51
|
Li YY, Mao K, Zhao C, Zhao XY, Zhang RF, Zhang HL, Shu HR, Hao YJ. Molecular cloning and functional analysis of a blue light receptor gene MdCRY2 from apple (Malus domestica). PLANT CELL REPORTS 2013; 32:555-566. [PMID: 23314496 DOI: 10.1007/s00299-013-1387-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 12/13/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
MdCRY2 was isolated from apple fruit skin, and its function was analyzed in MdCRY2 transgenic Arabidopsis. The interaction between MdCRY2 and AtCOP1 was found by yeast two-hybrid and BiFC assays. Cryptochromes are blue/ultraviolet-A (UV-A) light receptors involved in regulating various aspects of plant growth and development. Investigations of the structure and functions of cryptochromes in plants have largely focused on Arabidopsis (Arabidopsis thaliana), tomato (Solanum lycopersicum), pea (Pisum sativum), and rice (Oryza sativa). However, no data on the function of CRY2 are available in woody plants. In this study, we isolated a cryptochrome gene, MdCRY2, from apple (Malus domestica). The deduced amino acid sequences of MdCRY2 contain the conserved N-terminal photolyase-related domain and the flavin adenine dinucleotide (FAD) binding domain, as well as the C-terminal DQXVP-acidic-STAES (DAS) domain. Relationship analysis indicates that MdCRY2 shows the highest similarity to the strawberry FvCRY protein. The expression of MdCRY2 is induced by blue/UV-A light, which represents a 48-h circadian rhythm. To investigate the function of MdCRY2, we overexpressed the MdCRY2 gene in a cry2 mutant and wild type (WT) Arabidopsis, assessed the phenotypes of the resulting transgenic plants, and found that MdCRY2 functions to regulate hypocotyl elongation, root growth, flower initiation, and anthocyanin accumulation. Furthermore, we examined the interaction between MdCRY2 and AtCOP1 using a yeast two-hybrid assay and a bimolecular fluorescence complementation assay. These data provide functional evidence for a role of blue/UV-A light-induced MdCRY2 in controlling photomorphogenesis in apple.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Frémont N, Riefler M, Stolz A, Schmülling T. The Arabidopsis TUMOR PRONE5 gene encodes an acetylornithine aminotransferase required for arginine biosynthesis and root meristem maintenance in blue light. PLANT PHYSIOLOGY 2013; 161:1127-40. [PMID: 23321422 PMCID: PMC3585585 DOI: 10.1104/pp.112.210583] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arginine is an essential amino acid necessary for protein synthesis and is also a nitrogen storage compound. The genes encoding the enzymes of arginine biosynthesis in plants are not well characterized and have mainly been predicted from homologies to bacterial and fungal genes. We report the cloning and characterization of the TUMOR PRONE5 (TUP5) gene of Arabidopsis (Arabidopsis thaliana) encoding an acetylornithine aminotransferase (ACOAT), catalyzing the fourth step of arginine biosynthesis. The free arginine content was strongly reduced in the chemically induced recessive mutant tup5-1, root growth was restored by supplementation with arginine and its metabolic precursors, and a yeast (Saccharomyces cerevisiae) ACOAT mutant was complemented by TUP5. Two null alleles of TUP5 caused a reduced viability of gametes and embryo lethality, possibly caused by insufficient Arg supply from maternal tissue. TUP5 expression is positively regulated by light, and a TUP5-green fluorescent protein was localized in chloroplasts. tup5-1 has a unique light-dependent short root phenotype. Roots of light-grown tup5-1 seedlings switch from indeterminate growth to determinate growth with arresting cell production and an exhausted root apical meristem. The inhibitory activity was specific for blue light, and the inhibiting light was perceived by the root. Thus, tup5-1 reveals a novel role of amino acids and blue light in regulating root meristem function.
Collapse
|
53
|
Nameth B, Dinka SJ, Chatfield SP, Morris A, English J, Lewis D, Oro R, Raizada MN. The shoot regeneration capacity of excised Arabidopsis cotyledons is established during the initial hours after injury and is modulated by a complex genetic network of light signalling. PLANT, CELL & ENVIRONMENT 2013; 36:68-86. [PMID: 22681544 DOI: 10.1111/j.1365-3040.2012.02554.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Excised plant tissues (explants) can regenerate new shoot apical meristems in vitro, but regeneration rates can be inexplicably variable. Light affects rates of shoot regeneration, but the underlying mechanisms are poorly understood. Here, excised Arabidopsis cotyledons were dark-light shifted to define the timing of explant light sensitivity. Mutants and pharmacological agents were employed to uncover underlying physiological and genetic mechanisms. Unexpectedly, explants were most light sensitive during the initial hours post-excision with respect to shoot regeneration. Only ∼100 µmol m(-2 ) s(-1) of fluorescent light was sufficient to induce reactive oxygen species (ROS) accumulation in new explants. By 48 h post-excision, induction of ROS, or quenching of ROS by xanthophylls, increased or decreased shoot regeneration, respectively. Phytochrome A-mediated signalling suppressed light inhibition of regeneration. Early exposure to blue/UV-A wavelengths inhibited regeneration, involving photoreceptor CRY1. Downstream transcription factor HY5 mediated explant photoprotection, perhaps by promoting anthocyanin accumulation, a pigment also induced by cytokinin. Surprisingly, early light inhibition of shoot regeneration was dependent on polar auxin transport. Early exposure to ethylene stimulated dark-treated explants to regenerate, but inhibited light-treated explants. We propose that variability in long-term shoot regeneration may arise within the initial hours post-excision, from inadvertent, variable exposure of explants to light, modulated by hormones.
Collapse
Affiliation(s)
- Blair Nameth
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Fox AR, Soto GC, Jones AM, Casal JJ, Muschietti JP, Mazzella MA. cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis. PLANT MOLECULAR BIOLOGY 2012; 80:315-24. [PMID: 22855128 PMCID: PMC4871592 DOI: 10.1007/s11103-012-9950-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/23/2012] [Indexed: 05/08/2023]
Abstract
While studying blue light-independent effects of cryptochrome 1 (cry1) photoreceptor, we observed premature opening of the hook in cry1 mutants grown in complete darkness, a phenotype that resembles the one described for the heterotrimeric G-protein α subunit (GPA1) null mutant gpa1. Both cry1 and gpa1 also showed reduced accumulation of anthocyanin under blue light. These convergent gpa1 and cry1 phenotypes required the presence of sucrose in the growth media and were not additive in the cry1 gpa1 double mutant, suggesting context-dependent signaling convergence between cry1 and GPA1 signaling pathways. Both, gpa1 and cry1 mutants showed reduced GTP-binding activity. The cry1 mutant showed wild-type levels of GPA1 mRNA or GPA1 protein. However, an anti-transducin antibody (AS/7) typically used for plant Gα proteins, recognized a 54 kDa band in the wild type but not in gpa1 and cry1 mutants. We propose a model where cry1-mediated post-translational modification of GPA1 alters its GTP-binding activity.
Collapse
Affiliation(s)
- Ana R. Fox
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Hector Torres, (INGEBI-CONICET), Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Gabriela C. Soto
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Hector Torres, (INGEBI-CONICET), Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Alan M. Jones
- Departments of Biology and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jorge J. Casal
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and CONICET, 1417 Buenos Aires, Argentina
- Fundacion Instituto Leloir, 1405 Buenos Aires, Argentina
| | - Jorge P. Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Hector Torres, (INGEBI-CONICET), Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - María A. Mazzella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Hector Torres, (INGEBI-CONICET), Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| |
Collapse
|
55
|
Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:11217-21. [PMID: 22733756 DOI: 10.1073/pnas.1203746109] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most hazardous span in the life of green plants is the period after germination when the developing seedling must reach the state of autotrophy before the nutrients stored in the seed are exhausted. The need for an economically optimized utilization of limited resources in this critical period is particularly obvious in species adopting the dispersal strategy of producing a large amount of tiny seeds. The model plant Arabidopsis thaliana belongs to this category. Arabidopsis seedlings promote root development only in the light. This response to light has long been recognized and recently discussed in terms of an organ-autonomous feature of photomorphogenesis directed by the red/blue light absorbing photoreceptors phytochrome and cryptochrome and mediated by hormones such as auxin and/or gibberellin. Here we show that the primary root of young Arabidopsis seedlings responds to an interorgan signal from the cotyledons and that phloem transport of photosynthesis-derived sugar into the root tip is necessary and sufficient for the regulation of root elongation growth by light.
Collapse
|
56
|
Mayfield JD, Paul AL, Ferl RJ. The 14-3-3 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3061-70. [PMID: 22378945 PMCID: PMC3350920 DOI: 10.1093/jxb/ers022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 05/18/2023]
Abstract
The 14-3-3 proteins specifically bind a number of client proteins to influence important pathways, including flowering timing via the photosensory system. For instance, 14-3-3 proteins influence the photosensory system through interactions with Constans (CO) protein. 14-3-3 associations with the photosensory system were further studied in this investigation using 14-3-3 T-DNA insertion mutants to study root and chloroplast development. The 14-3-3 μ T-DNA insertion mutant, 14-3-3μ-1, had shorter roots than the wild type and the difference in root length could be influenced by light intensity. The 14-3-3 ν T-DNA insertion mutants also had shorter roots, but only when grown under narrow-bandwidth red light. Five-day-old 14-3-3 T-DNA insertion and co mutants all had increased root greening compared with the wild type, which was influenced by light wavelength and intensity. However, beyond 10 d of growth, 14-3-3μ-1 roots did not increase in greening as much as wild-type roots. This study reveals new developmental roles of 14-3-3 proteins in roots and chloroplasts, probably via association with the photosensory system.
Collapse
|
57
|
Lopez L, Carbone F, Bianco L, Giuliano G, Facella P, Perrotta G. Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues. PLANT, CELL & ENVIRONMENT 2012; 35:994-1012. [PMID: 22082487 DOI: 10.1111/j.1365-3040.2011.02467.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In order to sense and respond to the fluctuating light conditions, higher plants possess several families of photoreceptors, such as phytochromes (PHYs), cryptochromes (CRYs) and phototropins. CRYs are responsible for photomorphogenesis and play a role in circadian, developmental and adaptive growth regulation of plants. In tomato (Solanum lycopersicum), CRY2 controls vegetative development, flowering time, fruit antioxidant content as well as the diurnal transcription of several other photoreceptor genes. We applied large-scale molecular approaches to identify altered transcripts and proteins in tomato wild-type (WT) versus a CRY2 overexpressing transgenic genotype, under a diurnal rhythm. Our results showed that tomato CRY2 profoundly affects both gene and protein expression in response to daily light cycle. Particularly altered molecular pathways are related to biotic/abiotic stress, photosynthesis, including components of the light and dark reactions and of starch and sucrose biosynthesis, as well as to secondary metabolism, such as phenylpropanoid, phenolic and flavonoid/anthocyanin biosynthesis pathways. One of the most interesting results is the coordinated up-regulation, in the transgenic genotype, of a consistent number of transcripts and proteins involved in photorespiration and photosynthesis. It is conceivable that light modulates the energetic metabolism of tomato through a fine CRY2-mediated transcriptional control.
Collapse
Affiliation(s)
- Loredana Lopez
- ENEA, Trisaia Research Center, Rotondella (MT), Italy ENEA, Casaccia Research Center, Rome, Italy
| | | | | | | | | | | |
Collapse
|
58
|
Facella P, Daddiego L, Giuliano G, Perrotta G. Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato. PLoS One 2012; 7:e30121. [PMID: 22272283 PMCID: PMC3260215 DOI: 10.1371/journal.pone.0030121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 12/13/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Plant photoreceptors, phytochromes and cryptochromes, regulate many aspects of development and growth, such as seed germination, stem elongation, seedling de-etiolation, cotyledon opening, flower induction and circadian rhythms. There are several pieces of evidence of interaction between photoreceptors and phyto-hormones in all of these physiological processes, but little is known about molecular and genetic mechanisms underlying hormone-photoreceptor crosstalk. METHODOLOGY/PRINCIPAL FINDINGS In this work, we investigated the molecular effects of exogenous phyto-hormones to photoreceptor gene transcripts of tomato wt, as well as transgenic and mutant lines with altered cryptochromes, by monitoring day/night transcript oscillations. GA and auxin alter the diurnal expression level of different photoreceptor genes in tomato, especially in mutants that lack a working form of cryptochrome 1a: in those mutants the expression of some (IAA) or most (GA) photoreceptor genes is down regulated by these hormones. CONCLUSIONS/SIGNIFICANCE Our results highlight the presence of molecular relationships among cryptochrome 1a protein, hormones, and photoreceptors' gene expression in tomato, suggesting that manipulation of cryptochromes could represent a good strategy to understand in greater depth the role of phyto-hormones in the plant photoperceptive mechanism.
Collapse
Affiliation(s)
- Paolo Facella
- Italian National Agency for New Technologues, Energy and Sustainable Economic Development (ENA), Trisaia Research Center, Rotondella, Italy
| | - Loretta Daddiego
- Italian National Agency for New Technologues, Energy and Sustainable Economic Development (ENA), Trisaia Research Center, Rotondella, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologues, Energy and Sustainable Economic Development (ENA), Casaccia Research Center, Rome, Italy
| | - Gaetano Perrotta
- Italian National Agency for New Technologues, Energy and Sustainable Economic Development (ENA), Trisaia Research Center, Rotondella, Italy
| |
Collapse
|
59
|
Warnasooriya SN, Montgomery BL. Spatial-specific regulation of root development by phytochromes in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:2047-50. [PMID: 22112446 PMCID: PMC3337204 DOI: 10.4161/psb.6.12.18267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Distinct tissues and organs of plants exhibit dissimilar responses to light exposure--cotyledon growth is promoted by light, whereas hypocotyl growth is inhibited by light. Light can have different impacts on root development, including impacting root elongation, morphology, lateral root proliferation and root tropisms. In many cases, light inhibits root elongation. There has been much attention given to whether roots themselves are the sites of photoperception for light that impacts light-dependent growth and development of roots. A number of approaches including photoreceptor localization in planta, localized irradiation and exposure of dissected roots to light have been used to explore the site(s) of light perception for the photoregulation of root development. Such approaches have led to the observation that photoreceptors are localized to roots in many plant species, and that roots are capable of light absorption that can alter morphology and/or gene expression. Our recent results show that localized depletion of phytochrome photoreceptors in Arabidopsis thaliana disrupts root development and root responsiveness to the plant hormone jasmonic acid. Thus, root-localized light perception appears central to organ-specific, photoregulation of growth and development in roots.
Collapse
Affiliation(s)
| | - Beronda L. Montgomery
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| |
Collapse
|
60
|
Liu H, Liu B, Zhao C, Pepper M, Lin C. The action mechanisms of plant cryptochromes. TRENDS IN PLANT SCIENCE 2011; 16:684-91. [PMID: 21983106 PMCID: PMC3277817 DOI: 10.1016/j.tplants.2011.09.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 08/01/2011] [Accepted: 09/05/2011] [Indexed: 05/12/2023]
Abstract
Cryptochromes (CRY) are blue-light receptors that mediate various light responses in plants. The photoexcited CRY molecules undergo several biophysical and biochemical changes, including electron transfer, phosphorylation and ubiquitination, resulting in conformational changes to propagate light signals. Two modes of CRY signal transduction have recently been discovered: the cryptochrome-interacting basic-helix-loop-helix 1 (CIB)-dependent CRY2 regulation of transcription; and the SUPPRESSOR OF PHYA1/CONSTITUTIVELY PHOTOMORPHOGENIC1 (SPA1/COP1)-dependent cryptochrome regulation of proteolysis. Both CRY signaling pathways rely on blue light-dependent interactions between the CRY photoreceptor and its signaling proteins to modulate gene expression changes in response to blue light, leading to altered developmental programs in plants.
Collapse
Affiliation(s)
- Hongtao Liu
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
61
|
Costigan SE, Warnasooriya SN, Humphries BA, Montgomery BL. Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1138-50. [PMID: 21875894 PMCID: PMC3252167 DOI: 10.1104/pp.111.184689] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/25/2011] [Indexed: 05/18/2023]
Abstract
Plants exhibit organ- and tissue-specific light responses. To explore the molecular basis of spatial-specific phytochrome-regulated responses, a transgenic approach for regulating the synthesis and accumulation of the phytochrome chromophore phytochromobilin (PΦB) was employed. In prior experiments, transgenic expression of the BILIVERDIN REDUCTASE (BVR) gene was used to metabolically inactivate biliverdin IXα, a key precursor in the biosynthesis of PΦB, and thereby render cells accumulating BVR phytochrome deficient. Here, we report analyses of transgenic Arabidopsis (Arabidopsis thaliana) lines with distinct patterns of BVR accumulation dependent upon constitutive or tissue-specific, promoter-driven BVR expression that have resulted in insights on a correlation between root-localized BVR accumulation and photoregulation of root elongation. Plants with BVR accumulation in roots and a PΦB-deficient elongated hypocotyl2 (hy2-1) mutant exhibit roots that are longer than those of wild-type plants under white illumination. Additional analyses of a line with root-specific BVR accumulation generated using a GAL4-dependent bipartite enhancer-trap system confirmed that PΦB or phytochromes localized in roots directly impact light-dependent root elongation under white, blue, and red illumination. Additionally, roots of plants with constitutive plastid-localized or root-specific cytosolic BVR accumulation, as well as phytochrome chromophore-deficient hy1-1 and hy2-1 mutants, exhibit reduced sensitivity to the plant hormone jasmonic acid (JA) in JA-dependent root inhibition assays, similar to the response observed for the JA-insensitive mutants jar1 and myc2. Our analyses of lines with root-localized phytochrome deficiency or root-specific phytochrome depletion have provided novel insights into the roles of root-specific PΦB, or phytochromes themselves, in the photoregulation of root development and root sensitivity to JA.
Collapse
|
62
|
Dyachok J, Zhu L, Liao F, He J, Huq E, Blancaflor EB. SCAR mediates light-induced root elongation in Arabidopsis through photoreceptors and proteasomes. THE PLANT CELL 2011; 23:3610-26. [PMID: 21972261 PMCID: PMC3229138 DOI: 10.1105/tpc.111.088823] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/09/2011] [Accepted: 09/17/2011] [Indexed: 05/18/2023]
Abstract
The ARP2/3 complex, a highly conserved nucleator of F-actin, and its activator, the SCAR complex, are essential for growth in plants and animals. In this article, we present a pathway through which roots of Arabidopsis thaliana directly perceive light to promote their elongation. The ARP2/3-SCAR complex and the maintenance of longitudinally aligned F-actin arrays are crucial components of this pathway. The involvement of the ARP2/3-SCAR complex in light-regulated root growth is supported by our finding that mutants of the SCAR complex subunit BRK1/HSPC300, or other individual subunits of the ARP2/3-SCAR complex, showed a dramatic inhibition of root elongation in the light, which mirrored reduced growth of wild-type roots in the dark. SCAR1 degradation in dark-grown wild-type roots by constitutive photomorphogenic 1 (COP1) E3 ligase and 26S proteasome accompanied the loss of longitudinal F-actin and reduced root growth. Light perceived by the root photoreceptors, cryptochrome and phytochrome, suppressed COP1-mediated SCAR1 degradation. Taken together, our data provide a biochemical explanation for light-induced promotion of root elongation by the ARP2/3-SCAR complex.
Collapse
Affiliation(s)
- Julia Dyachok
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Ling Zhu
- Section of Molecular Cell and Developmental Biology and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Fuqi Liao
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Ji He
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Enamul Huq
- Section of Molecular Cell and Developmental Biology and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Elison B. Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
- Address correspondence to
| |
Collapse
|
63
|
Shin DH, Cho MH, Kim TL, Yoo J, Kim JI, Han YJ, Song PS, Jeon JS, Bhoo SH, Hahn TR. A small GTPase activator protein interacts with cytoplasmic phytochromes in regulating root development. J Biol Chem 2010; 285:32151-9. [PMID: 20551316 PMCID: PMC2952216 DOI: 10.1074/jbc.m110.133710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/14/2010] [Indexed: 11/06/2022] Open
Abstract
Phytochromes enable plants to sense light information and regulate developmental responses. Phytochromes interact with partner proteins to transmit light signals to downstream components for plant development. PIRF1 (phytochrome-interacting ROP guanine-nucleotide exchange factor (RopGEF 1)) functions as a light-signaling switch regulating root development through the activation of ROPs (Rho-like GTPase of plant) in the cytoplasm. In vitro pulldown and yeast two-hybrid assays confirmed the interaction between PIRF1 and phytochromes. PIRF1 interacted with the N-terminal domain of phytochromes through its conserved PRONE (plant-specific ROP nucleotide exchanger) region. PIRF1 also interacted with ROPs and activated them in a phytochrome-dependent manner. The Pr form of phytochrome A enhanced the RopGEF activity of PIRF1, whereas the Pfr form inhibited it. A bimolecular fluorescence complementation analysis demonstrated that PIRF1 was localized in the cytoplasm and bound to the phytochromes in darkness but not in light. PIRF1 loss of function mutants (pirf1) of Arabidopsis thaliana showed a longer root phenotype in the dark. In addition, both PIRF1 overexpression mutants (PIRF1-OX) and phytochrome-null mutants (phyA-211 and phyB-9) showed retarded root elongation and irregular root hair formation, suggesting that PIRF1 is a negative regulator of phytochrome-mediated primary root development. We propose that phytochrome and ROP signaling are interconnected through PIRF1 in regulating the root growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Dong Ho Shin
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Man-Ho Cho
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Tae-Lim Kim
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Jihye Yoo
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Jeong-Il Kim
- the Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, and
| | - Yun-Jeong Han
- the Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, and
| | - Pill-Soon Song
- the Faculty of Biotechnology, Jeju National University, Jeju 690-756, Korea
| | - Jong-Seong Jeon
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Seong Hee Bhoo
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| | - Tae-Ryong Hahn
- From the Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University, Yongin 446-701
| |
Collapse
|
64
|
Yu X, Liu H, Klejnot J, Lin C. The Cryptochrome Blue Light Receptors. THE ARABIDOPSIS BOOK 2010; 8:e0135. [PMID: 21841916 PMCID: PMC3155252 DOI: 10.1199/tab.0135] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cryptochromes are photolyase-like blue light receptors originally discovered in Arabidopsis but later found in other plants, microbes, and animals. Arabidopsis has two cryptochromes, CRY1 and CRY2, which mediate primarily blue light inhibition of hypocotyl elongation and photoperiodic control of floral initiation, respectively. In addition, cryptochromes also regulate over a dozen other light responses, including circadian rhythms, tropic growth, stomata opening, guard cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Cryptochromes have two domains, the N-terminal PHR (Photolyase-Homologous Region) domain that bind the chromophore FAD (flavin adenine dinucleotide), and the CCE (CRY C-terminal Extension) domain that appears intrinsically unstructured but critical to the function and regulation of cryptochromes. Most cryptochromes accumulate in the nucleus, and they undergo blue light-dependent phosphorylation or ubiquitination. It is hypothesized that photons excite electrons of the flavin molecule, resulting in redox reaction or circular electron shuttle and conformational changes of the photoreceptors. The photoexcited cryptochrome are phosphorylated to adopt an open conformation, which interacts with signaling partner proteins to alter gene expression at both transcriptional and posttranslational levels and consequently the metabolic and developmental programs of plants.
Collapse
Affiliation(s)
- Xuhong Yu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Hongtao Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - John Klejnot
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
65
|
Zeng J, Wang Q, Lin J, Deng K, Zhao X, Tang D, Liu X. Arabidopsis cryptochrome-1 restrains lateral roots growth by inhibiting auxin transport. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:670-673. [PMID: 20133010 DOI: 10.1016/j.jplph.2009.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 12/22/2009] [Accepted: 12/22/2009] [Indexed: 05/28/2023]
Abstract
Cryptochromes are blue-light photoreceptors that control many aspects of plant development. In this study, cryptochrome mutants of Arabidopsis were examined to assess the role of cryptchrome-1 (CRY1) in lateral roots growth. When grown in blue light for 12d, mutant seedlings (cry1) showed increased growth of lateral roots, while CRY1-overexpressing transgenic seedlings (CRY1ox) exhibited a marked decrease. Lateral roots growth of CRY1ox could be stimulated by auxin, but expression of PIN1 (efflux carrier of polar auxin transport) was strongly reduced. Contrary, the cry1 mutation showed the opposite effect, indicating that blue light and the auxin-signaling pathway interact in lateral roots growth of Arabidopsis. The free IAA content in CRY1ox roots was half of that in wild type and cry1 mutant roots. Moreover, the content of flavonoids (quercetin, kaempferol, isorhamnetin), which act as endogenous negative regulators of auxin transport, increased in CRY1ox seedlings. Taken together, these results suggest that Arabidopsis CRY1 restrains lateral roots growth by inhibiting auxin transport.
Collapse
Affiliation(s)
- Jianxin Zeng
- Bioenergy and Biomaterial Research Center, Bioscience and Biotechnology Institute, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Light is vital for plant growth and development: It provides energy for photosynthesis, but also reliable information on seasonal timing and local habitat conditions. Light sensing is therefore of paramount importance for plants. Thus, plants have evolved sophisticated light receptors and signaling networks that detect and respond to changes in light intensity, duration, and spectral quality. Environmental light signals can drive developmental transitions such as germination and flowering, but they also continuously shape development to allow adaptation to the local habitat and microclimate. The ability to respond to a changing and sometimes unfavorable environment underlies the huge success of plants. Much of this growth and developmental plasticity is achieved by light modulation of auxin signaling systems. In this article, we examine the connections between light and auxin that elicit local responses, long distance signaling, and coordinated growth between the shoot and root.
Collapse
Affiliation(s)
- Karen J Halliday
- Institute of Molecular Plant Sciences, Edinburgh University, Edinburgh, UK.
| | | | | |
Collapse
|
67
|
Xu P, Xiang Y, Zhu H, Xu H, Zhang Z, Zhang C, Zhang L, Ma Z. Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses. PLANT PHYSIOLOGY 2009; 149:760-74. [PMID: 19052154 PMCID: PMC2633824 DOI: 10.1104/pp.108.132217] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/28/2008] [Indexed: 05/18/2023]
Abstract
Cryptochromes (CRYs) are blue light receptors important for plant growth and development. Comprehensive information on monocot CRYs is currently only available for rice (Oryza sativa). We report here the molecular and functional characterization of two CRY genes, TaCRY1a and TaCRY2, from the monocot wheat (Triticum aestivum). The expression of TaCRY1a was most abundant in seedling leaves and barely detected in roots and germinating embryos under normal growth conditions. The expression of TaCRY2 in germinating embryos was equivalent to that in leaves and much higher than the TaCRY1a counterpart. Transition from dark to light slightly affected the expression of TaCRY1a and TaCRY2 in leaves, and red light produced a stronger induction of TaCRY1a. Treatment of seedlings with high salt, polyethylene glycol, and abscisic acid (ABA) up-regulated TaCRY2 in roots and germinating embryos. TaCRY1a displays a light-responsive nucleocytoplasmic shuttling pattern similar to that of Arabidopsis (Arabidopsis thaliana) CRY1, contains nuclear localization domains in both the N and C termini, and includes information for nuclear export in its N-terminal domain. TaCRY2 was localized to the nucleus in the dark. Expression of TaCRY1a-green fluorescent protein or TaCRY2-green fluorescent protein in Arabidopsis conferred a shorter hypocotyl phenotype under blue light. These transgenic Arabidopsis plants showed higher sensitivity to high-salt, osmotic stress, and ABA treatment during germination and postgermination development, and they displayed altered expression of stress/ABA-responsive genes. The primary root growth in transgenic seedlings was less tolerant of ABA. These observations indicate that TaCRY1 and TaCRY2 might be involved in the ABA signaling pathway in addition to their role in primary blue light signal transduction.
Collapse
Affiliation(s)
- Pei Xu
- Applied Plant Genomics Laboratory, Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Jiangsu 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
68
|
HFR1 is crucial for transcriptome regulation in the cryptochrome 1-mediated early response to blue light in Arabidopsis thaliana. PLoS One 2008; 3:e3563. [PMID: 18974779 PMCID: PMC2570330 DOI: 10.1371/journal.pone.0003563] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 10/10/2008] [Indexed: 12/24/2022] Open
Abstract
Cryptochromes are blue light photoreceptors involved in development and circadian clock regulation. They are found in both eukaryotes and prokaryotes as light sensors. Long Hypocotyl in Far-Red 1 (HFR1) has been identified as a positive regulator and a possible transcription factor in both blue and far-red light signaling in plants. However, the gene targets that are regulated by HFR1 in cryptochrome 1 (cry1)-mediated blue light signaling have not been globally addressed. We examined the transcriptome profiles in a cry1- and HFR1-dependent manner in response to 1 hour of blue light. Strikingly, more than 70% of the genes induced by blue light in an HFR1-dependent manner were dependent on cry1, and vice versa. High overrepresentation of W-boxes and OCS elements were found in these genes, indicating that this strong cry1 and HFR1 co-regulation on gene expression is possibly through these two cis-elements. We also found that cry1 was required for maintaining the HFR1 protein level in blue light, and that the HFR1 protein level is strongly correlated with the global gene expression pattern. In summary, HFR1, which is fine-tuned by cry1, is crucial for regulating global gene expression in cry1-mediated early blue light signaling, especially for the function of genes containing W-boxes and OCS elements.
Collapse
|
69
|
Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry). Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
70
|
Nagashima A, Suzuki G, Uehara Y, Saji K, Furukawa T, Koshiba T, Sekimoto M, Fujioka S, Kuroha T, Kojima M, Sakakibara H, Fujisawa N, Okada K, Sakai T. Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:516-529. [PMID: 18086281 DOI: 10.1111/j.1365-313x.2007.03358.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photoreceptors, phytochromes and cryptochromes regulate hypocotyl growth under specific conditions, by suppressing negative gravitropism, modulating phototropism and inhibiting elongation. Although these effects seem to be partially caused via the regulation of the phytohormone auxin, the molecular mechanisms underlying this process are still poorly understood. In our present study, we demonstrate that the flabby mutation enhances both phytochrome- and cryptochrome-inducible hypocotyl bending in Arabidopsis. The FLABBY gene encodes the ABC-type auxin transporter, PGP19, and its expression is suppressed by the activation of phytochromes and cryptochromes. Our current results therefore indicate that the phytochromes and cryptochromes have at least two effects upon the tropic responses of the hypocotyls in Arabidopsis: the enhancement of hypocotyl bending through the suppression of PGP19, and a PGP19-independent mechanism that induces hypocotyl bending. By the using an auxin polar transport assay and DR5:GUS expression analysis, we further find that the phytochromes inhibit basipetal auxin transport, and induce the asymmetric distribution of auxin in the hypocotyls. These data suggest that the control of auxin transport by phytochromes and cryptochromes is a critical regulatory component of hypocotyl growth in response to light.
Collapse
Affiliation(s)
- Akitomo Nagashima
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230 0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Yang YJ, Zuo ZC, Zhao XY, Li X, Klejnot J, Li Y, Chen P, Liang SP, Yu XH, Liu XM, Lin CT. Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression. MOLECULAR PLANT 2008; 1:167-77. [PMID: 20031923 DOI: 10.1093/mp/ssm018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cryptochromes are blue-light receptors that mediate blue-light inhibition of hypocotyl elongation and blue-light stimulation of floral initiation in Arabidopsis. In addition to their blue-light-dependent functions, cryptochromes are also involved in blue-light-independent regulation of the circadian clock, cotyledon unfolding, and hypocotyl inhibition. However, the molecular mechanism associated with the blue-light-independent function of cryptochromes remains unclear. We reported here a comparative proteomics study of the light regulation of protein expression. We showed that, as expected, the protein expression of many metabolic enzymes changed in response to both blue light and red light. Surprisingly, some light-regulated protein expression changes are impaired in the cry1cry2 mutant in both blue light and red light. This result suggests that, in addition to mediating blue-light-dependent regulation of protein expression, cryptochromes are also involved in the blue-light-independent regulation of gene expression. Consistent with this hypothesis, the cry1cry2 mutant exhibited reduced changes of mRNA expression in response to not only blue light, but also red light, although the cryptochrome effects on the red-light-dependent gene expression changes are generally less pronounced. These results support a hypothesis that, in addition to their blue-light-specific functions, cryptochromes also play roles in the control of gene expression mediated by the red/far-red-light receptor phytochromes.
Collapse
Affiliation(s)
- Yue-Jun Yang
- Bioenergy and Biomaterial Research Center, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc Natl Acad Sci U S A 2007; 104:18813-8. [PMID: 18003924 DOI: 10.1073/pnas.0705082104] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cryptochrome blue-light receptors mediate many aspects of plant photomorphogenesis, such as suppression of hypocotyl elongation and promotion of cotyledon expansion and root growth. The cryptochrome 1 (cry1) protein of Arabidopsis is present in the nucleus and cytoplasm of cells, but how the functions of one pool differ from the other is not known. Nuclear localization and nuclear export signals were genetically engineered into GFP-tagged cry1 molecules to manipulate cry1 subcellular localization in a cry1-null mutant background. The effectiveness of the engineering was confirmed by confocal microscopy. The ability of nuclear or cytoplasmic cry1 to rescue a variety of cry1 phenotypes was determined. Hypocotyl growth suppression by blue light was assessed by standard end-point analyses and over time with high resolution by a custom computer-vision technique. Both assays indicated that nuclear, rather than cytoplasmic, cry1 was the effective molecule in these growth inhibitions, as was the case for the mechanistically linked membrane depolarization, which occurs within several seconds of cry1 activation. Petiole elongation also was inhibited by nuclear, but not cytoplasmic, cry1. Conversely, primary root growth and cotyledon expansion in blue light were promoted by cytoplasmic cry1 and inhibited by nuclear cry1. Anthocyanin production in response to blue light was strongly stimulated by nuclear cry1 and, to a lesser extent, by cytoplasmic cry1. An important step toward elucidation of cry1 signaling pathways is the recognition that different subcellular pools of the photoreceptor have different functions.
Collapse
|
73
|
Abstract
Cryptochromes are blue light receptors that mediate various light-induced responses in plants and animals. They share sequence similarity to photolyases, flavoproteins that catalyze the repair of UV light-damaged DNA, but do not have photolyase activity. Arabidopsis cryptochromes work together with the red/far-red light receptor phytochromes to regulate various light responses, including the regulation of cell elongation and photoperiodic flowering, and are also found to act together with the blue light receptor phototropins to mediate blue light regulation of stomatal opening. The signaling mechanism of Arabidopsis cryptochromes is mediated through negative regulation of COP1 by direct CRY-COP1 interaction through CRY C-terminal domain. Arabidopsis CRY dimerized through its N-terminal domain and dimerization of CRY is required for light activation of the photoreceptor activity. Recently, significant progresses have been made in our understanding of cryptochrome functions in other dicots such as pea and tomato and lower plants including moss and fern. This review will focus on recent advances in functional and mechanism characterization of cryptochromes in plants. It is not intended to cover every aspect of the field; readers are referred to other review articles for historical perspectives and a more comprehensive understanding of this photoreceptor.
Collapse
Affiliation(s)
- Qing-Hua Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
74
|
Salisbury FJ, Hall A, Grierson CS, Halliday KJ. Phytochrome coordinates Arabidopsis shoot and root development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:429-38. [PMID: 17419844 DOI: 10.1111/j.1365-313x.2007.03059.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The phytochrome family of photoreceptors are potent regulators of plant development, affecting a broad range of responses throughout the plant life cycle, including hypocotyl elongation, leaf expansion and apical dominance. The plant hormone auxin has previously been linked to these phytochrome-mediated responses; however, these studies have not identified the molecular mechanisms that underpin such extensive phytochrome and auxin cross-talk. In this paper, we show that phytochrome regulates the emergence of lateral roots, at least partly by manipulating auxin distribution within the seedling. Thus, shoot-localized phytochrome is able to act over long distances, through manipulation of auxin, to regulate root development. This work reveals an important role for phytochrome as a coordinator of shoot and root development, and provides insights into how phytochrome is able to exert such a powerful effect on growth and development. This new link between phytochrome and auxin may go some way to explain the extensive overlap in responses mediated by these two developmental regulators.
Collapse
Affiliation(s)
- Frances J Salisbury
- Institute of Molecular Plant Sciences, Edinburgh University, Kings Buildings, Mayfield Road, Edinburgh, EH9 3JR, UK
| | | | | | | |
Collapse
|
75
|
Usami T, Matsushita T, Oka Y, Mochizuki N, Nagatani A. Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades. PLANT & CELL PHYSIOLOGY 2007; 48:424-33. [PMID: 17251203 DOI: 10.1093/pcp/pcm012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants fine-tune light responses through interactions between photoreceptors. We have previously reported that the greening of Arabidopsis thaliana roots is regulated synergistically by phytochromes and cryptochromes. In the present study, we investigated the functions of the N- and C-terminal domains of phytochrome B (phyB) in the interactions between phyB and cryptochrome signaling cascades. Transgenic Arabidopsis expressing the phyB N-terminal domain fused to green fluorescent protein (GFP), beta-glucuronidase (GUS) and the nuclear localization signal (NLS) showed intense root greening under blue light, indicating that the C-terminal domain was dispensable for the synergistic interaction in the induction of root greening. However, root greening under red light was substantially reduced in the absence of the C-terminal domain. This effect was opposite to the previous observation that removal of the C-terminal domain enhanced the signaling activity of phyB in the inhibition of hypocotyl elongation. In addition, we found that overexpression of the isolated C-terminal domain of phyB enhanced the blue light response not only for root greening but also for the inhibition of hypocotyl elongation. Analysis of this activity on various photoreceptor mutant backgrounds demonstrated that the isolated C-terminal domain enhanced cryptochrome signaling. In summary, these results demonstrate that different domains of phyB can play various roles which are dependent on light conditions as well as on the specific physiological response.
Collapse
Affiliation(s)
- Takeshi Usami
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
76
|
Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M. Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 2007; 282:9383-9391. [PMID: 17237227 DOI: 10.1074/jbc.m609842200] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cryptochromes are blue light-sensing photoreceptors found in plants, animals, and humans. They are known to play key roles in the regulation of the circadian clock and in development. However, despite striking structural similarities to photolyase DNA repair enzymes, cryptochromes do not repair double-stranded DNA, and their mechanism of action is unknown. Recently, a blue light-dependent intramolecular electron transfer to the excited state flavin was characterized and proposed as the primary mechanism of light activation. The resulting formation of a stable neutral flavin semiquinone intermediate enables the photoreceptor to absorb green/yellow light (500-630 nm) in addition to blue light in vitro. Here, we demonstrate that Arabidopsis cryptochrome activation by blue light can be inhibited by green light in vivo consistent with a change of the cofactor redox state. We further characterize light-dependent changes in the cryptochrome1 (cry1) protein in living cells, which match photoreduction of the purified cry1 in vitro. These experiments were performed using fluorescence absorption/emission and EPR on whole cells and thereby represent one of the few examples of the active state of a known photoreceptor being monitored in vivo. These results indicate that cry1 activation via blue light initiates formation of a flavosemiquinone signaling state that can be converted by green light to an inactive form. In summary, cryptochrome activation via flavin photoreduction is a reversible mechanism novel to blue light photoreceptors. This photocycle may have adaptive significance for sensing the quality of the light environment in multiple organisms.
Collapse
Affiliation(s)
- Jean-Pierre Bouly
- Université Paris VI, FRE-CNRS 2846, Casier 156, 4 Place Jussieu, 75005 Paris, France
| | - Erik Schleicher
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Maribel Dionisio-Sese
- FB Biologie-Pflanzenphysiologie, Philipps-Universität, Karl-von-Frisch-Strasse 8, 35032 Marburg, Germany
| | - Filip Vandenbussche
- Université Paris VI, FRE-CNRS 2846, Casier 156, 4 Place Jussieu, 75005 Paris, France; Unit Plant Hormone Signaling and Bio-imaging, Department of Molecular Genetics, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | - Nadia Bakrim
- Université Paris VI, FRE-CNRS 2846, Casier 156, 4 Place Jussieu, 75005 Paris, France
| | - Stefan Meier
- FB Biologie-Pflanzenphysiologie, Philipps-Universität, Karl-von-Frisch-Strasse 8, 35032 Marburg, Germany
| | - Alfred Batschauer
- FB Biologie-Pflanzenphysiologie, Philipps-Universität, Karl-von-Frisch-Strasse 8, 35032 Marburg, Germany
| | - Paul Galland
- FB Biologie-Pflanzenphysiologie, Philipps-Universität, Karl-von-Frisch-Strasse 8, 35032 Marburg, Germany
| | - Robert Bittl
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Margaret Ahmad
- Université Paris VI, FRE-CNRS 2846, Casier 156, 4 Place Jussieu, 75005 Paris, France; Pennsylvania State University, Media, Pennsylvania 19063.
| |
Collapse
|