51
|
Abstract
There is growing interest in the interaction between skeletal muscle and bone, particularly at the genetic and molecular levels. However, the genetic and molecular linkages between muscle and bone are achieved only within the context of the essential mechanical coupling of the tissues. This biomechanical and physiological linkage is readily evident as muscles attach to bone and induce exposure to varied mechanical stimuli via functional activity. The responsiveness of bone cells to mechanical stimuli, or their absence, is well established. However, questions remain regarding how muscle forces applied to bone serve to modulate bone homeostasis and adaptation. Similarly, the contributions of varied, but unique, stimuli generated by muscle to bone (such as low-magnitude, high-frequency stimuli) remains to be established. The current article focuses upon the mechanical relationship between muscle and bone. In doing so, we explore the stimuli that muscle imparts upon bone, models that enable investigation of this relationship, and recent data generated by these models.
Collapse
Affiliation(s)
- Keith G. Avin
- Center for Translational Musculoskeletal Research and Department of Physical Therapy, School of the Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St., CF-120, Indianapolis, IN, USA,
| | - Susan A. Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA,
| | - Ted S. Gross
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA,
| | - Stuart J. Warden
- Center for Translational Musculoskeletal Research and Department of Physical Therapy, School of the Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St., CF-120, Indianapolis, IN, USA
| |
Collapse
|
52
|
Galea GL, Hannuna S, Meakin LB, Delisser PJ, Lanyon LE, Price JS. Quantification of Alterations in Cortical Bone Geometry Using Site Specificity Software in Mouse models of Aging and the Responses to Ovariectomy and Altered Loading. Front Endocrinol (Lausanne) 2015; 6:52. [PMID: 25954246 PMCID: PMC4407614 DOI: 10.3389/fendo.2015.00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/03/2015] [Indexed: 11/13/2022] Open
Abstract
Investigations into the effect of (re)modeling stimuli on cortical bone in rodents normally rely on analysis of changes in bone mass and architecture at a narrow cross-sectional site. However, it is well established that the effects of axial loading produce site-specific changes throughout bones' structure. Non-mechanical influences (e.g., hormones) can be additional to or oppose locally controlled adaptive responses and may have more generalized effects. Tools currently available to study site-specific cortical bone adaptation are limited. Here, we applied novel site specificity software to measure bone mass and architecture at each 1% site along the length of the mouse tibia from standard micro-computed tomography (μCT) images. Resulting measures are directly comparable to those obtained through μCT analysis (R (2) > 0.96). Site Specificity analysis was used to compare a number of parameters in tibiae from young adult (19-week-old) versus aged (19-month-old) mice; ovariectomized and entire mice; limbs subjected to short periods of axial loading or disuse induced by sciatic neurectomy. Age was associated with uniformly reduced cortical thickness and site-specific decreases in cortical area most apparent in the proximal tibia. Mechanical loading site-specifically increased cortical area and thickness in the proximal tibia. Disuse uniformly decreased cortical thickness and decreased cortical area in the proximal tibia. Ovariectomy uniformly reduced cortical area without altering cortical thickness. Differences in polar moment of inertia between experimental groups were only observed in the proximal tibia. Aging and ovariectomy also altered eccentricity in the distal tibia. In summary, site specificity analysis provides a valuable tool for measuring changes in cortical bone mass and architecture along the entire length of a bone. Changes in the (re)modeling response determined at a single site may not reflect the response at different locations within the same bone.
Collapse
Affiliation(s)
- Gabriel L. Galea
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- *Correspondence: Gabriel L. Galea, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - Sion Hannuna
- Faculty of Engineering, University of Bristol, Bristol, UK
| | - Lee B. Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | - Lance E. Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
53
|
Comai G, Sambasivan R, Gopalakrishnan S, Tajbakhsh S. Variations in the Efficiency of Lineage Marking and Ablation Confound Distinctions between Myogenic Cell Populations. Dev Cell 2014; 31:654-67. [DOI: 10.1016/j.devcel.2014.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 06/16/2014] [Accepted: 11/04/2014] [Indexed: 11/24/2022]
|
54
|
Uchiyama E, Kim JH, Abe H, Cho BH, Rodríguez-Vázquez JF, Murakami G. Fetal development of ligaments around the tarsal bones with special reference to contribution of muscles. Clin Anat 2014; 27:389-98. [PMID: 23712742 DOI: 10.1002/ca.22247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/27/2013] [Accepted: 03/03/2013] [Indexed: 11/08/2022]
Abstract
Through a histological examination of eight mid-term human fetuses (10-15 weeks) and seven late-stage fetuses (30-34 weeks), we attempted to determine how and when fetal ligaments around the tarsal bones form the regular arrangement seen in adults. Ligaments along the dorsal aspect of the tarsal bones developed early as an elongation of the perichondrium, in contrast to the late development of the plantar-sided ligaments. In contrast, a distal elongation of the tibialis posterior tendon was a limited plantar ligament in the early stage; finally, it extended from the navicular, ran obliquely to cross the dorsal side of the fibularis longus tendon, and inserted to the lateral cuneiform and fourth metatarsal. In the late stage, the adductor hallucis muscle origin provided multiple ligamentous structures along the cuneiforms and metatarsals. The tarsal sinus contained multiple fibrous bundles (possibly, the putative interosseous talocalcanean ligaments) that were derived from (1) insertion tendons of the extensor digitorus brevis muscle and (2) the fibrous sheath of the extensor digitorus longus tendon. The aponeurotic origin of the quadratus plantae muscle seemed to contribute to formation of the long plantar ligament. Therefore, tarsal ligaments appeared likely to develop from the long tendons, their fibrous sheaths and aponeuroses and intramuscular tendons of the proper foot muscles. Under in utero conditions with little or no stress from the plantar side of the foot, the muscle-associated connective tissue seems to play a crucial role in providing a regular arrangement of the ligaments in accordance with tensile stress from muscle contraction.
Collapse
Affiliation(s)
- Eiichi Uchiyama
- Department of Basic Physical Therapy, Sapporo Medical University School of Health Science, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
55
|
Pollard AS, McGonnell IM, Pitsillides AA. Mechanoadaptation of developing limbs: shaking a leg. J Anat 2014; 224:615-23. [PMID: 24635640 DOI: 10.1111/joa.12171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
The proportion of total limb length taken up by the individual skeletal elements (limb proportionality), varies widely between species. These diverse skeletal forms have evolved to allow for a range of limb uses and they first emerge as the embryo develops, to achieve the characteristic skeletal architecture of each species. During this time, the developing skeleton experiences mechanical loading as a result of embryonic muscle contraction. The possibility that adaptation to such mechanical input may allow embryos to coordinate the appearance of skeletal design with their expanding range of movements has so far received little attention. This is surprising, given the critical role exerted by embryo movement in normal skeletal development; stage-specific in ovo immobilisation of embryonic chicks results in joint contractures and a reduction in longitudinal bone growth in the limbs. Epigenetic mechanisms allow for selective activation of genes in response to environmental signals, resulting in the production of phenotypic complexity in morphogenesis; mechanical loading of bone during movement appears to be one such signal. It may be that 'mechanosensitive' genes under regulation of mechanical input adjust proportionality along the bone's proximo-distal axis, introducing a level of phenotypic plasticity. If this hypothesis is upheld, species with more elongated distal limb elements will have a greater dependence on mechanical input for the differences in their growth, and mechanosensitive bone growth in the embryo may have evolved as an additional source of phenotypic diversity during skeletal development.
Collapse
Affiliation(s)
- A S Pollard
- Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | | | |
Collapse
|
56
|
Lane J, Kaartinen V. Signaling networks in palate development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:271-8. [PMID: 24644145 DOI: 10.1002/wsbm.1265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Palatogenesis, the formation of the palate, is a dynamic process regulated by a complex series of context-dependent morphogenetic signaling events. Many genes involved in palatogenesis have been discovered through the use of genetically manipulated mouse models as well as from human genetic studies, but the roles of these genes and their products in signaling networks regulating palatogenesis are still poorly known. In this review, we give a brief overview on palatogenesis and introduce key signaling cascades leading to formation of the intact palate. Moreover, we review conceptual differences between pathway biology and network biology and discuss how some of the recent technological advances in conjunction with mouse genetic models have contributed to our understanding of signaling networks regulating palate growth and fusion. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | |
Collapse
|
57
|
Kim JH, Parkkila S, Shibata S, Fujimiya M, Murakami G, Cho BH. Expression of carbonic anhydrase IX in human fetal joints, ligaments and tendons: a potential marker of mechanical stress in fetal development? Anat Cell Biol 2013; 46:272-84. [PMID: 24386600 PMCID: PMC3875845 DOI: 10.5115/acb.2013.46.4.272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2013] [Accepted: 09/27/2013] [Indexed: 11/27/2022] Open
Abstract
Carbonic anhydrase type IX (CA9) is known to express in the fetal joint cartilage to maintain pH against hypoxia. Using paraffin-embedded histology of 10 human fetuses at 10-16 weeks of gestation with an aid of immunohistochemistry of the intermediate filaments, matrix components (collagen types I and II, aggrecan, versican, fibronectin, tenascin, and hyaluronan) and CA9, we observed all joints and most of the entheses in the body. At any stages examined, CA9-poisitive cells were seen in the intervertebral disk and all joint cartilages including those of the facet joint of the vertebral column, but the accumulation area was reduced in the larger specimens. Glial fibrillary acidic protein (GFAP), one of the intermediate filaments, expressed in a part of the CA9-positive cartilages. Developing elastic cartilages were positive both of CA9 and GFAP. Notably, parts of the tendon or ligament facing to the joint, such as the joint surface of the annular ligament of the radius, were also positive for CA9. A distribution of each matrix components examined was not same as CA9. The bone-tendon and bone-ligament interface expressed CA9, but the duration at a site was limited to 3-4 weeks because the positive site was changed between stages. Thus, in the fetal entheses, CA9 expression displayed highly stage-dependent and site-dependent manners. CA9 in the fetal entheses seemed to play an additional role, but it was most likely to be useful as an excellent marker of mechanical stress at the start of enthesis development.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Anatomy, Chonbuk National University Medical School, Jeonju, Korea
| | - Seppo Parkkila
- Department of Anatomy, Institute of Bioscience and Medical Technology, University of Tampere, Tampere, Finland
| | - Shunichi Shibata
- Maxillofacial Anatomy, Department of Maxillofacial Biology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, Japan
| | - Baik Hwan Cho
- Department of Surgery and Research Institute of Clinical Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
58
|
Shwartz Y, Blitz E, Zelzer E. One load to rule them all: Mechanical control of the musculoskeletal system in development and aging. Differentiation 2013; 86:104-11. [DOI: 10.1016/j.diff.2013.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/01/2013] [Accepted: 07/12/2013] [Indexed: 12/24/2022]
|
59
|
Lin CY, Lee HC, Chen HC, Hsieh CC, Tsai HJ. Normal function of Myf5 during gastrulation is required for pharyngeal arch cartilage development in zebrafish embryos. Zebrafish 2013; 10:486-99. [PMID: 23992145 DOI: 10.1089/zeb.2013.0903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myf5, a myogenic regulatory factor, plays a key role in regulating muscle differentiation. However, it is not known if Myf5 has a regulatory role during early embryogenesis. Here, we used myf5-morpholino oligonucleotides [MO] to knock down myf5 expression and demonstrated a series of results pointing to the functional roles of Myf5 during early embryogenesis: (1) reduced head size resulting from abnormal morphology in the cranial skeleton; (2) decreased expressions of the cranial neural crest (CNC) markers foxd3, sox9a, dlx2, and col2a1; (3) defect in the chondrogenic neural crest similar to that of fgf3 morphants; (4) reduced fgf3/fgf8 transcripts in the cephalic mesoderm rescued by co-injection of myf5 wobble-mismatched mRNA together with myf5-MO1 during 12 h postfertilization; (5) abnormal patterns of axial and non-axial mesoderm causing expansion of the dorsal organizer, and (6) increased bmp4 gradient, but reduced fgf3/fgf8 marginal gradient, during gastrulation. Interestingly, overexpression of fgf3 could rescue the cranial cartilage defects caused by myf5-MO1, suggesting that Myf5 modulates craniofacial cartilage development through the fgf3 signaling pathway. Together, the loss of Myf5 function results in a cascade effect that begins with abnormal formation of the dorsal organizer during gastrulation, causing, in turn, defects in the CNC and cranial cartilage of myf5-knockdown embryos.
Collapse
Affiliation(s)
- Cheng-Yung Lin
- Institute of Molecular and Cellular Biology, National Taiwan University , Taipei, Taiwan
| | | | | | | | | |
Collapse
|
60
|
Hayashi S, Kim JH, Rodriguez-Vazquez JF, Murakami G, Fukuzawa Y, Asamoto K, Nakano T. Influence of developing ligaments on the muscles in contact with them: a study of the annular ligament of the radius and the sacrospinous ligament in mid-term human fetuses. Anat Cell Biol 2013; 46:149-56. [PMID: 23869262 PMCID: PMC3713279 DOI: 10.5115/acb.2013.46.2.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 11/27/2022] Open
Abstract
The supinator muscle originates from the annular ligament of the radius, and the muscle fibers and ligament take a similar winding course. Likewise, the coccygeus muscle and the sacrospinous ligament are attached together, and show a similar fiber orientation. During dissection of adult cadavers for our educational curriculum, we had the impression that these ligaments grow in combination with degeneration of parts of the muscles. In histological sections of 25 human fetuses at 10-32 weeks of gestation, we found that the proximal parts of the supinator muscle were embedded in collagenous tissue when the developing annular ligament of the radius joined the thick intermuscular connecting band extending between the extensor carpi radialis and anconeus muscles at 18-22 weeks of gestation, and the anterior parts of the coccygeus muscle were surrounded by collagenous tissue when the intramuscular tendon became the sacrospinous ligament at 28-32 weeks. Parts of these two muscles each seemed to provide a mold for the ligament, and finally became involved with it. This may be the first report to indicate that a growing ligament has potential to injure parts of the "mother muscle," and that this process may be involved in the initial development of the ligament.
Collapse
Affiliation(s)
- Shogo Hayashi
- Medical Education Center, Aichi Medical University School of Medicine, Aichi, Japan. ; Department of Anatomy, Aichi Medical University School of Medicine, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Cox BN. How the tooth got its stripes: patterning via strain-cued motility. J R Soc Interface 2013; 10:20130266. [PMID: 23614945 PMCID: PMC3673165 DOI: 10.1098/rsif.2013.0266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 04/02/2013] [Indexed: 11/12/2022] Open
Abstract
We hypothesize that a population of migrating cells can form patterns when changes in local strains owing to relative cell motions induce changes in cell motility. That the mechanism originates in competing rates of motion distinguishes it from mechanisms involving strain energy gradients, e.g. those generated by surface energy effects or eigenstrains among cells, and diffusion-reaction mechanisms involving chemical signalling factors. The theory is tested by its ability to reproduce the morphological characteristics of enamel in the mouse incisor. Dental enamel is formed during amelogenesis by a population of ameloblasts that move about laterally within an expanding curved sheet, subject to continuously evolving spatial and temporal gradients in strain. Discrete-cell simulations of this process compute the changing strain environment of all cells and predict cell trajectories by invoking simple rules for the motion of an individual cell in response to its strain environment. The rules balance a tendency for cells to enhance relative sliding motion against a tendency to maintain uniform cell-cell separation. The simulations account for observed waviness in the enamel microstructure, the speed and shape of the 'commencement front' that separates domains of migrating secretory-stage ameloblasts from those that are not yet migrating, the initiation and sustainment of layered, fracture-resistant decussation patterns (cross-plied microstructure) and the transition from decussating inner enamel to non-decussating outer enamel. All these characteristics can be correctly predicted with the use of a single scalar adjustable parameter.
Collapse
Affiliation(s)
- Brian N Cox
- Teledyne Scientific & Imaging Co. LLC, Thousand Oaks, CA 91360, USA.
| |
Collapse
|
62
|
Abstract
Development of the various components of a normal skeleton requires highly regulated signalling systems that co-ordinate spatial and temporal patterns of cell division, cell differentiation, and morphogenesis. Much work in recent decades has revealed cascades of molecular signalling, acting through key transcription factors to regulate, for example, organized chondrogenic and osteogenic differentiation. It is now clear that mechanical stimuli are also required for aspects of skeletogenesis but very little is known about how the mechanical signals are integrated with classic biochemical signalling. Spatially organized differentiation is vital to the production of functionally appropriate tissues contributing to precise, region specific morphologies, for example transient chondrogenesis of long bone skeletal rudiments, which prefigures osteogenic replacement of the cartilage template, compared with the production of permanent cartilage at the sites of articulation. Currently a lack of understanding of how these tissues are differentially regulated hampers efforts to specifically regenerate stable bone and cartilage. Here, we review current research revealing the influence of mechanical stimuli on specific aspects of skeletal development and refer to other developing systems to set the scene for current and future work to uncover the molecular mechanisms involved. We integrate this with a brief overview of the effects of mechanical stimulation on stem cells in culture bringing together developmental and tissue engineering aspects of mechanoregulation of cell behavior. A better understanding of the molecular mechanisms that link mechanical stimuli to transcriptional control guiding cell differentiation will lead to new ideas about how to effectively prime stem cells for tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Rebecca Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
63
|
Shwartz Y, Farkas Z, Stern T, Aszódi A, Zelzer E. Muscle contraction controls skeletal morphogenesis through regulation of chondrocyte convergent extension. Dev Biol 2012; 370:154-63. [PMID: 22884393 DOI: 10.1016/j.ydbio.2012.07.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 02/01/2023]
Abstract
Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models.
Collapse
Affiliation(s)
- Yulia Shwartz
- Department of Molecular Genetics, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
64
|
Jones BA, Pei M. Synovium-Derived Stem Cells: A Tissue-Specific Stem Cell for Cartilage Engineering and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:301-11. [PMID: 22429320 DOI: 10.1089/ten.teb.2012.0002] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Brendan A. Jones
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University, Morgantown, West Virginia
- Division of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
65
|
Hugi J, Hutchinson MN, Koyabu D, Sánchez-Villagra MR. Heterochronic shifts in the ossification sequences of surface- and subsurface-dwelling skinks are correlated with the degree of limb reduction. ZOOLOGY 2012; 115:188-98. [DOI: 10.1016/j.zool.2011.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/26/2011] [Accepted: 10/13/2011] [Indexed: 01/22/2023]
|
66
|
Nowlan NC, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Biophysical stimuli induced by passive movements compensate for lack of skeletal muscle during embryonic skeletogenesis. Biomech Model Mechanobiol 2012; 11:207-19. [PMID: 21505895 PMCID: PMC4794622 DOI: 10.1007/s10237-011-0304-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/19/2011] [Indexed: 01/29/2023]
Abstract
In genetically modified mice with abnormal skeletal muscle development, bones and joints are differentially affected by the lack of skeletal muscle. We hypothesise that unequal levels of biophysical stimuli in the developing humerus and femur can explain the differential effects on these rudiments when muscle is absent. We find that the expression patterns of four mechanosensitive genes important for endochondral ossification are differentially affected in muscleless limb mutants, with more extreme changes in the expression in the humerus than in the femur. Using finite element analysis, we show that the biophysical stimuli induced by muscle forces are similar in the humerus and femur, implying that the removal of muscle contractile forces should, in theory, affect the rudiments equally. However, simulations in which a displacement was applied to the end of the limb, such as could be caused in muscleless mice by movements of the mother or normal littermates, predicted higher biophysical stimuli in the femur than in the humerus. Stimuli induced by limb movement were much higher than those induced by the direct application of muscle forces, and we propose that movements of limbs caused by muscle contractions, rather than the direct application of muscle forces, provide the main mechanical stimuli for normal skeletal development. In muscleless mice, passive movement induces unequal biophysical stimuli in the humerus and femur, providing an explanation for the differential effects seen in these mice. The significance of these results is that forces originating external to the embryo may contribute to the initiation and progression of skeletal development when muscle development is abnormal.
Collapse
Affiliation(s)
- Niamh C Nowlan
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
67
|
de Jong WC, Korfage JAM, Langenbach GEJ. The role of masticatory muscles in the continuous loading of the mandible. J Anat 2011; 218:625-36. [PMID: 21492160 DOI: 10.1111/j.1469-7580.2011.01375.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Muscles are considered to play an important role in the ongoing daily loading of bone, especially in the masticatory apparatus. Currently, there are no measurements describing this role over longer periods of time. We made simultaneous and wireless in vivo recordings of habitual strains of the rabbit mandible and masseter muscle and digastric muscle activity up to ∼25 h. The extent to which habitually occurring bone strains were related to muscle-activity bursts in time and in amplitude is described. The data reveal the masseter muscle to load the mandible almost continuously throughout the day, either within cyclic activity bouts or with thousands of isolated muscle bursts. Mandibular strain events rarely took place without simultaneous masseter activity, whereas the digastric muscle only played a small role in loading the mandible. The average intensity of masseter-muscle activity bouts was strongly linked to the average amplitude of the concomitant bone-strain events. However, individual pairs of muscle bursts and strain events showed no relation in amplitude within cyclic loading bouts. Larger bone-strain events, presumably related to larger muscle-activity levels, had more constant principal-strain directions. Finally, muscle-to-bone force transmissions were detected to take place at frequencies up to 15 Hz. We conclude that in the ongoing habitual loading of the rabbit mandible, the masseter muscle plays an almost non-stop role. In addition, our results support the possibility that muscle activity is a source of low-amplitude, high-frequency bone loading.
Collapse
Affiliation(s)
- W C de Jong
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, MOVE Research Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
68
|
Kossler N, Stricker S, Rödelsperger C, Robinson PN, Kim J, Dietrich C, Osswald M, Kühnisch J, Stevenson DA, Braun T, Mundlos S, Kolanczyk M. Neurofibromin (Nf1) is required for skeletal muscle development. Hum Mol Genet 2011; 20:2697-709. [PMID: 21478499 DOI: 10.1093/hmg/ddr149] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a multi-system disease caused by mutations in the NF1 gene encoding a Ras-GAP protein, neurofibromin, which negatively regulates Ras signaling. Besides neuroectodermal malformations and tumors, the skeletal system is often affected (e.g. scoliosis and long bone dysplasia) demonstrating the importance of neurofibromin for development and maintenance of the musculoskeletal system. Here, we focus on the role of neurofibromin in skeletal muscle development. Nf1 gene inactivation in the early limb bud mesenchyme using Prx1-cre (Nf1(Prx1)) resulted in muscle dystrophy characterized by fibrosis, reduced number of muscle fibers and reduced muscle force. This was caused by an early defect in myogenesis affecting the terminal differentiation of myoblasts between E12.5 and E14.5. In parallel, the muscle connective tissue cells exhibited increased proliferation at E14.5 and an increase in the amount of connective tissue as early as E16.5. These changes were accompanied by excessive mitogen-activated protein kinase pathway activation. Satellite cells isolated from Nf1(Prx1) mice showed normal self-renewal, but their differentiation was impaired as indicated by diminished myotube formation. Our results demonstrate a requirement of neurofibromin for muscle formation and maintenance. This previously unrecognized function of neurofibromin may contribute to the musculoskeletal problems in NF1 patients.
Collapse
Affiliation(s)
- Nadine Kossler
- FG Development & Disease, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PLoS One 2011; 6:e17526. [PMID: 21386908 PMCID: PMC3046254 DOI: 10.1371/journal.pone.0017526] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/03/2011] [Indexed: 11/19/2022] Open
Abstract
Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint.
Collapse
|
70
|
Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: Insights from animal models. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2010; 90:203-13. [PMID: 20860060 PMCID: PMC4794623 DOI: 10.1002/bdrc.20184] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A range of clinical conditions in which fetal movement is reduced or prevented can have a severe effect on skeletal development. Animal models have been instrumental to our understanding of the interplay between mechanical forces and skeletal development, particularly the mouse and the chick model systems. In the chick, the most commonly used means of altering the mechanical environment is by pharmaceutical agents which induce paralysis, whereas genetically modified mice with nonfunctional or absent skeletal muscle offer a valuable tool for examining the interplay between muscle forces and skeletogenesis in mammals. This article reviews the body of research on animal models of bone or joint formation in vivo in the presence of an altered or abnormal mechanical environment. In both immobilized chicks and "muscleless limb" mice, a range of effects are seen, such as shorter rudiments with less bone formation, changes in rudiment and joint shape, and abnormal joint cavitation. However, although all bones and synovial joints are affected in immobilized chicks, some rudiments and joints are unaffected in muscleless mice. We propose that extrinsic mechanical forces from movements of the mother or littermates impact on skeletogenesis in mammals, whereas the chick embryo is reliant on intrinsic movement for mechanical stimulation. The insights gained from animal models into the mechanobiology of embryonic skeletal development could provide valuable cues to prospective tissue engineers of cartilage and bone and contribute to new or improved treatments to minimize the impact on skeletal development of reduced movement in utero.
Collapse
|
71
|
Schweitzer R, Zelzer E, Volk T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 2010; 137:2807-17. [PMID: 20699295 DOI: 10.1242/dev.047498] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of the musculoskeletal system represents an intricate process of tissue assembly involving heterotypic inductive interactions between tendons, muscles and cartilage. An essential component of all musculoskeletal systems is the anchoring of the force-generating muscles to the solid support of the organism: the skeleton in vertebrates and the exoskeleton in invertebrates. Here, we discuss recent findings that illuminate musculoskeletal assembly in the vertebrate embryo, findings that emphasize the reciprocal interactions between the forming tendons, muscle and cartilage tissues. We also compare these events with those of the corresponding system in the Drosophila embryo, highlighting distinct and common pathways that promote efficient locomotion while preserving the form of the organism.
Collapse
Affiliation(s)
- Ronen Schweitzer
- Shriners Hospital for Children, Research Division, Portland, OR 97239, USA.
| | | | | |
Collapse
|
72
|
Abstract
The direction of migration of a cell invading a host population is assumed to be controlled by the magnitude of the strains in the host medium (cells plus extracellular matrix) that arise as the host medium deforms to accommodate the invader. The single assumption that invaders are cued by strains external to themselves is sufficient to generate network structures. The strain induced by a line of invaders is greatest at the extremity of the line and thus the strain field breaks symmetry, stabilizing branch formation. The strain cue also triggers sprouting from existing branches, with no further model assumption. Network characteristics depend primarily on the ratio of the rate of advance of the invaders to the rate of relaxation of the host cells after their initial deformation. Intra-cell mechanisms that govern these two rates control network morphology. The strain field that cues an individual invader is a collective response of the combined cell populations, involving the nearest 100 cells, to order of magnitude, to any invader. The mechanism does not rely on the pre-existence of the entire host medium prior to invasion; the host cells need only maintain a layer several cells thick around each invader. Consistent with recent experiments, networks result only from a strain cue that is based on strain magnitudes. Spatial strain gradients do not break symmetry and therefore cannot stabilize branch formation. The theory recreates most of the geometrical features of the nervous network in the mouse gut when the most influential adjustable parameter takes a value consistent with one inferred from human and mouse amelogenesis. Because of similarity in the guiding local strain fields, strain cues could also be a participating factor in the formation of vascular networks.
Collapse
Affiliation(s)
- Brian N Cox
- Teledyne Scientific Co. LLC, 1049 Camino Dos Rios, Thousand Oaks, CA 91360, USA.
| |
Collapse
|
73
|
Leppänen OV, Sievänen H, Jokihaara J, Pajamäki I, Kannus P, Cooper DM, Järvinen TLN. The effects of loading and estrogen on rat bone growth. J Appl Physiol (1985) 2010; 108:1737-44. [DOI: 10.1152/japplphysiol.00989.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the contributions of locomotive loading and estrogen to the development of diaphysis of rat femur. A randomized 2 × 2 study design was used. Altogether, 70 female Sprague-Dawley rats were used, of which 10 were euthanized at entry. Of the remaining rats, 16 served as controls, and the rest, 44, underwent a unilateral sciatic neurectomy. The effect of estrogen was removed by ovariectomizing one-half of the neurectomized rats. After 27 wk, the animals were euthanized, and the femora were excised. Irrespective of loading or estrogen, the femur length and mineral mass increased by 142 and 687%, respectively. Axial growth was not modulated either by locomotive loading or estrogen, but the loading resulted in direction-specific changes in the cross-sectional geometry. The estrogen-related gains were evident on the endocortical surface, while the loading-related gains occurred on the periosteal surface. The loading and estrogen were significantly associated with increased bone strength (21 and 15%, respectively) in the mediolateral direction, but not in the anteroposterior direction. Axial growth and accrual of bone mineral mass of the rat femur are largely independent of locomotive loading or estrogen, whereas these factors specifically account for the femur function, as either a mechanical lever or a mineral reservoir for reproduction, respectively.
Collapse
Affiliation(s)
- Olli V. Leppänen
- Medical School and the Institute of Medical Technology, University of Tampere,
- Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, and
| | - Harri Sievänen
- The Bone Research Group, UKK Institute, Tampere, Finland
| | - Jarkko Jokihaara
- Medical School and the Institute of Medical Technology, University of Tampere,
- Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, and
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia; and
| | - Ilari Pajamäki
- Medical School and the Institute of Medical Technology, University of Tampere,
- Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, and
| | - Pekka Kannus
- Medical School and the Institute of Medical Technology, University of Tampere,
- Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, and
- The Bone Research Group, UKK Institute, Tampere, Finland
| | - David M. Cooper
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Teppo L. N. Järvinen
- Medical School and the Institute of Medical Technology, University of Tampere,
- Division of Orthopaedics and Traumatology, Department of Trauma, Musculoskeletal Surgery and Rehabilitation, Tampere University Hospital, and
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia; and
| |
Collapse
|
74
|
Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Developing bones are differentially affected by compromised skeletal muscle formation. Bone 2010; 46:1275-85. [PMID: 19948261 PMCID: PMC2860222 DOI: 10.1016/j.bone.2009.11.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 10/19/2009] [Accepted: 11/20/2009] [Indexed: 12/03/2022]
Abstract
Mechanical forces are essential for normal adult bone function and repair, but the impact of prenatal muscle contractions on bone development remains to be explored in depth in mammalian model systems. In this study, we analyze skeletogenesis in two 'muscleless' mouse mutant models in which the formation of skeletal muscle development is disrupted; Myf5(nlacZ/nlacZ):MyoD(-/-) and Pax3(Sp/Sp) (Splotch). Ossification centers were found to be differentially affected in the muscleless limbs, with significant decreases in bone formation in the scapula, humerus, ulna and femur, but not in the tibia. In the scapula and humerus, the morphologies of ossification centers were abnormal in muscleless limbs. Histology of the humerus revealed a decreased extent of the hypertrophic zone in mutant limbs but no change in the shape of this region. The elbow joint was also found to be clearly affected with a dramatic reduction in the joint line, while no abnormalities were evident in the knee. The humeral deltoid tuberosity was significantly reduced in size in the Myf5(nlacZ/nlacZ):MyoD(-/-) mutants while a change in shape but not in size was found in the humeral tuberosities of the Pax3(Sp/Sp) mutants. We also examined skeletal development in a 'reduced muscle' model, the Myf5(nlacZ/+):MyoD(-/-) mutant, in which skeletal muscle forms but with reduced muscle mass. The reduced muscle phenotype appeared to have an intermediate effect on skeletal development, with reduced bone formation in the scapula and humerus compared to controls, but not in other rudiments. In summary, we have demonstrated that skeletal development is differentially affected by the lack of skeletal muscle, with certain rudiments and joints being more severely affected than others. These findings indicate that the response of skeletal progenitor cells to biophysical stimuli may depend upon their location in the embryonic limb, implying a complex interaction between mechanical forces and location-specific regulatory factors affecting bone and joint development.
Collapse
Affiliation(s)
- Niamh C. Nowlan
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Ireland
| | - Céline Bourdon
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Ireland
| | - Gérard Dumas
- Stem Cells & Development, Department of Developmental Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Department of Developmental Biology, Institut Pasteur, Paris, France
| | - Patrick J. Prendergast
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Ireland
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Ireland
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Ireland
- Corresponding author. Fax: +353 677 8094.
| |
Collapse
|
75
|
Rot I, Kablar B. The influence of acoustic and static stimuli on development of inner ear sensory epithelia. Int J Dev Neurosci 2010; 28:309-15. [PMID: 20188812 DOI: 10.1016/j.ijdevneu.2010.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 01/02/2023] Open
Abstract
Mechanical stimuli affect differentiation of specific cell types in several organs of mouse fetuses that develop without any skeletal musculature. To that end, we employed Myf5(-/-):MyoD(-/-) mouse embryos that completely lack skeletal musculature, and analyzed the development of sensory fields in the inner ear. Amyogenic fetuses lack skeletal muscles that move the chain of three middle ear ossicles which normally transfers sound vibrations. They also cannot tilt their head, which prevents the perception of angular acceleration. While our findings in the spiral organ of Corti are surprisingly normal, our results show that the development of cristae ampullaris, vestibular sensory fields sensitive to the angular acceleration, was the most affected. In cristae, hair cells and supporting cells were significantly smaller in the mutant embryos, but hair cells completely lacked tenascin, while supporting cells were more numerous. In maculae, supporting cells were significantly smaller but more numerous in the mutants. Here, we propose that our finding of a specific type I hair cell absence in the mutant's crista may now be employed in the identification of a profile of genes specific for the lacking cell type.
Collapse
Affiliation(s)
- Irena Rot
- Department of Anatomy and Neurobiology and the Neuroscience Institute, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College St, B3H 1X5, Halifax, NS, Canada
| | | |
Collapse
|
76
|
Blitz E, Viukov S, Sharir A, Shwartz Y, Galloway JL, Pryce BA, Johnson RL, Tabin CJ, Schweitzer R, Zelzer E. Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev Cell 2010; 17:861-73. [PMID: 20059955 DOI: 10.1016/j.devcel.2009.10.010] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 09/17/2009] [Accepted: 10/22/2009] [Indexed: 11/16/2022]
Abstract
During the assembly of the musculoskeletal system, bone ridges provide a stable anchoring point and stress dissipation for the attachment of muscles via tendons to the skeleton. In this study, we investigate the development of the deltoid tuberosity as a model for bone ridge formation. We show that the deltoid tuberosity develops through endochondral ossification in a two-phase process: initiation is regulated by a signal from the tendons, whereas the subsequent growth phase is muscle dependent. We then show that the transcription factor scleraxis (SCX) regulates Bmp4 in tendon cells at their insertion site. The inhibition of deltoid tuberosity formation and several other bone ridges in embryos in which Bmp4 expression was blocked specifically in Scx-expressing cells implicates BMP4 as a key mediator of tendon effects on bone ridge formation. This study establishes a mechanistic basis for tendon-skeleton regulatory interactions during musculoskeletal assembly and bone secondary patterning.
Collapse
Affiliation(s)
- Einat Blitz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Baguma‐Nibasheka M, Kablar B. Altered retinal cell differentiation in the AP‐3 delta mutant (Mocha) mouse. Int J Dev Neurosci 2009; 27:701-8. [DOI: 10.1016/j.ijdevneu.2009.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/29/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022] Open
Affiliation(s)
- Mark Baguma‐Nibasheka
- Department of Anatomy and NeurobiologyDalhousie University Faculty of Medicine5850 College StreetHalifaxNSCanadaB3H 1X5
| | - Boris Kablar
- Department of Anatomy and NeurobiologyDalhousie University Faculty of Medicine5850 College StreetHalifaxNSCanadaB3H 1X5
| |
Collapse
|
78
|
Babalola OM, Bonassar LJ. Parametric Finite Element Analysis of Physical Stimuli Resulting From Mechanical Stimulation of Tissue Engineered Cartilage. J Biomech Eng 2009; 131:061014. [DOI: 10.1115/1.3128672] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While mechanical stimulation of cells seeded within scaffolds is widely thought to be beneficial, the amount of benefit observed is highly variable between experimental systems. Although studies have investigated specific experimental loading protocols thought to be advantageous for cartilage growth, less is known about the physical stimuli (e.g., pressures, velocities, and local strains) cells experience during these experiments. This study used results of a literature survey, which looked for patterns in the efficacy of mechanical stimulation of chondrocyte seeded scaffolds, to inform the modeling of spatial patterns of physical stimuli present in mechanically stimulated constructs. The literature survey revealed a large variation in conditions used in mechanical loading studies, with a peak to peak strain of 10% (i.e., the maximum amount of deformation experienced by the scaffold) at 1 Hz on agarose scaffolds being the most frequently studied parameters and scaffold. This loading frequency was then used as the basis for simulation in the finite element analyses. 2D axisymmetric finite element models of 2×4 mm2 scaffolds with 360 modulus/permeability combinations were constructed using COMSOLMULTIPHYSICS software. A time dependent coupled pore pressure/effective stress analysis was used to model fluid/solid interactions in the scaffolds upon loading. Loading was simulated using an impermeable frictionless loader on the top boundary with fluid and solid displacement confined to the radial axis. As expected, all scaffold materials exhibited classic poro-elastic behavior having pressurized cores with low fluid flow and edges with high radial fluid velocities. Under the simulation parameters of this study, PEG scaffolds had the highest pressure and radial fluid velocity but also the lowest shear stress and radial strain. Chitosan and KLD-12 simulated scaffold materials had the lowest radial strains and fluid velocities, with collagen scaffolds having the lowest pressures. Parametric analysis showed maximum peak pressures within the scaffold to be more dependent on scaffold modulus than on permeability and velocities to depend on both scaffold properties similarly. The dependence of radial strain on permeability or modulus was more complex; maximum strains occurred at lower permeabilities and moduli, and the lowest strain occurred at the stiffest most permeable scaffold. Shear stresses within all scaffolds were negligible. These results give insight into the large variations in metabolic response seen in studies involving mechanical stimulation of cell-seeded constructs, where the same loading conditions produce very different results due to the differences in material properties.
Collapse
Affiliation(s)
- Omotunde M. Babalola
- Department of Biomedical Engineering, Cornell University, 151 Weill Hall, Ithaca, NY 14853
| | - Lawrence J. Bonassar
- Department of Biomedical Engineering and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
| |
Collapse
|
79
|
Angka HE, Geddes AJ, Kablar B. Differential survival response of neurons to exogenous GDNF depends on the presence of skeletal muscle. Dev Dyn 2009; 237:3169-78. [PMID: 18816441 DOI: 10.1002/dvdy.21727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is known as a potent survival factor for neurons in vitro and in vivo. The current study investigated the effects of a single in utero injection with GDNF in both wild-type and Myf5-/-:MyoD-/- embryos. The embryos in the latter group, denoted double mutants (DM), do not contain skeletal muscle and associated neurotrophic factors due to lack of myogenesis and, therefore, neurons of the central and peripheral nervous system undergo excessively occurring programmed cell death (EPCD). We found that treatment with GDNF had no effect on wild type neuronal numbers in any of the anatomic locations investigated. However, GDNF rescued the neurons of the facial motor nucleus, the mesencephalic nucleus and the median motor column in the absence of skeletal muscle. The findings of the current study agree with previous reports that compromised mouse neurons have increased survival response to GDNF.
Collapse
Affiliation(s)
- Heather E Angka
- Department of Anatomy and Neurobiology, Dalhousie University, Sir Charles Tupper Building, Halifax, Nova Scotia
| | | | | |
Collapse
|
80
|
Meng L, Bian Z, Torensma R, Von den Hoff JW. Biological mechanisms in palatogenesis and cleft palate. J Dent Res 2009; 88:22-33. [PMID: 19131313 DOI: 10.1177/0022034508327868] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clefts of the palate are common birth defects requiring extensive treatment. They appear to be caused by multiple genetic and environmental factors during palatogenesis. This may result in local changes in growth factors, extracellular matrix (ECM), and cell adhesion molecules. Several clefting factors have been implicated by studies in mouse models, while some of these have also been confirmed by genetic screening in humans. Here, we discuss several knockout mouse models to examine the role of specific genes in cleft formation. The cleft is ultimately caused by interference with shelf elevation, attachment, or fusion. Shelf elevation is brought about by mesenchymal proliferation and changes in the ECM induced by growth factors such as TGF-betas. Crucial ECM molecules are collagens, proteoglycans, and glycosaminoglycans. Shelf attachment depends on specific differentiation of the epithelium involving TGF-beta3, sonic hedgehog, and WNT signaling, and correct expression of epithelial adhesion molecules such as E-cadherin. The final fusion requires epithelial apoptosis and epithelium-to-mesenchyme transformation regulated by TGF-beta and WNT proteins. Other factors may interact with these signaling pathways and contribute to clefting. Normalization of the biological mechanisms regulating palatogenesis in susceptible fetuses is expected to contribute to cleft prevention.
Collapse
Affiliation(s)
- L Meng
- Department of Orthodontics and Oral Biology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
81
|
Venza M, Visalli M, Venza I, Torino C, Tripodo B, Melita R, Teti D. Altered binding of MYF-5 to FOXE1 promoter in non-syndromic and CHARGE-associated cleft palate. J Oral Pathol Med 2008; 38:18-23. [DOI: 10.1111/j.1600-0714.2008.00726.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
|
83
|
Neu CP, Komvopoulos K, Reddi AH. The interface of functional biotribology and regenerative medicine in synovial joints. TISSUE ENGINEERING. PART B, REVIEWS 2008; 14:235-47. [PMID: 18601586 PMCID: PMC2761828 DOI: 10.1089/ten.teb.2008.0047] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 05/14/2008] [Indexed: 11/12/2022]
Abstract
Biotribology is the science of biological surfaces in sliding contact encompassing the concepts of friction, wear, and lubrication of interacting surfaces. This bioscience field has emerged from the classical field of tribology and is of paramount importance to the normal function of numerous tissues, including articular cartilage, blood vessels, heart, tendons, ligaments, and skin. Surprisingly, relatively little attention has been given to the restoration of surface characteristics in the fields of tissue engineering and regenerative medicine-the science of design and manufacture of new tissues for the functional restoration of impaired or diseased organs that depend on inductive signals, responding stem cells, and extracellular matrix scaffolding. Analogous to ancient civilizations (c. 3000 B.C.) that introduced wheeled vehicles, sledges for transporting heavy blocks, and lubricants, modern biotribologists must aim to restore surface characteristics to regenerated tissues and develop novel biomaterials with optimal tribological properties. The objective of this article is to highlight the significance of functional biotribology in the physiology of body surfaces and provide a comprehensive overview of unresolved issues and controversies as it relates to regenerative medicine. Specific attention is placed on the molecular basis of lubrication, mechanical and biochemical regulation of lubricating molecules, and the need to study wear processes in articular cartilage, especially in light of degenerative diseases, such as osteoarthritis. Surface engineering of replacement tissues exhibiting low friction and high wear resistance is examined using articular cartilage as an illustrative model system.
Collapse
Affiliation(s)
- Corey P Neu
- Department of Orthopaedic Surgery, Center for Tissue Regeneration and Repair, School of Medicine, University of California, Davis, Sacramento, California, USA.
| | | | | |
Collapse
|
84
|
Weisbecker V, Goswami A, Wroe S, Sánchez-Villagra MR. OSSIFICATION HETEROCHRONY IN THE THERIAN POSTCRANIAL SKELETON AND THE MARSUPIAL-PLACENTAL DICHOTOMY. Evolution 2008; 62:2027-41. [DOI: 10.1111/j.1558-5646.2008.00424.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
85
|
Hewitt J, Lu X, Gilbert L, Nanes MS. The muscle transcription factor MyoD promotes osteoblast differentiation by stimulation of the Osterix promoter. Endocrinology 2008; 149:3698-707. [PMID: 18372333 DOI: 10.1210/en.2007-1556] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcription factors regulate tissue-specific differentiation of pluripotent mesenchyme to osteoblast (OB), myoblast (MB), and other lineages. Osterix (Osx) is an essential transcription factor for bone development because knockout results in lack of a mineralized skeleton. The proximal Osx promoter contains numerous binding sequences for MyoD and 14 repeats of a binding sequence for Myf5. These basic helix-loop-helix (bHLH) transcription factors have a critical role in MB differentiation and muscle development. We tested the hypothesis that bHLH transcription factors also support OB differentiation through regulation of Osx. Transfection of a MyoD expression vector into two primitive mesenchymal cell lines, C3H/10T1/2 and C2C12, stimulated a 1.2-kb Osx promoter-luciferase reporter 70-fold. Myf5 stimulated the Osx promoter 6-fold. Deletion analysis of the promoter revealed that one of three proximal bHLH sites is essential for MyoD activity. The Myf5 repeat conferred 60% of Myf5 activity with additional upstream sequence required for full activity. MyoD bound the active bHLH sequence and its 3'-flanking region, as shown by EMSA and chromatin immunoprecipitation assays. Real-time PCR revealed that primitive C2C12 and C3H/10T1/2 cells, pre-osteoblastic MC3T3 cells, and undifferentiated primary marrow stromal cells express the muscle transcription factors. C2C12 cells, which differentiate to MB spontaneously and form myotubules, were treated with bone morphogenetic protein 2 (BMP-2) to induce OB differentiation. BMP-2 stimulated expression of Osx and the differentiation marker alkaline phosphatase and blocked myotubule development. BMP-2 suppressed the muscle transcription factor myogenin, but expression of MyoD and Myf5 persisted. Silencing of MyoD inhibited BMP-2 stimulation of Osx and blocked the later appearance of bone alkaline phosphatase. MyoD support of Osx transcription contributes to early OB differentiation.
Collapse
Affiliation(s)
- Jocelyn Hewitt
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA 30033, USA
| | | | | | | |
Collapse
|
86
|
Neu CP, Khalafi A, Komvopoulos K, Schmid TM, Reddi AH. Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling. ACTA ACUST UNITED AC 2007; 56:3706-14. [PMID: 17968924 DOI: 10.1002/art.23024] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Mechanical signals are key determinants in tissue morphogenesis, maintenance, and restoration strategies in regenerative medicine, although molecular mechanisms of mechanotransduction remain to be elucidated. This study was undertaken to investigate the mechanotransduction process of expression of superficial zone protein (SZP), a critical joint lubricant. METHODS Regional expression of SZP was first quantified in cartilage obtained from the femoral condyles of immature bovines, using immunoblotting, and visualized by immunohistochemistry. Contact pressure mapping in whole joints was accomplished using pressure-sensitive film and a load application system for joint testing. Friction measurements on cartilage plugs were acquired under boundary lubrication conditions using a pin-on-disk tribometer modified for reciprocating sliding. Direct mechanical stimulation by shear loading of articular cartilage explants was performed with and without inhibition of transforming growth factor beta (TGFbeta) signaling, and SZP content in media was quantified by enzyme-linked immunosorbent assay. RESULTS An unexpected pattern of SZP localization in knee cartilage was initially identified, with anterior regions exhibiting high levels of SZP expression. Regional SZP patterns were regulated by mechanical signals and correlated with tribological behavior. Direct relationships were demonstrated between high levels of SZP expression, maximum contact pressures, and low friction coefficients. Levels of SZP expression and accumulation were increased by applying shear stress, depending on location within the knee, and were decreased to control levels with the use of a specific inhibitor of TGFbeta receptor type I kinase and subsequent phospho-Smad2/3 activity. CONCLUSION These findings indicate a new role for TGFbeta signaling in the mechanism of cellular mechanotransduction that is especially significant for joint lubrication.
Collapse
Affiliation(s)
- Corey P Neu
- Center for Tissue Regeneration and Repair, University of California, Davis, Medical Center, Sacramento, CA 95817, USA.
| | | | | | | | | |
Collapse
|
87
|
Seo HS, Serra R. Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol 2007; 310:304-16. [PMID: 17822689 PMCID: PMC2042108 DOI: 10.1016/j.ydbio.2007.07.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 07/27/2007] [Accepted: 07/30/2007] [Indexed: 02/06/2023]
Abstract
In this study, we address the function of Transforming Growth Factor beta (TGF-beta) and its type II receptor (Tgfbr2) in limb development in vivo. Mouse embryos were generated in which the Tgfbr2 gene was deleted in early limb mesenchyme using Prx1Cre-mediated LoxP recombination. A high level of Tgfbr2 gene deletion was verified in limb mesenchyme by PCR between E9.5 and E10.5 days in Cre expressing mice. RT-PCR assays indicated a significant depletion of Tgfbr2 mRNA by E10.5 days as a result of Cre mediated gene deletion. Furthermore, limb mesenchyme from Cre(+);Tgfbr2(f/f) mice placed in micromass culture did not respond to exogenously added TGF-beta1 confirming the functional deletion of the receptor. However, there was an unexpected increase in the number and intensity of Alcian blue stained chondrogenic nodules in micromass cultures derived from Tgfbr2-deleted limbs relative to cultures from control limbs suggesting that Tgfbr2 normally limits chondrogenesis in vitro. In vivo, early limb development and chondrocyte differentiation occurred normally in Tgfbr2-depleted mice. Later in development, depletion of Tgfbr2 in limb mesenchyme resulted in short limbs and fusion of the joints in the phalanges. Alteration in the length of the long bones was primarily due to a decrease in chondrocyte proliferation after E13.5 days. In addition, the transition from prehypertrophic to hypertrophic cells was accelerated while there was a delay in late hypertrophic differentiation leading to a reduction in the length of the marrow cavity. In the joint, cartilage cells replaced interzone cells during development. Analysis of markers for joint development indicated that the joint was specified properly and that the interzone cells were initially formed but not maintained. The results suggest that Tgfbr2 is required for normal development of the skeleton and that Tgfbr2 can act to limit chondrogenesis in mesenchymal cells like the interzone.
Collapse
Affiliation(s)
- Hwa-Seon Seo
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0005, USA
| | - Rosa Serra
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294-0005, USA
| |
Collapse
|
88
|
Hammond CL, Simbi BH, Stickland NC. In ovo temperature manipulation influences embryonic motility and growth of limb tissues in the chick (Gallus gallus). ACTA ACUST UNITED AC 2007; 210:2667-75. [PMID: 17644681 DOI: 10.1242/jeb.005751] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chick embryo, developing in the egg, is an ideal system in which to investigate the effects of incubation environment on the development of the embryo. We show that raising the temperature of the eggs by just one degree, from 37.5 degrees C to 38.5 degrees C, during embryonic days (ED) 4-7 causes profound changes in development. We demonstrate that embryonic movement is significantly increased in the chicks raised at 38.5 degrees C both during the period in which they are at the higher temperature but also 4 days after their return to the control temperature. Concomitant with this increase in embryonic activity, the embryos raised at higher temperature grow to significantly heavier weights and exhibit significantly longer leg bones (tibia and tarsus) than the controls from ED12 onwards, although mineralization occurs normally. Additionally, the number of leg myonuclei is increased from ED12 in the embryos raised at the higher temperature. This is likely to promote greater leg muscle growth later in development, which may provide postural stability to the chicks posthatch. These changes are similar to those seen when drugs are injected to increase embryonic activity. We therefore believe that the increased embryonic activity provides a mechanism that can explain the increased growth of leg muscle and bone seen when the eggs are incubated for 3 days at higher temperature.
Collapse
Affiliation(s)
- Christina L Hammond
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| | | | | |
Collapse
|
89
|
Gomez C, David V, Peet NM, Vico L, Chenu C, Malaval L, Skerry TM. Absence of mechanical loading in utero influences bone mass and architecture but not innervation in Myod-Myf5-deficient mice. J Anat 2007; 210:259-71. [PMID: 17331176 PMCID: PMC2100282 DOI: 10.1111/j.1469-7580.2007.00698.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although the responses of bone to increased loading or exercise have been studied in detail, our understanding of the effects of decreased usage of the skeleton has been limited by the scarcity of suitable models. Such models should ideally not affect bone innervation, which appears to be a mediator of physiological responses of bone to unloading. MyoD-/-/Myf5-/- (dd/ff) mice lack skeletal muscle, so the fetuses develop without any active movement in utero and die soon after birth. We used micro-compter tomography and histology to analyse their bone development and structure during endochondral ossification in parallel with the establishment of bone innervation. Long bones from mutant mice were found to be profoundly different from controls, with shorter mineralized zones and less mineralization. They lacked many characteristics of adult bones - curvatures, changes in shaft diameter and traction epiphyses where muscles originate or insert - that were evident in the controls. Histologically, dd/ff mice showed the same degree of endochondral development as wild-type animals, but presented many more osteoclasts in the newly layed bone. Innervation and the expression pattern of semaphorin-3A signalling molecules were not disturbed in the mutants. Overall, we have found no evidence for a major defect of development in dd/ff mice, and specifically no alteration or delay in endochondral ossification and bone innervation. The altered morphological features of dd/ff mice and the increased bone resorption show the role of muscle activity in bone shaping and the consequences of bone unloading.
Collapse
Affiliation(s)
- Cédric Gomez
- INSERM, E0366Saint-Etienne, FranceIFR62Lyon, FranceUniversité Jean Monnet, Faculté de MédecineSaint-Etienne, France
- Department of Veterinary Basic Sciences, Royal Veterinary CollegeLondon, UK
| | - Valentin David
- INSERM, E0366Saint-Etienne, FranceIFR62Lyon, FranceUniversité Jean Monnet, Faculté de MédecineSaint-Etienne, France
| | - Nicola M Peet
- Department of Veterinary Basic Sciences, Royal Veterinary CollegeLondon, UK
| | - Laurence Vico
- INSERM, E0366Saint-Etienne, FranceIFR62Lyon, FranceUniversité Jean Monnet, Faculté de MédecineSaint-Etienne, France
| | - Chantal Chenu
- Department of Veterinary Basic Sciences, Royal Veterinary CollegeLondon, UK
| | - Luc Malaval
- INSERM, E0366Saint-Etienne, FranceIFR62Lyon, FranceUniversité Jean Monnet, Faculté de MédecineSaint-Etienne, France
| | - Timothy M Skerry
- Department of Veterinary Basic Sciences, Royal Veterinary CollegeLondon, UK
| |
Collapse
|
90
|
Angka HE, Kablar B. Differential responses to the application of exogenous NT-3 are observed for subpopulations of motor and sensory neurons depending on the presence of skeletal muscle. Dev Dyn 2007; 236:1193-202. [PMID: 17436272 DOI: 10.1002/dvdy.21147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We examined the effects of a single injection of exogenous NT-3, administered at embryonic day (E) 13.5, on the survival of two populations of motor neurons and two populations of sensory neurons. Both wild-type and double knockout, Myf5-/-:MyoD-/-, mutant embryos were examined to determine the effects of the aforementioned neurotrophin on motor and sensory neuron survival in the presence and absence, respectively, of skeletal muscle. We found that, although NT-3 rescues select populations of motor neurons in the absence of muscles, there is a lack of increase in neuron survival when skeletal muscle is present. Additionally, NT-3 was found to rescue a select population of proprioceptive sensory neurons in the absence of target tissue, while, at times, exacerbating neuron cell death when target tissues are present. Lastly, we found that neurons in the spinal cord and brainstem show both a regional and functional specificity in their response to the administration of NT-3 in utero. Our results indicate the possibility that different pathways are involved in the survival of neurons during naturally occurring programmed cell death and during excessively occurring programmed cell death.
Collapse
Affiliation(s)
- Heather E Angka
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
91
|
Gritli-Linde A. Molecular control of secondary palate development. Dev Biol 2006; 301:309-26. [PMID: 16942766 DOI: 10.1016/j.ydbio.2006.07.042] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/24/2006] [Accepted: 07/28/2006] [Indexed: 12/17/2022]
Abstract
Compared with the embryonic development of other organs, development of the secondary palate is seemingly simple. However, each step of palatogenesis, from initiation until completion, is subject to a tight molecular control that is governed by epithelial-mesenchymal interactions. The importance of a rigorous molecular regulation of palatogenesis is reflected when loss of function of a single protein generates cleft palate, a frequent malformation with a complex etiology. Genetic studies in humans and targeted mutations in mice have identified numerous factors that play key roles during palatogenesis. This review highlights the current understanding of the molecular and cellular mechanisms involved in normal and abnormal palate development with special respect to recent advances derived from studies of mouse models.
Collapse
Affiliation(s)
- Amel Gritli-Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at Göteborg University, Medicinaregatan 12F, Göteborg, Sweden.
| |
Collapse
|