneration of spinal motoneurons, 13 weeks after nerve repair, was assessed using retrograde labeling. Nerve tissue was also collected from the proximal and distal stumps and from the nerve graft, together with the medial gastrocnemius (MG) muscles. A dramatic decline in the number of regenerating motoneurons and myelinated axons in the distal nerve stump was observed in the 3- and 6-months delayed groups. After 3 months delay, the axonal number in the proximal stump increased 2–3 folds, accompanied by a smaller axonal area. RT-PCR of distal nerve segments revealed a decline in Schwann cells (SC) markers, most notably in the 3 and 6 month delayed repair samples. There was also a progressive increase in fibrosis and proteoglycan scar markers in the distal nerve with increased delayed repair time. The yield of SC isolated from the distal nerve segments progressively fell with increased delay in repair time but cultured SC from all groups proliferated at similar rates. MG muscle at 3- and 6-months delay repair showed a significant decline in weight (61% and 27% compared with contra-lateral side). Muscle fiber atrophy and changes to neuromuscular junctions were observed with increased delayed repair time suggestive of progressively impaired reinnervation. This study demonstrates that one of the main limiting factors for nerve regeneration after delayed repair is the distal stump. The critical time point after which the outcome of regeneration becomes too poor appears to be 3-months.
Collapse
Affiliation(s)
- Samuel Jonsson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Rebecca Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Aleksandra M. McGrath
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical & Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Lev N. Novikov
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Mikael Wiberg
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- Department of Surgical & Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Liudmila N. Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- * E-mail: (PJK); (LNN)
| | - Paul J. Kingham
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
- * E-mail: (PJK); (LNN)
| |
Collapse
|
76
|
Muscaritoli M, Kushta I, Molfino A, Inghilleri M, Sabatelli M, Rossi Fanelli F. Nutritional and metabolic support in patients with amyotrophic lateral sclerosis. Nutrition 2012; 28:959-66. [DOI: 10.1016/j.nut.2012.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/10/2012] [Accepted: 01/18/2012] [Indexed: 12/12/2022]
|
77
|
Hernández-Ochoa EO, Robison P, Contreras M, Shen T, Zhao Z, Schneider MF. Elevated extracellular glucose and uncontrolled type 1 diabetes enhance NFAT5 signaling and disrupt the transverse tubular network in mouse skeletal muscle. Exp Biol Med (Maywood) 2012; 237:1068-83. [PMID: 22966145 DOI: 10.1258/ebm.2012.012052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor nuclear factor of activated T-cells 5 (NFAT5) is a key protector from hypertonic stress in the kidney, but its role in skeletal muscle is unexamined. Here, we evaluate the effects of glucose hypertonicity and hyperglycemia on endogenous NFAT5 activity, transverse tubular system morphology and Ca(2+) signaling in adult murine skeletal muscle fibers. We found that exposure to elevated glucose (25-50 mmol/L) increased NFAT5 expression and nuclear translocation, and NFAT-driven transcriptional activity. These effects were insensitive to the inhibition of calcineurin A, but sensitive to both p38α mitogen-activated protein kinases and phosphoinositide 3-kinase-related kinase inhibition. Fibers exposed to elevated glucose exhibited disrupted transverse tubular morphology, characterized by swollen transverse tubules and an increase in longitudinal connections between adjacent transverse tubules. Ca(2+) transients elicited by a single, brief electric field stimuli were increased in amplitude in fibers challenged by elevated glucose. Muscle fibers from type 1 diabetic mice exhibited increased NFAT5 expression and transverse tubule disruptions, but no differences in electrically evoked Ca(2+) transients. Our results suggest the hypothesis that these changes in skeletal muscle could play a role in the pathophysiology of acute and severe hyperglycemic episodes commonly observed in uncontrolled diabetes.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
78
|
Cavalcante EVV, Silva LGMD, Montenegro EJN, Pontes Filho NTD. Efeito da eletroestimulação no músculo desnervado de animais: revisão sistemática. FISIOTERAPIA EM MOVIMENTO 2012. [DOI: 10.1590/s0103-51502012000300022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: A recuperação funcional após a lesão nervosa periférica está relacionada a fatores intrínsecos e extrínsecos ao sistema nervoso periférico, tais como a gravidade da lesão e a condição dos órgãos-alvo. A atrofia constitui uma das principais alterações do músculo após a lesão nervosa e, uma vez instalada, atua como barreira ao crescimento axonal durante a reinervação muscular. O uso da eletroestimulação é rotineiro no campo da fisioterapia e tem o objetivo de minimizar ou impedir a atrofia muscular e, assim, favorecer a recuperação da lesão nervosa periférica. OBJETIVO: Avaliar os efeitos da eletroestimulação sobre as características tróficas do músculo desnervado. MÉTODOS: Artigos publicados entre 1990 e 2010 e indexados aos bancos de dados da PUBMED foram selecionados utilizando os seguintes descritores: "muscle denervation AND electric stimulation" e "muscular atrophy AND electric stimulation". Foram considerados como critério de inclusão os estudos experimentais em animais (ratos) que utilizassem a lesão nervosa periférica como modelo de desnervação e que avaliassem o efeito da eletroestimulação muscular sobre a área de secção transversa e/ou a massa muscular de músculos desnervados. RESULTADOS: Nove artigos foram selecionados para a revisão. CONCLUSÕES: O efeito da eletroestimulação está diretamente relacionado à característica do protocolo de intervenção, que, quando aplicado de maneira adequada, apresenta o efeito de retardar e, em alguns casos, impedir a atrofia do músculo desnervado.
Collapse
|
79
|
Norrby M, Evertsson K, Fjällström AK, Svensson A, Tågerud S. Akt (protein kinase B) isoform phosphorylation and signaling downstream of mTOR (mammalian target of rapamycin) in denervated atrophic and hypertrophic mouse skeletal muscle. J Mol Signal 2012; 7:7. [PMID: 22657251 PMCID: PMC3406959 DOI: 10.1186/1750-2187-7-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 06/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study examines the hypothesis that Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signaling is increased in hypertrophic and decreased in atrophic denervated muscle. Protein expression and phosphorylation of Akt1, Akt2, glycogen synthase kinase-3beta (GSK-3beta), eukaryotic initiation factor 4E binding protein 1 (4EBP1), 70 kD ribosomal protein S6 kinase (p70S6K1) and ribosomal protein S6 (rpS6) were examined in six-days denervated mouse anterior tibial (atrophic) and hemidiaphragm (hypertrophic) muscles. RESULTS In denervated hypertrophic muscle expression of total Akt1, Akt2, GSK-3beta, p70S6K1 and rpS6 proteins increased 2-10 fold whereas total 4EBP1 protein remained unaltered. In denervated atrophic muscle Akt1 and Akt2 total protein increased 2-16 fold. A small increase in expression of total rpS6 protein was also observed with no apparent changes in levels of total GSK-3beta, 4EBP1 or p70S6K1 proteins. The level of phosphorylated proteins increased 3-13 fold for all the proteins in hypertrophic denervated muscle. No significant changes in phosphorylated Akt1 or GSK-3beta were detected in atrophic denervated muscle. The phosphorylation levels of Akt2, 4EBP1, p70S6K1 and rpS6 were increased 2-18 fold in atrophic denervated muscle. CONCLUSIONS The results are consistent with increased Akt/mTOR signaling in hypertrophic skeletal muscle. Decreased levels of phosphorylated Akt (S473/S474) were not observed in denervated atrophic muscle and results downstream of mTOR indicate increased protein synthesis in denervated atrophic anterior tibial muscle as well as in denervated hypertrophic hemidiaphragm muscle. Increased protein degradation, rather than decreased protein synthesis, is likely to be responsible for the loss of muscle mass in denervated atrophic muscles.
Collapse
Affiliation(s)
- Marlene Norrby
- School of Natural Sciences, Linnaeus University, SE-391 82, Kalmar, Sweden.
| | | | | | | | | |
Collapse
|
80
|
Singh B, Xu QG, Franz CK, Zhang R, Dalton C, Gordon T, Verge VMK, Midha R, Zochodne DW. Accelerated axon outgrowth, guidance, and target reinnervation across nerve transection gaps following a brief electrical stimulation paradigm. J Neurosurg 2011; 116:498-512. [PMID: 22149377 DOI: 10.3171/2011.10.jns11612] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Regeneration of peripheral nerves is remarkably restrained across transection injuries, limiting recovery of function. Strategies to reverse this common and unfortunate outcome are limited. Remarkably, however, new evidence suggests that a brief extracellular electrical stimulation (ES), delivered at the time of injury, improves the regrowth of motor and sensory axons. METHODS In this work, the authors explored and tested this ES paradigm, which was applied proximal to transected sciatic nerves in mice, and identified several novel and compelling impacts of the approach. Using thy-1 yellow fluorescent protein mice with fluorescent axons that allow serial in vivo tracking of regeneration, the morphological, electrophysiological, and behavioral indices of nerve regrowth were measured. RESULTS The authors show that ES is associated with a 30%-50% improvement in several indices of regeneration: regrowth of axons and their partnered Schwann cells across transection sites, maturation of regenerated fibers in gaps spanning transection zones, and entry of axons into their muscle and cutaneous target zones. In parallel studies, the authors analyzed adult sensory neurons and their response to extracellular ES while plated on a novel microelectrode array construct designed to deliver the identical ES paradigm used in vivo. The ES accelerated neurite outgrowth, supporting the concept of a neuron-autonomous mechanism of action. CONCLUSIONS Taken together, these results support a robust role for brief ES following peripheral nerve injuries in promoting regeneration. Electrical stimulation has a wider repertoire of impact than previously recognized, and its impact in vitro supports the hypothesis that a neuron-specific reprogrammed injury response is recruited by the ES protocol.
Collapse
Affiliation(s)
- Bhagat Singh
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Bian W, Bursac N. Soluble miniagrin enhances contractile function of engineered skeletal muscle. FASEB J 2011; 26:955-65. [PMID: 22075647 DOI: 10.1096/fj.11-187575] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural agrin plays a pleiotropic role in skeletal muscle innervation and maturation, but its specific effects on the contractile function of aneural engineered muscle remain unknown. In this study, neonatal rat skeletal myoblasts cultured within 3-dimensional engineered muscle tissue constructs were treated with 10 nM soluble recombinant miniagrin and assessed using histological, biochemical, and functional assays. Depending on the treatment duration and onset time relative to the stage of myogenic differentiation, miniagrin was found to induce up to 1.7-fold increase in twitch and tetanus force amplitude. This effect was associated with the 2.3-fold up-regulation of dystrophin gene expression at 6 d after agrin removal and enhanced ACh receptor (AChR) cluster formation, but no change in cell number, expression of muscle myosin, or important aspects of intracellular Ca(2+) handling. In muscle constructs with endogenous ACh levels suppressed by the application of α-NETA, miniagrin increased AChR clustering and twitch force amplitude but failed to improve intracellular Ca(2+) handling and increase tetanus-to-twitch ratio. Overall, our studies suggest that besides its synaptogenic function that could promote integration of engineered muscle constructs in vivo, neural agrin can directly promote the contractile function of aneural engineered muscle via mechanisms distinct from those involving endogenous ACh.
Collapse
Affiliation(s)
- Weining Bian
- Department of Anesthesia and Medicine and Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
82
|
Langhammer CG, Kutzing MK, Luo V, Zahn JD, Firestein BL. Skeletal myotube integration with planar microelectrode arrays in vitro for spatially selective recording and stimulation: a comparison of neuronal and myotube extracellular action potentials. Biotechnol Prog 2011; 27:891-5. [PMID: 21574266 DOI: 10.1002/btpr.609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 11/30/2010] [Indexed: 11/11/2022]
Abstract
Microelectrode array (MEA) technology holds tremendous potential in the fields of biodetection, lab-on-a-chip applications, and tissue engineering by facilitating noninvasive electrical interaction with cells in vitro. To date, significant efforts at integrating the cellular component with this detection technology have worked exclusively with neurons or cardiac myocytes. We investigate the feasibility of using MEAs to record from skeletal myotubes derived from primary myoblasts as a way of introducing a third electrogenic cell type and expanding the potential end applications for MEA-based biosensors. We find that the extracellular action potentials (EAPs) produced by spontaneously contractile myotubes have similar amplitudes to neuronal EAPs. It is possible to classify myotube EAPs by biological signal source using a shape-based spike sorting process similar to that used to analyze neural spike trains. Successful spike-sorting is indicated by a low within-unit variability of myotube EAPs. Additionally, myotube activity can cause simultaneous activation of multiple electrodes, in a similar fashion to the activation of electrodes by networks of neurons. The existence of multiple electrode activation patterns indicates the presence of several large, independent myotubes. The ability to identify these patterns suggests that MEAs may provide an electrophysiological basis for examining the process by which myotube independence is maintained despite rapid myoblast fusion during differentiation. Finally, it is possible to use the underlying electrodes to selectively stimulate individual myotubes without stimulating others nearby. Potential uses of skeletal myotubes grown on MEA substrates include lab-on-a-chip applications, tissue engineering, co-cultures with motor neurons, and neural interfaces.
Collapse
Affiliation(s)
- Christopher G Langhammer
- Dept. of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
83
|
Handy CR, Krudy C, Boulis N, Federici T. Pain in amyotrophic lateral sclerosis: a neglected aspect of disease. Neurol Res Int 2011; 2011:403808. [PMID: 21766021 PMCID: PMC3135011 DOI: 10.1155/2011/403808] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/06/2011] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder marked by progressive loss of motor neurons, muscle wasting, and respiratory dysfunction. With disease progression, secondary symptoms arise creating new problematic conditions for ALS patients. Amongst these is pain. Although not a primary consequence of disease, pain occurs in a substantial number of individuals. Yet, studies investigating its pathomechanistic properties in the ALS patient are lacking. Therefore, more exploratory efforts into its scope, severity, impact, and treatment should be initiated. Several studies investigating the use of Clostridial neurotoxins for the reduction of pain in ALS patients suggest the potential for a neural specific approach involving focal drug delivery. Gene therapy represents a way to accomplish this. Therefore, the use of viral vectors to express transgenes that modulate the nociceptive cascade could prove to be an effective way to achieve meaningful benefit in conditions of pain in ALS.
Collapse
Affiliation(s)
- Chalonda R. Handy
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| | - Christina Krudy
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| | - Thais Federici
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322, USA
| |
Collapse
|
84
|
Van Gelein Vitringa VM, Jaspers R, Mullender M, Ouwerkerk WJ, Van Der Sluijs JA. Early effects of muscle atrophy on shoulder joint development in infants with unilateral birth brachial plexus injury. Dev Med Child Neurol 2011; 53:173-8. [PMID: 20846159 DOI: 10.1111/j.1469-8749.2010.03783.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIM Shoulder deformities in children with a birth brachial plexus injury (BBPI) are caused by muscle imbalances; however, the underlying mechanisms are unclear. The aim of this study was to assess the early interactions between shoulder muscles and shoulder joint development. METHOD In a retrospective magnetic resonance imaging (MRI) study of 36 infants (21 males, 15 females) younger than 12 months (mean 4.8 mo) with unilateral BBPI, volumes and thicknesses of standardized segments of the infraspinatus, subscapularis, and deltoid muscles were measured in both shoulders and expressed as ratios of pathological/unaffected side. The relation between muscle ratios and humeral head subluxation, passive external rotation, glenoid version, and deformity was analysed. RESULTS Compared with the unaffected side, the muscles of the affected side were of significantly smaller volume and thickness. The subscapularis was the most severely affected muscle, its volume being only 64% (SD 21%) and its thickness only 79% (SD 23%) of the corresponding values on the unaffected side (p < 0.001). Severe subluxation was predicted by the combination of low infraspinatus and subscapularis volume ratios (r(2) = 0.223; p = 0.014), but not by muscle thickness ratios. Subluxation was related to passive external rotation (p < 0.05), glenoid version (p < 0.01), and deformity (p < 0.01). INTERPRETATION In infants with BBPI, muscle size is decreased during in the first months of life by both atrophy and, possibly, by a reduction in the number of sarcomeres in series. These effects are strongly related to shoulder joint subluxation.
Collapse
|
85
|
Boonen KJM, van der Schaft DWJ, Baaijens FPT, Post MJ. Interaction between electrical stimulation, protein coating and matrix elasticity: a complex effect on muscle fibre maturation. J Tissue Eng Regen Med 2010; 5:60-8. [DOI: 10.1002/term.289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
86
|
Langelaan MLP, Boonen KJM, Rosaria-Chak KY, van der Schaft DWJ, Post MJ, Baaijens FPT. Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells. J Tissue Eng Regen Med 2010; 5:529-39. [DOI: 10.1002/term.345] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/08/2010] [Indexed: 11/10/2022]
|
87
|
Toyoda K, Uchida K, Matsuki N, Sakai H, Kitagawa M, Saito M, Sasaki J, Nakayama H. Inflammatory Myopathy with Severe Tongue Atrophy in Pembroke Welsh Corgi Dogs. J Vet Diagn Invest 2010; 22:876-85. [DOI: 10.1177/104063871002200605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A disease characterized by tongue and facial muscle atrophy has been recognized sporadically among Pembroke Welsh Corgi (PWC) dogs in Japan. The present study describes the pathologic findings of this canine syndrome. Histopathologic examinations were performed in 2 dogs, including a case of muscular biopsy. Identification and characterization of autoantibodies were attempted by fluorescent antibody test (FAT) and Western blot (WB) by using sera from 7 PWC dogs with typical clinical features, 6 PWC dogs with other clinical signs, and 2 from other breeds with polymyositis. Clinically, the 7 affected PWC dogs exhibited dysphagia with severe tongue atrophy, facial muscular atrophy, and occasional walking difficulty. Histopathologic examinations of the 2 dogs with clinical symptoms revealed moderate to severe inflammatory lesions characterized by lymphohistiocytic infiltration and muscular atrophy in the tongue and/or femoral muscles. The tongue lesions were very severe and accompanied by diffuse fatty infiltration. There were no major lesions in the nervous tissues examined. By FAT, an autoantibody against the cross striation of skeletal muscle was detected in sera from 5 affected PWC dogs. By using WB analysis, the autoantibodies recognized a 42-kDa molecule in striated muscle but not in the nervous tissues. All of the findings indicated that the unique disease of PWC dogs might be generalized inflammatory myopathy, whereas the detailed etiology concerning the dominant involvement of tongue muscles and the role of the autoantibody in the canine disease remain to be clarified.
Collapse
Affiliation(s)
| | | | | | - Hideo Sakai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo; Isahaya Pet Clinic, Isahaya, Nagasaki, Japan
| | - Masato Kitagawa
- Laboratory Comprehensive Veterinary Clinical Studies, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Miyoko Saito
- Department of Veterinary Surgery, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Jun Sasaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo; Isahaya Pet Clinic, Isahaya, Nagasaki, Japan
- Department of Veterinary Pathology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | | |
Collapse
|
88
|
Gundersen K. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 2010; 86:564-600. [PMID: 21040371 PMCID: PMC3170710 DOI: 10.1111/j.1469-185x.2010.00161.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine fashion. Induction of hypertrophy is accompanied by the satellite cells fusing to myofibres and thereby increasing the capacity for protein synthesis. These extra nuclei seem to remain part of the fibre even during subsequent atrophy as a form of muscle memory facilitating retraining. In addition to changes in myonuclear number during hypertrophy, changes in muscle fibre size seem to be caused by alterations in transcription, translation (per nucleus) and protein degradation.
Collapse
Affiliation(s)
- Kristian Gundersen
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041, Blindern, N-0316 Oslo, Norway.
| |
Collapse
|
89
|
Tomori K, Ohta Y, Nishizawa T, Tamaki H, Takekura H. Low-intensity electrical stimulation ameliorates disruption of transverse tubules and neuromuscular junctional architecture in denervated rat skeletal muscle fibers. J Muscle Res Cell Motil 2010; 31:195-205. [DOI: 10.1007/s10974-010-9223-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/21/2010] [Indexed: 10/19/2022]
|
90
|
Imaging of denervation in the head and neck. Eur J Radiol 2010; 74:378-90. [DOI: 10.1016/j.ejrad.2009.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 06/22/2009] [Indexed: 11/20/2022]
|
91
|
Kern H, Carraro U, Adami N, Hofer C, Loefler S, Vogelauer M, Mayr W, Rupp R, Zampieri S. One year of home-based daily FES in complete lower motor neuron paraplegia: recovery of tetanic contractility drives the structural improvements of denervated muscle. Neurol Res 2010; 32:5-12. [PMID: 20092690 DOI: 10.1179/174313209x385644] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Spinal cord injury (SCI) causes muscle atrophy, which is particularly severe, due to inability to perform tetanic contractions, when lower motor neurons (LMN) are involved. We performed a longitudinal study in 25 Europeans suffering from complete conus cauda syndrome from 0.7 to 8.7 years comparing functional and structural thigh muscle properties before and after 2 years of home-based daily training by functional electrical stimulation (FES). The mid-term results after 1 year and preliminary muscle biopsy observations at project end-point from a subset of subjects are here reported. METHODS Muscles were electrically stimulated at home by means of large surface electrodes and a custom-designed stimulator. The poor excitability of the LMN denervated muscles was first improved by twitch-contraction training. Then, tetanic contractions against progressively increased loading were elicited. Finally, standing-up exercises were daily performed. The bulk of thigh muscle was estimated by transverse computer tomography (CT) scan and force measurements. Needle biopsies of vastus lateralis were harvested before and after 2 years of FES. RESULTS The 1 year home-based daily FES training induced: (1) very similar increases in muscle excitability and contractility in right and left legs; (2) feasibility to elicit tetanic contractions by means of train-stimulation with about ten times improvement of muscle force; (3) increase in the 26% of muscle bulk, as shown by CT scan analyses, improving appearance of limbs and muscle cushioning; (4) myofiber size increase (+94%) in a small series of muscle biopsies obtained after 2 years of FES. None of the subjects that performed 1 year home-based daily FES training (20 persons) had worsened their functional class, while 20% (4/20) improved to functional class 4, that is, the ability to stand. DISCUSSION The European Union (EU) Project Rise shows that 'home-based daily FES training' is a safe and effective therapy that may maintain life-long physical exercise by active muscle contraction (FES is the only option for denervated muscle) as a procedure to recover the early-lost tetanic contractility of denervated muscle, and to counteract muscle atrophy in order to prevent clinical complications.
Collapse
Affiliation(s)
- Helmut Kern
- Ludwig Boltzmann Institute of Electrostimulation and Physical Rehabilitation, Department of Physical Medicine, Wilhelminenspital, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Distinct muscarinic acetylcholine receptor subtypes contribute to stability and growth, but not compensatory plasticity, of neuromuscular synapses. J Neurosci 2010; 29:14942-55. [PMID: 19940190 DOI: 10.1523/jneurosci.2276-09.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) modulate synaptic function, but whether they influence synaptic structure remains unknown. At neuromuscular junctions (NMJs), mAChRs have been implicated in compensatory sprouting of axon terminals in paralyzed or denervated muscles. Here we used pharmacological and genetic inhibition and localization studies of mAChR subtypes at mouse NMJs to demonstrate their roles in synaptic stability and growth but not in compensatory sprouting. M(2) mAChRs were present solely in motor neurons, whereas M(1), M(3), and M(5) mAChRs were associated with Schwann cells and/or muscle fibers. Blockade of all five mAChR subtypes with atropine evoked pronounced effects, including terminal sprouting, terminal withdrawal, and muscle fiber atrophy. In contrast, methoctramine, an M(2/4)-preferring antagonist, induced terminal sprouting and terminal withdrawal, but no muscle fiber atrophy. Consistent with this observation, M(2)(-/-) but no other mAChR mutant mice exhibited spontaneous sprouting accompanied by extensive loss of parental terminal arbors. Terminal sprouting, however, seemed not to be the causative defect because partial loss of terminal branches was common even in the M(2)(-/-) NMJs without sprouting. Moreover, compensatory sprouting after paralysis or partial denervation was normal in mice deficient in M(2) or other mAChR subtypes. We also found that many NMJs of M(5)(-/-) mice were exceptionally small and reduced in proportion to the size of parental muscle fibers. These findings show that axon terminals are unstable without M(2) and that muscle fiber growth is defective without M(5). Subtype-specific muscarinic signaling provides a novel means for coordinating activity-dependent development and maintenance of the tripartite synapse.
Collapse
|
93
|
A subpopulation of rat muscle fibers maintains an assessable excitation-contraction coupling mechanism after long-standing denervation despite lost contractility. J Neuropathol Exp Neurol 2009; 68:1256-68. [PMID: 19915489 DOI: 10.1097/nen.0b013e3181c18416] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
To define the time course and potential effects of electrical stimulation on permanently denervated muscle, we evaluated excitation-contraction coupling (ECC) of rat leg muscles during progression to long-term denervation by ultrastructural analysis, specific binding to dihydropyridine receptors, ryanodine receptor 1 (RYR-1), Ca channels and extrusion Ca pumps, gene transcription and translation of Ca-handling proteins, and in vitro mechanical properties and electrophysiological analyses of sarcolemmal passive properties and L-type Ca current (ICa) parameters. We found that in response to long-term denervation: 1) isolated muscle that is unable to twitch in vitro by electrical stimulation has very small myofibers but may show a slow caffeine contracture; 2) only roughly half of the muscle fibers with "voltage-dependent Ca channel activity" are able to contract; 3) the ECC mechanisms are still present and, in part, functional; 4)ECC-related gene expression is upregulated; and 5) at any time point, there are muscle fibers that are more resistant than others to denervation atrophy and disorganization of the ECC apparatus. These results support the hypothesis that prolonged "resting" [Ca] may drive progression of muscle atrophy to degeneration and that electrical stimulation-induced [Ca] modulation may mimic the lost nerve influence, playing a key role in modifying the gene expression of denervated muscle. Hence, these data provide a potential molecular explanation for the muscle recovery that occurs in response to rehabilitation strategies developed based on empirical clinical observations.
Collapse
|
94
|
Caron AZ, Drouin G, Desrosiers J, Trensz F, Grenier G. A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse. J Appl Physiol (1985) 2009; 106:2049-59. [DOI: 10.1152/japplphysiol.91505.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle atrophy is a serious concern for patients afflicted by limb restriction due to surgery (e.g., arthrodesis), several articular pathologies (e.g., arthralgia), or simply following cast immobilization. To study the molecular events involved in this immobilization-induced debilitating condition, a convenient mouse model for atrophy is lacking. Here we provide a new immobilization procedure exploiting the normal flexion of the mouse hindlimb using a surgical staple to fix the ventral part of the foot to the distal part of the calf. Histological analysis revealed that our approach induced significant skeletal muscle atrophy by reducing the myofiber size of the tibialis anterior (TA) muscle by 36% compared with the untreated contralateral TA within a few days postimmobilization. Two molecular markers for atrophy, atrogin-1/muscle atrophy F-box (atrogin-1/MAFbx) and muscle ring finger 1 (MuRF-1) mRNAs, were significantly upregulated by 1.9- and 5.9-fold, respectively. Interestingly, our model also revealed the presence of an early inflammatory process during atrophy, characterized by the mRNA upregulation of TNF-α, IL-1, and IL-6 (1.9-, 2.4-, and 3.4-fold, respectively) simultaneously with the upregulation of the common leukocyte marker CD45 (6.1-fold). Moreover, muscle rapidly recovered on remobilization, an event associated with significantly increased levels of uncoupling protein-3 and peroxisome proliferator-activated receptor γ coactivator-1α mRNA, key components of prooxidative muscle metabolism. This model offers unexpected new insights into the molecular events involved in immobilization atrophy.
Collapse
|
95
|
Gayraud-Morel B, Chrétien F, Tajbakhsh S. Skeletal muscle as a paradigm for regenerative biology and medicine. Regen Med 2009; 4:293-319. [PMID: 19317647 DOI: 10.2217/17460751.4.2.293] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tissue development and regeneration share common features, since modules of regulatory pathways and transcription factors that are crucial for prenatal development are redeployed for tissue reconstruction after trauma. Regenerative medicine has therefore gained important insights through the study of developmental and regenerative biology. Moreover, diverse experimental models have been used to investigate the regeneration process in different tissues and organs. Paradoxically, little is known regarding the relative contribution of stem cells with respect to the supporting tissue during tissue regeneration. Particular attention will be given to mouse models using distinct injury paradigms to investigate the regenerative biology of skeletal muscle. An understanding of the response of stem and parenchymal cells is crucial for the development of clinical strategies to combat the normal decline in tissue performance during aging or its reconstitution after trauma and during disease. This review addresses these issues, focusing on muscle regeneration and how different factors, including genes, cells and the environment, impinge on this process.
Collapse
Affiliation(s)
- Barbara Gayraud-Morel
- Stem Cells & Development, Department of Developmental Biology, Pasteur Institute, CNRS URA 2578, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
96
|
Differential skeletal muscle gene expression after upper or lower motor neuron transection. Pflugers Arch 2009; 458:525-35. [DOI: 10.1007/s00424-009-0643-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 12/29/2008] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
|
97
|
Ferrini MG, Kovanecz I, Sanchez S, Umeh C, Rajfer J, Gonzalez-Cadavid NF. Fibrosis and loss of smooth muscle in the corpora cavernosa precede corporal veno-occlusive dysfunction (CVOD) induced by experimental cavernosal nerve damage in the rat. J Sex Med 2009; 6:415-28. [PMID: 19138364 PMCID: PMC2756287 DOI: 10.1111/j.1743-6109.2008.01105.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Corporal veno-occlusive dysfunction (CVOD), which usually is associated with a loss of smooth muscle cells (SMC) and an increase in fibrosis within the corpora cavernosa, can be induced by an injury to the cavernosal nerves. The corporal tissue expresses inducible nitric oxide synthase (iNOS), presumably as an antifibrotic and SMC-protective response. AIMS We studied the temporal relationship in the corpora between the expression of iNOS, other histological and biochemical changes, and the development of CVOD, after bilateral cavernosal nerve resection (BCNR) in the rat. METHODS Rats underwent either BCNR or sham operation. Cavernosometry was performed 1, 3, 7, 15, 30, and 45 days (N = 8/groups) after surgery. Penile tissue sections were subjected to Masson trichrome staining for SMC and collagen, and immunodetection for alpha smooth muscle actin, iNOS, neuronal NOS (nNOS), endothelial NOS (eNOS), proliferating cell nuclear antigen (PCNA), and terminal transferase dUTP nick end labeling (TUNEL). Quantitative western blot analysis was done in homogenates. MAIN OUTCOME MEASURES Time course on the development of fibrosis and CVOD. RESULTS Following BCNR, CVOD was detectable 30 days later, and it became more pronounced by 45 days. In contrast, the SMC/collagen ratio in the BCNR corpora was reduced at 7 days and bottomed at 30 and 45 days, due in part to the reduction of SMC, presumably caused by an increase in apoptosis peaking at 3 days. PCNA also peaked at 3 days, but then decayed. nNOS was reduced early (3-7 days) and disappeared at 30 days, whereas eNOS was not affected. iNOS was induced at day 3, and steadily increased peaking at 30 days. CONCLUSIONS CVOD develops in the BCNR rat as a result of the early loss of corporal SMC by the neuropraxia-induced apoptosis, which the initial cell replication response cannot counteract, followed by fibrosis. The time course of iNOS induction supports the antifibrotic role of iNOS.
Collapse
Affiliation(s)
- Monica G Ferrini
- Charles Drew University, Department of Medicine, Los Angeles, CA 90059, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Velders M, Legerlotz K, Falconer SJ, Stott NS, McMahon CD, Smith HK. Effect of botulinum toxin A-induced paralysis and exercise training on mechanosensing and signalling gene expression in juvenile rat gastrocnemius muscle. Exp Physiol 2008; 93:1273-83. [DOI: 10.1113/expphysiol.2008.043174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
99
|
Legerlotz K, Smith HK. Role of MyoD in denervated, disused, and exercised muscle. Muscle Nerve 2008; 38:1087-100. [PMID: 18642380 DOI: 10.1002/mus.21087] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The myogenic regulatory factor MyoD plays an important role in embryonic and adult skeletal muscle growth. Even though it is best known as a marker for activated satellite cells, it is also expressed in myonuclei, and its expression can be induced by a variety of different conditions. Several model systems have been used to study the mechanisms behind MyoD regulation, such as exercise, stretch, disuse, and denervation. Since MyoD reacts in a highly muscle-specific manner, and its expression varies over time and between species, universally valid predictions and explanations for changes in MyoD expression are not possible. This review explores the complex role of MyoD in muscle plasticity by evaluating the induction of MyoD expression in the context of muscle composition and electrical and mechanical stimulation.
Collapse
Affiliation(s)
- Kirsten Legerlotz
- Department of Sport and Exercise Science, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | |
Collapse
|
100
|
Agbulut O, Vignaud A, Hourde C, Mouisel E, Fougerousse F, Butler-Browne GS, Ferry A. Slow myosin heavy chain expression in the absence of muscle activity. Am J Physiol Cell Physiol 2008; 296:C205-14. [PMID: 18945940 DOI: 10.1152/ajpcell.00408.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Innervation has been generally accepted to be a major factor involved in both triggering and maintaining the expression of slow myosin heavy chain (MHC-1) in skeletal muscle. However, previous findings from our laboratory have suggested that, in the mouse, this is not always the case (30). Based on these results, we hypothesized that neurotomy would not markedly reduced the expression of MHC-1 protein in the mouse soleus muscles. In addition, other cellular, biochemical, and functional parameters were also studied in these denervated soleus muscles to complete our study. Our results show that denervation reduced neither the relative amount of MHC-1 protein, nor the percentage of muscle fibers expressing MHC-1 protein (P > 0.05). The fact that MHC-1 protein did not respond to muscle inactivity was confirmed in three different mouse strains (129/SV, C57BL/6, and CD1). In contrast, all of the other histological, biochemical, and functional muscle parameters were markedly altered by denervation. Cross-sectional area (CSA) of muscle fibers, maximal tetanic isometric force, maximal velocity of shortening, maximal power, and citrate synthase activity were all reduced in denervated muscles compared with innervated muscles (P < 0.05). Contraction and one-half relaxation times of the twitch were also increased by denervation (P < 0.05). Addition of tenotomy to denervation had no further effect on the relative expression of MHC-1 protein (P > 0.05), despite a greater reduction in CSA and citrate synthase activity (P < 0.05). In conclusion, a deficit in neural input leads to marked atrophy and reduction in performance in mouse soleus muscles. However, the maintenance of the relative expression of slow MHC protein is independent of neuromuscular activity in mice.
Collapse
Affiliation(s)
- O Agbulut
- EA300, Université Paria Diderot, Paris, France
| | | | | | | | | | | | | |
Collapse
|