51
|
White S, Kells T, Wilson A. Metabolism, personality and pace of life in the Trinidadian guppy, Poecilia reticulata. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003375] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
While among-individual variation in behaviour, or personality, is common across taxa, its mechanistic underpinnings are poorly understood. The Pace of Life syndrome (POLS) provides one possible explanation for maintenance of personality differences. POLS predicts that metabolic differences will covary with behavioural variation, with high metabolism associated with risk prone behaviour and ‘faster’ life histories (e.g., high growth, early maturation). We used a repeated measures approach, assaying metabolic traits (rate and scope), behaviour and growth to test these predictions in the Trinidadian guppy, Poecilia reticulata. We found that while individuals varied significantly in their behaviour and growth rate, more risk prone individuals did not grow significantly faster. Furthermore, after accounting for body size there was no support for among-individual variation in metabolic traits. Thus, while personality differences are clearly present in this population, they do not covary with metabolism and the POLS framework is not supported.
Collapse
Affiliation(s)
- S.J. White
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Treliever Road, Penryn, Cornwall TR10 9FE, UK
| | - T.J. Kells
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Treliever Road, Penryn, Cornwall TR10 9FE, UK
| | - A.J. Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Treliever Road, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
52
|
Gao S, Sanchez C, Deviche PJ. Corticosterone rapidly suppresses innate immune activity in the House Sparrow (Passer domesticus). J Exp Biol 2016; 220:322-327. [DOI: 10.1242/jeb.144378] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/28/2016] [Indexed: 12/16/2022]
Abstract
Stress-induced effects on innate immune activity in wild birds have been difficult to predict. These difficulties may arise from the frequent assumptions that (a) the stress response influences different components of the immune response similarly, (b) stress-induced effects do not change over the course of the stress response, and (c) glucocorticoids are the primary regulators of stress-induced changes of immune activity. We tested the first two assumptions by measuring three components of innate immunity at two times during the stress response in captive adult male House Sparrows, Passer domesticus. Acute stress resulting from handling and restraint suppressed plasma lytic and microbicidal activity within 10 mins and reduced plasma agglutination ability within 120 mins. We tested the third assumption by measuring stress-induced effects in sparrows that were pharmacologically adrenalectomized by mitotane administration. Confirming the effectiveness of this treatment, mitotane-treated birds had lower pre-stress plasma CORT than control birds and showed no increase in plasma CORT during acute stress. The innate immune activity of mitotane-treated birds did not decrease during the stress response, but the pre-stress immune activity of these birds did not differ from that of vehicle-treated birds. These results suggest that elevated plasma CORT during stress is primarily responsible for mediating stress-induced suppression of innate immune activity.
Collapse
Affiliation(s)
- Sisi Gao
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Clarissa Sanchez
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Pierre J. Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
53
|
Pamela Delarue EM, Kerr SE, Lee Rymer T. Habitat complexity, environmental change and personality: A tropical perspective. Behav Processes 2015; 120:101-10. [PMID: 26386151 DOI: 10.1016/j.beproc.2015.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 09/06/2015] [Accepted: 09/12/2015] [Indexed: 11/30/2022]
Abstract
Tropical rainforests are species-rich, complex ecosystems. They are increasingly being negatively affected by anthropogenic activity, which is rapidly and unpredictably altering their structure and complexity. These changes in habitat state may expose tropical animals to novel and unpredictable conditions, potentially increasing their extinction risk. However, an animal's ability to cope with environmental change may be linked to its personality. While numerous studies have investigated environmental influences on animal personalities, few are focused on tropical species. In this review, we consider how behavioural syndromes in tropical species might facilitate coping under, and adapting to, increasing disturbance. Given the complexity of tropical rainforests, we first discuss how habitat complexity influences personality traits and physiological stress in general. We then explore the ecological and evolutionary implications of personality in the tropics in the context of behavioural flexibility, range expansion and speciation. Finally, we discuss the impact that anthropogenic environmental change may have on the ecological integrity of tropical rainforests, positing scenarios for species persistence. Maintaining tropical rainforest complexity is crucial for driving behavioural flexibility and personality type, both of which are likely to be key factors facilitating long term persistence in disturbed habitats.
Collapse
Affiliation(s)
| | - Sarah Emily Kerr
- College of Marine and Environmental Science, James Cook University, P. O. Box 6811, Cairns, QLD 4870, Australia; Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD 4870, Australia
| | - Tasmin Lee Rymer
- College of Marine and Environmental Science, James Cook University, P. O. Box 6811, Cairns, QLD 4870, Australia; Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD 4870, Australia.
| |
Collapse
|
54
|
Affiliation(s)
- Felicia Keesing
- Department of Biology, Bard College, Annandale-on-Hudson, NY 12504, USA
| | | |
Collapse
|
55
|
Dilution versus facilitation: Impact of connectivity on disease risk in metapopulations. J Theor Biol 2015; 376:66-73. [PMID: 25882748 DOI: 10.1016/j.jtbi.2015.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/01/2015] [Accepted: 04/04/2015] [Indexed: 01/05/2023]
Abstract
Epidemiological studies have suggested that increasing connectivity in metapopulations usually facilitates pathogen transmission. However, these studies focusing on single-host systems usually neglect that increasing connectivity can increase species diversity which might reduce pathogen transmission via the 'dilution effect', a hypothesis whose generality is still disputed. On the other hand, studies investigating the generality of the dilution effect were usually conducted without considering habitat structure, which is surprising as species loss is often driven by habitat fragmentation. Using a simple general model to link fragmentation to the dilution effect, we determined the effect of connectivity on disease risk and explored when the dilution effect can be detected. We showed that landscape structure can largely modify the diversity-disease relationship. The net impact of connectivity on disease risk can be either positive or negative, depending on the relative importance of the facilitation effect (through increasing contact rates among patches) versus the dilution effect (via increasing species richness). We also demonstrated that different risk indices (i.e. infection prevalence and abundance of infected hosts) react differently to increasing connectivity and species richness. Our study may contribute to the current debate on the dilution effect, and a better understanding of the impacts of fragmentation on disease risks.
Collapse
|
56
|
Vera-Massieu C, Brock PM, Godínez-Reyes C, Acevedo-Whitehouse K. Activation of an inflammatory response is context-dependent during early development of the California sea lion. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150108. [PMID: 26064646 PMCID: PMC4448862 DOI: 10.1098/rsos.150108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/01/2015] [Indexed: 05/05/2023]
Abstract
Variations in immune function can arise owing to trade-offs, that is, the allocation of limited resources among costly competing physiological functions. Nevertheless, there is little information regarding the ontogeny of the immune system within an ecological context, and it is still unknown whether development affects the way in which resources are allocated to different immune effectors. We investigated changes in the inflammatory response during early development of the California sea lion (Zalophus californianus) and examined its association with body condition, as a proxy for the availability of energetic resources. We found that the relationship between inflammation and body condition varied according to developmental stage and circulating levels of leucocyte populations, a proxy for current infection. Body condition was related to the magnitude of the inflammatory response during two of the three developmental periods assessed, allowing for the possibility that the availability of pup energetic reserves can limit immune function. For older pups, the ability to mount an inflammatory response was related to their circulating levels of neutrophils and the neutrophil to lymphocyte ratio, implying that the infection status of an individual will influence its ability to respond to a new challenge. Our results suggest that trade-offs may occur within the immune system and highlight the importance of taking into account ontogeny in ecoimmunological studies.
Collapse
Affiliation(s)
- Camila Vera-Massieu
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Avenida de las Ciencias S/N, Queretaro 76230, México
| | - Patrick M. Brock
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Carlos Godínez-Reyes
- Cabo Pulmo National Park, Comisión Nacional de Áreas Naturales Protegidas, SEMARNAT, La Ribera, BCS, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Avenida de las Ciencias S/N, Queretaro 76230, México
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
- Author for correspondence: Karina Acevedo-Whitehouse e-mail:
| |
Collapse
|
57
|
Schmidt KL, Kubli SP, MacDougall-Shackleton EA, MacDougall-Shackleton SA. Early-Life Stress Has Sex-Specific Effects on Immune Function in Adult Song Sparrows. Physiol Biochem Zool 2015; 88:183-94. [DOI: 10.1086/680599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
58
|
Tarszisz E, Dickman CR, Munn AJ. Physiology in conservation translocations. CONSERVATION PHYSIOLOGY 2014; 2:cou054. [PMID: 27293675 PMCID: PMC4732500 DOI: 10.1093/conphys/cou054] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 05/21/2023]
Abstract
Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining 'success' as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall under a new paradigm that we term 'translocation physiology' and represent an important sub-discipline within conservation physiology generally.
Collapse
Affiliation(s)
- Esther Tarszisz
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Adam J. Munn
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
59
|
Ramos R, Garnier R, González-Solís J, Boulinier T. Long antibody persistence and transgenerational transfer of immunity in a long-lived vertebrate. Am Nat 2014; 184:764-76. [PMID: 25438176 DOI: 10.1086/678400] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although little studied in natural populations, the persistence of immunoglobulins may dramatically affect the dynamics of immunity and the ecology and evolution of host-pathogen interactions involving vertebrate hosts. By means of a multiple-year vaccination design against Newcastle disease virus, we experimentally addressed whether levels of specific antibodies can persist over several years in females of a long-lived procellariiform seabird-Cory's shearwater-and whether maternal antibodies against that antigen could persist over a long period in offspring several years after the mother was exposed. We found that a single vaccination led to high levels of antibodies for several years and that the females transmitted antibodies to their offspring that persisted for several weeks after hatching even 5 years after a single vaccination. The temporal persistence of maternally transferred antibodies in nestlings was highly dependent on the level at hatching. A second vaccination boosted efficiently the level of antibodies in females and thus their transfer to offspring. Overall, these results stress the need to consider the temporal dynamics of immune responses if we are to understand the evolutionary ecology of host-parasite interactions and trade-offs between immunity and other life-history characteristics, in particular in long-lived species. They also have strong implications for conservation when vaccination may be used in natural populations facing disease threats.
Collapse
Affiliation(s)
- Raül Ramos
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-Université Montpellier Unité Mixte de Recherche 5175, 1919 Route de Mende, 34293 Montpellier, France
| | | | | | | |
Collapse
|
60
|
Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life. Oecologia 2014; 177:281-90. [DOI: 10.1007/s00442-014-3136-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
|
61
|
Brock PM, Murdock CC, Martin LB. The history of ecoimmunology and its integration with disease ecology. Integr Comp Biol 2014; 54:353-62. [PMID: 24838746 DOI: 10.1093/icb/icu046] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecoimmunology is an example of how fruitful integrative approaches to biology can be. Since its emergence, ecoimmunology has sparked constructive debate on a wide range of topics, from the molecular mechanics of immune responses to the role of immunity in shaping the evolution of life histories. To complement the symposium Methods and Mechanisms in Ecoimmunology and commemorate the inception of the Division of Ecoimmunology and Disease Ecology within the Society for Integrative and Comparative Biology, we appraise the origins of ecoimmunology, with a focus on its continuing and valuable integration with disease ecology. Arguably, the greatest contribution of ecoimmunology to wider biology has been the establishment of immunity as an integral part of organismal biology, one that may be regulated to maximize fitness in the context of costs, constraints, and complex interactions. We discuss historical impediments and ongoing progress in ecoimmunology, in particular the thorny issue of what ecoimmunologists should, should not, or cannot measure, and what novel contributions ecoimmunologists have made to the understanding of host-parasite interactions. Finally, we highlight some areas to which ecoimmunology is likely to contribute in the near future.
Collapse
Affiliation(s)
- Patrick M Brock
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Courtney C Murdock
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lynn B Martin
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
62
|
Garnier R, Graham AL. Insights from parasite-specific serological tools in eco-immunology. Integr Comp Biol 2014; 54:363-76. [PMID: 24760794 PMCID: PMC7537858 DOI: 10.1093/icb/icu022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eco-immunology seeks evolutionary explanations for the tremendous variation in immune defense observed in nature. Assays to quantify immune phenotypes often are crucial to this endeavor. To this end, we suggest that more use could (and arguably should) be made of the veterinary and clinical serological toolbox. For example, measuring the magnitude and half-life of parasite-specific antibodies across a range of host taxa may provide new ways of testing theories in eco-immunology. Here, we suggest that antibody assays developed in veterinary and clinical immunology and epidemiology provide excellent tools--or at least excellent starting points for development of tools--for tests of such hypotheses. We review how such assays work and how they may be optimized for new questions and new systems in eco-immunology. We provide examples of the application of such tools to eco-immunological studies of seabirds and mammals, and suggest a decision-tree to aid development of assays. We expect that addition of such tools to the eco-immunological toolbox will promote progress in the field and help elucidate how immune systems function and why they vary in nature.
Collapse
Affiliation(s)
- Romain Garnier
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
63
|
Sandmeier FC, Tracy RC. The Metabolic Pace-of-Life Model: Incorporating Ectothermic Organisms into the Theory of Vertebrate Ecoimmunology. Integr Comp Biol 2014; 54:387-95. [DOI: 10.1093/icb/icu021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
64
|
Cutrera AP, Luna F, Merlo JL, Baldo MB, Zenuto RR. Assessing the energetic costs and trade-offs of a PHA-induced inflammation in the subterranean rodent Ctenomys talarum: immune response in growing tuco-tucos. Comp Biochem Physiol A Mol Integr Physiol 2014; 174:23-8. [PMID: 24726606 DOI: 10.1016/j.cbpa.2014.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
A traditional approach used to assess whether immune defense is costly is to explore the existence of trade-offs between immunity and other functions; however, quantitative studies of the energetic costs associated with the activation of the immune system are scarce. We assessed the magnitude of a PHA-triggered immune response and the associated energetic costs in 60-day old Ctenomys talarum. We expected that the magnitude of the macroscopic inflammatory response to PHA is lower in young tuco-tucos compared with that of adults, given the allocation of substantial energy to growth, and that the magnitude of the inflammation is lower in male pups compared to females, due to the higher investment in growth of the larger sex. Concomitantly, we expected that the pups challenged with PHA show an increase in oxygen consumption compared to control animals and that a positive association exists between magnitude of the PHA-induced inflammation and oxygen consumption. Contrary to what was expected, young tuco-tucos mounted a higher inflammatory response compared with adults and there were no differences in the magnitude of this response between sexes. The inflammatory response induced by a PHA injection did not represent a significant energetic cost for young tuco-tucos. There were no differences in oxygen consumption between PHA-injected and control animals, and tuco-tucos that mounted a higher inflammatory response to PHA did not show higher oxygen consumption. Energy expenditure, however, is not the only physiological cost involved in trade-offs between immune response and various functions of the organism, and other currencies are discussed.
Collapse
Affiliation(s)
- Ana Paula Cutrera
- Laboratorio de Ecofisiología, Instituto de Investigaciones Marinas y Costeras, CONICET Universidad Nacional de Mar del Plata, CC 1245 Mar del Plata, Argentina.
| | - Facundo Luna
- Laboratorio de Ecofisiología, Instituto de Investigaciones Marinas y Costeras, CONICET Universidad Nacional de Mar del Plata, CC 1245 Mar del Plata, Argentina
| | - Julieta L Merlo
- Laboratorio de Ecofisiología, CIC - Universidad Nacional de Mar del Plata, CC 1245 Mar del Plata, Argentina
| | - María Belén Baldo
- Laboratorio de Ecofisiología, Instituto de Investigaciones Marinas y Costeras, CONICET Universidad Nacional de Mar del Plata, CC 1245 Mar del Plata, Argentina
| | - Roxana R Zenuto
- Laboratorio de Ecofisiología, Instituto de Investigaciones Marinas y Costeras, CONICET Universidad Nacional de Mar del Plata, CC 1245 Mar del Plata, Argentina
| |
Collapse
|
65
|
Gifford ME, Clay TA, Careau V. Individual (co)variation in standard metabolic rate, feeding rate, and exploratory behavior in wild-caught semiaquatic salamanders. Physiol Biochem Zool 2014; 87:384-96. [PMID: 24769703 DOI: 10.1086/675974] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Repeatability is an important concept in evolutionary analyses because it provides information regarding the benefit of repeated measurements and, in most cases, a putative upper limit to heritability estimates. Repeatability (R) of different aspects of energy metabolism and behavior has been demonstrated in a variety of organisms over short and long time intervals. Recent research suggests that consistent individual differences in behavior and energy metabolism might covary. Here we present new data on the repeatability of body mass, standard metabolic rate (SMR), voluntary exploratory behavior, and feeding rate in a semiaquatic salamander and ask whether individual variation in behavioral traits is correlated with individual variation in metabolism on a whole-animal basis and after conditioning on body mass. All measured traits were repeatable, but the repeatability estimates ranged from very high for body mass (R = 0.98), to intermediate for SMR (R = 0.39) and food intake (R = 0.58), to low for exploratory behavior (R = 0.25). Moreover, repeatability estimates for all traits except body mass declined over time (i.e., from 3 to 9 wk), although this pattern could be a consequence of the relatively low sample size used in this study. Despite significant repeatability in all traits, we find little evidence that behaviors are correlated with SMR at the phenotypic and among-individual levels when conditioned on body mass. Specifically, the phenotypic correlations between SMR and exploratory behavior were negative in all trials but significantly so in one trial only. Salamanders in this study showed individual variation in how their exploratory behavior changed across trials (but not body mass, SMR, and feed intake), which might have contributed to observed changing correlations across trials.
Collapse
Affiliation(s)
- Matthew E Gifford
- Department of Biology, University of Arkansas, Little Rock, Arkansas 72204; 2Department of Applied Science, University of Arkansas, Little Rock, Arkansas 72204; 3Center for Integrative Ecology, School of Life and Environmental Science, Deakin University, Victoria, Australia
| | | | | |
Collapse
|
66
|
Lacroix C, Jolles A, Seabloom EW, Power AG, Mitchell CE, Borer ET. Non-random biodiversity loss underlies predictable increases in viral disease prevalence. J R Soc Interface 2014; 11:20130947. [PMID: 24352672 PMCID: PMC3899862 DOI: 10.1098/rsif.2013.0947] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/28/2013] [Indexed: 11/12/2022] Open
Abstract
Disease dilution (reduced disease prevalence with increasing biodiversity) has been described for many different pathogens. Although the mechanisms causing this phenomenon remain unclear, the disassembly of communities to predictable subsets of species, which can be caused by changing climate, land use or invasive species, underlies one important hypothesis. In this case, infection prevalence could reflect the competence of the remaining hosts. To test this hypothesis, we measured local host species abundance and prevalence of four generalist aphid-vectored pathogens (barley and cereal yellow dwarf viruses) in a ubiquitous annual grass host at 10 sites spanning 2000 km along the North American West Coast. In laboratory and field trials, we measured viral infection as well as aphid fecundity and feeding preference on several host species. Virus prevalence increased as local host richness declined. Community disassembly was non-random: ubiquitous hosts dominating species-poor assemblages were among the most competent for vector production and virus transmission. This suggests that non-random biodiversity loss led to increased virus prevalence. Because diversity loss is occurring globally in response to anthropogenic changes, such work can inform medical, agricultural and veterinary disease research by providing insights into the dynamics of pathogens nested within a complex web of environmental forces.
Collapse
Affiliation(s)
- Christelle Lacroix
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Anna Jolles
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
- Department of Zoology, Oregon State University, Corvallis, OR 97331, USA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Alison G. Power
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Charles E. Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
67
|
Koprivnikar J, Redfern JC, Mazier HL. Variation in anti-parasite behaviour and infection among larval amphibian species. Oecologia 2013; 174:1179-85. [PMID: 24337712 DOI: 10.1007/s00442-013-2857-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
Along with immune defences, many animals exhibit effective anti-parasite behaviours such as parasite avoidance and removal that influence their susceptibility to infection. Host ecology and life history influence investment into comparatively fixed defences such as innate immunity but may affect the strength of anti-parasite behaviours as well. We investigated activity levels in five different species of larval amphibian with varying life histories and ecology in control, novel food stimulus, and trematode parasite (Echinoparyphium sp.) threat conditions. There was a significant interaction of species and treatment given that American toad (Bufo americanus), wood frog (Lithobates sylvaticus), and bullfrog (Lithobates catesbeianus) tadpoles generally increased their activity when parasite infectious stages were present while grey tree frogs (Hyla versicolor) and northern leopard frogs (Lithobates pipiens) did not, even though activity was negatively related to infection. In addition, there was considerable variation among species in their susceptibility to parasitism, with infection prevalence ranging from 17% in bullfrog tadpoles to 70% in wood frogs. However, amphibian life history (larval and adult traits) was not related to parasitism or level of anti-parasite behaviour at the species level. Consequently, we suggest that future investigations include more species with a range of life history traits and also consider host ecology, particularly if conspicuous anti-parasite behaviours are more likely in amphibian species that experience a relatively low risk of predation.
Collapse
Affiliation(s)
- Janet Koprivnikar
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada,
| | | | | |
Collapse
|
68
|
Schrey AW, Liebl AL, Richards CL, Martin LB. Range Expansion of House Sparrows (Passer domesticus) in Kenya: Evidence of Genetic Admixture and Human-Mediated Dispersal. J Hered 2013; 105:60-9. [DOI: 10.1093/jhered/est085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
69
|
Joseph MB, Mihaljevic JR, Orlofske SA, Paull SH. Does life history mediate changing disease risk when communities disassemble? Ecol Lett 2013; 16:1405-12. [PMID: 24138175 DOI: 10.1111/ele.12180] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/05/2013] [Accepted: 08/21/2013] [Indexed: 02/05/2023]
Abstract
Biodiversity loss sometimes increases disease risk or parasite transmission in humans, wildlife and plants. Some have suggested that this pattern can emerge when host species that persist throughout community disassembly show high host competence - the ability to acquire and transmit infections. Here, we briefly assess the current empirical evidence for covariance between host competence and extirpation risk, and evaluate the consequences for disease dynamics in host communities undergoing disassembly. We find evidence for such covariance, but the mechanisms for and variability around this relationship have received limited consideration. This deficit could lead to spurious assumptions about how and why disease dynamics respond to community disassembly. Using a stochastic simulation model, we demonstrate that weak covariance between competence and extirpation risk may account for inconsistent effects of host diversity on disease risk that have been observed empirically. This model highlights the predictive utility of understanding the degree to which host competence relates to extirpation risk, and the need for a better understanding of the mechanisms underlying such relationships.
Collapse
Affiliation(s)
- Maxwell B Joseph
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | | | | | | |
Collapse
|
70
|
O'Neal DM. Eco-endo-immunology across avian life history stages. Gen Comp Endocrinol 2013; 190:105-11. [PMID: 23707379 DOI: 10.1016/j.ygcen.2013.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 11/28/2022]
Abstract
Broadly distributed songbirds, particularly those that migrate, encounter a wide range of pathogens. Both pathogen exposure and energy available for immune responses are expected to be affected by environmental variation in climate, habitat quality, and social interactions as well as hormonal mechanisms. Comparisons of Aves in the field have begun to build the framework for understanding how such environmental variation interacts with disease environments as reflected in endocrine and immune responses. In this review, the roles of hormones and immune function across the various life history stages that make up the avian annual cycle are considered with an emphasis on free-living songbirds and the various hormones known to mediate the innate and acquired immune systems including melatonin, prolactin, growth hormone, and several neuroendocrine hormones. Finally, hormone-immune interactions are considered within the framework of disease ecology.
Collapse
Affiliation(s)
- Dawn M O'Neal
- Huyck Preserve and Biological Research Station, P.O. Box 189, Rensselaerville, NY 12147, USA.
| |
Collapse
|
71
|
Palacios MG, Cunnick JE, Bronikowski AM. Complex interplay of body condition, life history, and prevailing environment shapes immune defenses of garter snakes in the wild. Physiol Biochem Zool 2013; 86:547-58. [PMID: 23995485 DOI: 10.1086/672371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The immunocompetence "pace-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two life-history ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we optimized a lymphocyte proliferation assay to assess the complementary prediction that slow-living snakes should in turn show stronger adaptive defenses. We also assessed the "environmental" hypothesis that predicts that slow-living snakes should show lower levels of immune defenses (both innate and adaptive) given the harsher environment they live in. Proliferation of B- and T-lymphocytes of free-living individuals was on average higher in fast-living than slow-living snakes, opposing the pace-of-life hypothesis and supporting the environmental hypothesis. Bactericidal capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes in this study, contrasting the previously documented pattern and highlighting the importance of annual environmental conditions as determinants of immune profiles of free-living animals. Our results do not negate a link between life history and immunity, as indicated by ecotype-specific relationships between lymphocyte proliferation and body condition, but suggest more subtle nuances than those currently proposed.
Collapse
Affiliation(s)
- Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
72
|
Iseri VJ, Klasing KC. Dynamics of the systemic components of the chicken (Gallus gallus domesticus) immune system following activation by Escherichia coli; implications for the costs of immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:248-257. [PMID: 23500513 DOI: 10.1016/j.dci.2013.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/03/2013] [Accepted: 02/12/2013] [Indexed: 06/01/2023]
Abstract
The immune response is thought to be costly and deters from growth and reproduction, but the magnitude and sources of these costs are unknown. Thus, we quantified the changes in mass of leukocytes (CD4(+) and CD8(+) T cells, Bu1(+) IgM(+) and Bu1(+) IgG(+) B cells, monocytes/macrophages, heterophils and thrombocytes) and protective plasma proteins in systemic (non-mucosal) components of adult chickens injected intravenously with dead Escherichia coli. During the first day after E. coli injection most types of blood leukocytes decreased and α-1-acid glycoprotein increased. Specific IgM, specific IgY, total IgM, Bu1(+) lymphocytes in the spleen and bone marrow and thymic CD8(+) lymphocytes increased at 5d post-injection. Quantitatively, the increases in the weight of cells and antibodies due to E. coli were dwarfed by the increase in the weight of the liver and acute phase proteins. Thus the acute phase response was markedly more costly than the subsequent adaptive response. The weight of the cells and proteins of the systemic immune system prior to challenge was 0.14% of body weight. Following E. coli injection, the additional weight of the immune components and the hypertrophy of the liver resulted in a 3.6-fold increase in weight which is equivalent to 18.5% of a large egg.
Collapse
Affiliation(s)
- V J Iseri
- Department of Animal Science, 1 Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
73
|
Abad-Gómez JM, Gutiérrez JS, Villegas A, Sánchez-Guzmán JM, Navedo JG, Masero JA. Time course and metabolic costs of a humoral immune response in the little ringed plover Charadrius dubius. Physiol Biochem Zool 2013; 86:354-60. [PMID: 23629885 DOI: 10.1086/670733] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite host defense against parasites and pathogens being considered a costly life-history trait, relatively few studies have assessed the energetic cost of immune responsiveness. Knowledge of such energetic costs may help to understand the mechanisms by which trade-offs with other demanding activities occur. The time course and associated metabolic costs of mounting a primary and secondary humoral immune response was examined in little ringed plovers Charadrius dubius challenged with sheep red blood cells. As was expected, the injection with this antigen increased the production of specific antibodies significantly, with peaks 6 d postinjection in both primary and secondary responses. At the peak of secondary antibody response, the antibody production was 29% higher than that observed during the primary response, but the difference was nonsignificant. Mounting the primary response did not significantly increase the resting metabolic rate (RMR) of birds, whereas the secondary response did by 21%, suggesting that the latter was more costly in terms of RMR. In spite of the fact that the primary response did not involve an increase in RMR, birds significantly decreased their body mass. This could imply an internal energy reallocation strategy to cope with the induced immune challenge. Last, we found that RMR and antibody production peaks were not coupled, which could help to conciliate the variable results of previous studies. Collectively, the results of this study support the hypothesis that humoral immunity, especially the secondary response, entails energetic costs that may trade-off with other physiological activities.
Collapse
Affiliation(s)
- José M Abad-Gómez
- Conservation Biology Research Group, Zoology, University of Extremadura, Badajoz, Spain.
| | | | | | | | | | | |
Collapse
|
74
|
Niemelä PT, Dingemanse NJ, Alioravainen N, Vainikka A, Kortet R. Personality pace-of-life hypothesis: testing genetic associations among personality and life history. Behav Ecol 2013. [DOI: 10.1093/beheco/art014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
75
|
Species' life-history traits explain interspecific variation in reservoir competence: a possible mechanism underlying the dilution effect. PLoS One 2013; 8:e54341. [PMID: 23365661 PMCID: PMC3554779 DOI: 10.1371/journal.pone.0054341] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
Hosts species for multi-host pathogens show considerable variation in the species' reservoir competence, which is usually used to measure species' potential to maintain and transmit these pathogens. Although accumulating research has proposed a trade-off between life-history strategies and immune defences, only a few studies extended this to host species' reservoir competence. Using a phylogenetic comparative approach, we studied the relationships between some species' life-history traits and reservoir competence in three emerging infectious vector-borne disease systems, namely Lyme disease, West Nile Encephalitis (WNE) and Eastern Equine Encephalitis (EEE). The results showed that interspecific variation in reservoir competence could be partly explained by the species' life histories. Species with larger body mass (for hosts of Lyme disease and WNE) or smaller clutch size (for hosts of EEE) had a higher reservoir competence. Given that both larger body mass and smaller clutch size were linked to higher extinction risk of local populations, our study suggests that with decreasing biodiversity, species with a higher reservoir competence are more likely to remain in the community, and thereby increase the risk of transmitting these pathogens, which might be a possible mechanism underlying the dilution effect.
Collapse
|
76
|
Downs CJ, Brown JL, Wone B, Donovan ER, Hunter K, Hayes JP. Selection for increased mass-independent maximal metabolic rate suppresses innate but not adaptive immune function. Proc Biol Sci 2013; 280:20122636. [PMID: 23303541 DOI: 10.1098/rspb.2012.2636] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Both appropriate metabolic rates and sufficient immune function are essential for survival. Consequently, eco-immunologists have hypothesized that animals may experience trade-offs between metabolic rates and immune function. Previous work has focused on how basal metabolic rate (BMR) may trade-off with immune function, but maximal metabolic rate (MMR), the upper limit to aerobic activity, might also trade-off with immune function. We used mice artificially selected for high mass-independent MMR to test for trade-offs with immune function. We assessed (i) innate immune function by quantifying cytokine production in response to injection with lipopolysaccharide and (ii) adaptive immune function by measuring antibody production in response to injection with keyhole limpet haemocyanin. Selection for high mass-independent MMR suppressed innate immune function, but not adaptive immune function. However, analyses at the individual level also indicate a negative correlation between MMR and adaptive immune function. By contrast BMR did not affect immune function. Evolutionarily, natural selection may favour increasing MMR to enhance aerobic performance and endurance, but the benefits of high MMR may be offset by impaired immune function. This result could be important in understanding the selective factors acting on the evolution of metabolic rates.
Collapse
Affiliation(s)
- Cynthia J Downs
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Gutiérrez JS, Abad-Gómez JM, Villegas A, Sánchez-Guzmán JM, Masero JA. Effects of salinity on the immune response of an 'osmotic generalist' bird. Oecologia 2012; 171:61-9. [PMID: 22782496 DOI: 10.1007/s00442-012-2405-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
Salt stress can suppress the immune function of fish and other aquatic animals, but such an effect has not yet been examined in air-breathing vertebrates that frequently cope with waters (and prey) of contrasting salinities. We investigated the effects of seawater salinity on the strength and cost of mounting an immune response in the dunlin Calidris alpina, a long-distance migratory shorebird that shifts seasonally from freshwater environments during the breeding season to marine environments during migration and the winter period. Phytohaemagglutinin (PHA)-induced skin swelling, basal metabolic rate (BMR), body mass, fat stores, and plasma ions were measured in dunlins acclimated to either freshwater or seawater (salinity: 0.3 and 35.0 ‰, respectively). Seawater-acclimated dunlins mounted a PHA-induced swelling response that was up to 56 % weaker than those held under freshwater conditions, despite ad libitum access to food. Freshwater-acclimated dunlins significantly increased their relative BMR 48 h after PHA injection, whereas seawater-acclimated dunlins did not. However, this differential immune and metabolic response between freshwater- and seawater-acclimated dunlins was not associated with significant changes in body mass, fat stores or plasma ions. Our results indicate that the strength of the immune response of this small-sized migratory shorebird was negatively influenced by the salinity of marine habitats. Further, these findings suggest that the reduced immune response observed under saline conditions might not be caused by an energy or nutrient limitation, and raise questions about the role of osmoregulatory hormones in the modulation of the immune system.
Collapse
Affiliation(s)
- Jorge S Gutiérrez
- Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, Badajoz, Spain.
| | | | | | | | | |
Collapse
|
78
|
Abstract
Social status can have striking effects on health in humans and other animals, but the causes often are unknown. In male vertebrates, status-related differences in health may be influenced by correlates of male social status that suppress immune responses. Immunosuppressive correlates of low social status may include chronic social stress, poor physical condition, and old age; the immunosuppressive correlates of high status may include high testosterone and energetic costs of reproduction. Here we test whether these correlates could create status-related differences in immune function by measuring the incidence of illness and injury and then examining healing rates in a 27-y data set of natural injuries and illnesses in wild baboon males. We found no evidence that the high testosterone and intense reproductive effort associated with high rank suppress immune responses. Instead, high-ranking males were less likely to become ill, and they recovered more quickly than low-ranking males, even controlling for differences in age. Notably, alpha males, who experience high glucocorticoids, as well as the highest testosterone and reproductive effort, healed significantly faster than other males, even other high-ranking males. We discuss why alpha males seem to escape from the immunosuppressive costs of glucocorticoids but low-ranking males do not, including the idea that glucocorticoids' effects depend on an individual's physiological and social context.
Collapse
Affiliation(s)
- Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Jeanne Altmann
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Chiromo Campus, Nairobi, Kenya; and
| | - Susan C. Alberts
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
79
|
No evidence for a trade-off between reproductive investment and immunity in a rodent. PLoS One 2012; 7:e37182. [PMID: 22649512 PMCID: PMC3359356 DOI: 10.1371/journal.pone.0037182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/17/2012] [Indexed: 11/19/2022] Open
Abstract
Life history theory assumes there are trade-offs between competing functions such as reproduction and immunity. Although well studied in birds, studies of the trade-offs between reproduction and immunity in small mammals are scarce. Here we examined whether reduced immunity is a consequence of reproductive effort in lactating Brandt's voles (Lasiopodomys brandtii). Specifically, we tested the effects of lactation on immune function (Experiment I). The results showed that food intake and resting metabolic rate (RMR) were higher in lactating voles (6≤ litter size ≤8) than that in non-reproductive voles. Contrary to our expectation, lactating voles also had higher levels of serum total Immunoglobulin G (IgG) and anti-keyhole limpet hemocyanin (KLH) IgG and no change in phytohemagglutinin (PHA) response and anti-KLH Immunoglobulin M (IgM) compared with non-reproductive voles, suggesting improved rather than reduced immune function. To further test the effect of differences in reproductive investment on immunity, we compared the responses between natural large (n≥8) and small litter size (n≤6) (Experiment II) and manipulated large (11-13) and small litter size (2-3) (Experiment III). During peak lactation, acquired immunity (PHA response, anti-KLH IgG and anti-KLH IgM) was not significantly different between voles raising large or small litters in both experiments, despite the measured difference in reproductive investment (greater litter size, litter mass, RMR and food intake in the voles raising larger litters). Total IgG was higher in voles with natural large litter size than those with natural small litter size, but decreased in the enlarged litter size group compared with control and reduced group. Our results showed that immune function is not suppressed to compensate the high energy demands during lactation in Brandt's voles and contrasting the situation in birds, is unlikely to be an important aspect mediating the trade-off between reproduction and survival.
Collapse
|
80
|
Hegemann A, Matson KD, Both C, Tieleman BI. Immune function in a free-living bird varies over the annual cycle, but seasonal patterns differ between years. Oecologia 2012; 170:605-18. [PMID: 22562421 PMCID: PMC3470818 DOI: 10.1007/s00442-012-2339-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/16/2012] [Indexed: 12/02/2022]
Abstract
A central hypothesis of eco-immunology proposes trade-offs between immune defences and competing physiological and behavioural processes, leading to immunological variation within and among annual-cycle stages, as has been revealed for some species. However, few studies have simultaneously investigated patterns of multiple immune indices over the entire annual cycle in free-living birds, and none has investigated the consistency of seasonal patterns across multiple years. We quantified lysis, agglutination, haptoglobin, leukocyte profiles, and body mass in free-living skylarks (Alauda arvensis) through two complete annual cycles and within and between four breeding seasons. The skylarks’ annual cycle is characterised by annually repeated changes in energy and time budgets, social structure and diet. If trade-offs relating to these cyclic changes shape evolution, predictable intra-annual immune patterns may result. Alternatively, intra-annual immune patterns may vary among years if fluctuating environmental changes affect the cost–benefit balances of immune function. We found significant variation in immune indices and body mass across the annual cycle, and these patterns differed between years. Immune parameters differed between four breeding seasons, and in all years, lysis and agglutination increased as the season progressed independent of average levels. Population-level patterns (intra-annual, inter-annual, within breeding season) were consistent with within-individual patterns based on repeated measurements. We found little evidence for sex differences, and only haptoglobin was correlated (negatively) with body mass. We conclude that immune modulation is not simply a pre-programmed phenomenon that reflects predictable ecological changes. Instead, fluctuating environmental conditions that vary among years likely contribute to the immunological variation that we observed.
Collapse
Affiliation(s)
- Arne Hegemann
- Animal Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
81
|
Previtali MA, Ostfeld RS, Keesing F, Jolles AE, Hanselmann R, Martin LB. Relationship between pace of life and immune responses in wild rodents. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2012.020215.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
|
83
|
Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 2012; 139:847-63. [PMID: 22336330 DOI: 10.1017/s0031182012000200] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The twin concepts of zooprophylaxis and the dilution effect originated with vector-borne diseases (malaria), were driven forward by studies on Lyme borreliosis and have now developed into the mantra "biodiversity protects against disease". The basic idea is that by diluting the assemblage of transmission-competent hosts with non-competent hosts, the probability of vectors feeding on transmission-competent hosts is reduced and so the abundance of infected vectors is lowered. The same principle has recently been applied to other infectious disease systems--tick-borne, insect-borne, indirectly transmitted via intermediate hosts, directly transmitted. It is claimed that the presence of extra species of various sorts, acting through a variety of distinct mechanisms, causes the prevalence of infectious agents to decrease. Examination of the theoretical and empirical evidence for this hypothesis reveals that it applies only in certain circumstances even amongst tick-borne diseases, and even less often if considering the correct metric--abundance rather than prevalence of infected vectors. Whether dilution or amplification occurs depends more on specific community composition than on biodiversity per se. We warn against raising a straw man, an untenable argument easily dismantled and dismissed. The intrinsic value of protecting biodiversity and ecosystem function outweighs this questionable utilitarian justification.
Collapse
|
84
|
Johnson PTJ, Rohr JR, Hoverman JT, Kellermanns E, Bowerman J, Lunde KB. Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol Lett 2012; 15:235-42. [PMID: 22221837 DOI: 10.1111/j.1461-0248.2011.01730.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parasite infections often lead to dramatically different outcomes among host species. Although an emerging body of ecoimmunological research proposes that hosts experience a fundamental trade-off between pathogen defences and life-history activities, this line of inquiry has rarely been extended to the most essential outcomes of host-pathogen interactions: namely, infection and disease pathology. Using a comparative experimental approach involving 13 amphibian host species and a virulent parasite, we test the hypothesis that 'pace-of-life' predicts parasite infection and host pathology. Trematode exposure increased mortality and malformations in nine host species. After accounting for evolutionary history, species that developed quickly and metamorphosed smaller ('fast-species') were particularly prone to infection and pathology. This pattern likely resulted from both weaker host defences and greater adaptation by parasites to infect common hosts. Broader integration between life history theory and disease ecology can aid in identifying both reservoir hosts and species at risk of disease-driven declines.
Collapse
Affiliation(s)
- Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
85
|
The economy of inflammation: when is less more? Trends Parasitol 2011; 27:382-7. [DOI: 10.1016/j.pt.2011.05.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/12/2011] [Accepted: 05/12/2011] [Indexed: 12/23/2022]
|
86
|
Horrocks NPC, Matson KD, Tieleman BI. Pathogen Pressure Puts Immune Defense into Perspective. Integr Comp Biol 2011; 51:563-76. [DOI: 10.1093/icb/icr011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
87
|
Demas GE, Zysling DA, Beechler BR, Muehlenbein MP, French SS. Beyond phytohaemagglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 2011; 80:710-30. [DOI: 10.1111/j.1365-2656.2011.01813.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
88
|
Eisenberg DTA. An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Hum Biol 2011; 23:149-67. [PMID: 21319244 DOI: 10.1002/ajhb.21127] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 08/03/2010] [Accepted: 09/30/2010] [Indexed: 12/14/2022] Open
Abstract
Telomeres, repetitive DNA sequences found at the ends of linear chromosomes, play a role in regulating cellular proliferation, and shorten with increasing age in proliferating human tissues. The rate of age-related shortening of telomeres is highest early in life and decreases with age. Shortened telomeres are thought to limit the proliferation of cells and are associated with increased morbidity and mortality. Although natural selection is widely assumed to operate against long telomeres because they entail increased cancer risk, the evidence for this is mixed. Instead, here it is proposed that telomere length is primarily limited by energetic constraints. Cell proliferation is energetically expensive, so shorter telomeres should lead to a thrifty phenotype. Shorter telomeres are proposed to restrain adaptive immunity as an energy saving mechanism. Such a limited immune system, however, might also result in chronic infections, inflammatory stress, premature aging, and death--a more "disposable soma." With an increased reproductive lifespan, the fitness costs of premature aging are higher and longer telomeres will be favored by selection. Telomeres exhibit a paternal effect whereby the offspring of older fathers have longer telomeres due to increased telomere lengths of sperm with age. This paternal effect is proposed to be an adaptive signal of the expected age of male reproduction in the environment offspring are born into. The offspring of lineages of older fathers will tend to have longer, and thereby less thrifty, telomeres, better preparing them for an environment with higher expected ages at reproduction.
Collapse
Affiliation(s)
- Dan T A Eisenberg
- Department of Anthropology, Northwestern University, Evanston, IL 60208-1330, USA.
| |
Collapse
|
89
|
Réale D, Garant D, Humphries MM, Bergeron P, Careau V, Montiglio PO. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans R Soc Lond B Biol Sci 2011; 365:4051-63. [PMID: 21078657 DOI: 10.1098/rstb.2010.0208] [Citation(s) in RCA: 848] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pace-of-life syndrome (POLS) hypothesis specifies that closely related species or populations experiencing different ecological conditions should differ in a suite of metabolic, hormonal and immunity traits that have coevolved with the life-history particularities related to these conditions. Surprisingly, two important dimensions of the POLS concept have been neglected: (i) despite increasing evidence for numerous connections between behavioural, physiological and life-history traits, behaviours have rarely been considered in the POLS yet; (ii) the POLS could easily be applied to the study of covariation among traits between individuals within a population. In this paper, we propose that consistent behavioural differences among individuals, or personality, covary with life history and physiological differences at the within-population, interpopulation and interspecific levels. We discuss how the POLS provides a heuristic framework in which personality studies can be integrated to address how variation in personality traits is maintained within populations.
Collapse
Affiliation(s)
- Denis Réale
- Département des Sciences Biologiques, Université du Québec, Montréal, Canada.
| | | | | | | | | | | |
Collapse
|
90
|
Schrey AW, Grispo M, Awad M, Cook MB, McCoy ED, Mushinsky HR, Albayrak T, Bensch S, Burke T, Butler LK, Dor R, Fokidis HB, Jensen H, Imboma T, Kessler-Rios MM, Marzal A, Stewart IRK, Westerdahl H, Westneat DF, Zehtindjiev P, Martin LB. Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Mol Ecol 2011; 20:1133-43. [PMID: 21251113 DOI: 10.1111/j.1365-294x.2011.05001.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduced species offer unique opportunities to study evolution in new environments, and some provide opportunities for understanding the mechanisms underlying macroecological patterns. We sought to determine how introduction history impacted genetic diversity and differentiation of the house sparrow (Passer domesticus), one of the most broadly distributed bird species. We screened eight microsatellite loci in 316 individuals from 16 locations in the native and introduced ranges. Significant population structure occurred between native than introduced house sparrows. Introduced house sparrows were distinguished into one North American group and a highly differentiated Kenyan group. Genetic differentiation estimates identified a high magnitude of differentiation between Kenya and all other populations, but demonstrated that European and North American samples were differentiated too. Our results support previous claims that introduced North American populations likely had few source populations, and indicate house sparrows established populations after introduction. Genetic diversity also differed among native, introduced North American, and Kenyan populations with Kenyan birds being least diverse. In some cases, house sparrow populations appeared to maintain or recover genetic diversity relatively rapidly after range expansion (<50 years; Mexico and Panama), but in others (Kenya) the effect of introduction persisted over the same period. In both native and introduced populations, genetic diversity exhibited large-scale geographic patterns, increasing towards the equator. Such patterns of genetic diversity are concordant with two previously described models of genetic diversity, the latitudinal model and the species diversity model.
Collapse
Affiliation(s)
- A W Schrey
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Affiliation(s)
- Raoul K. Boughton
- Avian Ecology, Archbold Biological Station, 123 Main Drive, Venus, Florida, USA
| | - Gerrit Joop
- Institute of Integrative Biology,
Experimental Ecology, ETH Zürich, CH‐8092 Zürich, Switzerland
| | - Sophie A.O. Armitage
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D‐48149 Münster, Germany
| |
Collapse
|
92
|
Abstract
Changes in biodiversity have the potential to either increase or reduce the incidence of infectious disease in plants and animals — including humans — because they involve interactions among species. At a minimum, this requires a host and a pathogen; often many more species are involved, including additional hosts, vectors and other organisms with which these species interact. Felicia Keesing and colleagues review the evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. Despite important questions still to be answered, they conclude that the evidence that biodiversity exerts a protective effect on infectious diseases is sufficiently strong to include biodiversity protection as a strategy to improve health. Current unprecedented declines in biodiversity reduce the ability of ecological communities to provide many fundamental ecosystem services. Here we evaluate evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. In principle, loss of biodiversity could either increase or decrease disease transmission. However, mounting evidence indicates that biodiversity loss frequently increases disease transmission. In contrast, areas of naturally high biodiversity may serve as a source pool for new pathogens. Overall, despite many remaining questions, current evidence indicates that preserving intact ecosystems and their endemic biodiversity should generally reduce the prevalence of infectious diseases.
Collapse
|
93
|
Adelman JS, Bentley GE, Wingfield JC, Martin LB, Hau M. Population differences in fever and sickness behaviors in a wild passerine: a role for cytokines. J Exp Biol 2010; 213:4099-109. [DOI: 10.1242/jeb.049528] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SUMMARY
Immune responses benefit hosts by clearing pathogens, but they also incur physiological costs and tissue damage. While wild animals differ in how they balance these costs and benefits, the physiological mechanisms underlying such differential investment in immunity remain unknown. Uncovering these mechanisms is crucial to determining how and where selection acts to shape immunological defense. Among free-living song sparrows (Melospiza melodia) in western North America, sickness-induced lethargy and fever are more pronounced in Southern California than in Washington and Alaska. We brought song sparrows from two populations (Southern California and Washington) into captivity to determine whether these differences persist in a common environment and what physiological signals facilitate such differences. As in free-living sparrows, captive California birds exhibited more pronounced fever and lethargy than Washington birds in response to lipopolysaccharide, a non-pathogenic antigen that mimics bacterial infection. After treatment, the two populations showed similar reductions in luteinizing hormone levels, food intake and body mass, although treated birds from California lost more breast muscle tissue than treated birds from Washington. Moreover, California birds displayed higher bioactivity of interleukin-6, a pro-inflammatory cytokine, and marginally higher levels of corticosterone, a steroid hormone involved in stress, metabolism and regulating inflammatory responses. Our results show that immunological differences between these populations cannot be explained by immediate environment alone and may reflect genetic, maternal or early-life effects. Additionally, they suggest that cytokines play a role in shaping immunological variation among wild vertebrates.
Collapse
Affiliation(s)
- James S. Adelman
- Princeton University, Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton, NJ 08540, USA
- Max Planck Institute for Ornithology, Department of Migration and Immuno-ecology, Schlossallee 2, D-78315 Radolfzell, Germany
| | - George E. Bentley
- University of California at Berkeley, Department of Integrative Biology, 3060 Valley Life Sciences Bldg #3140, Berkeley, CA 94720-3140, USA
| | - John C. Wingfield
- University of California at Davis, Department of Neurobiology, Physiology and Behavior, One Shields Avenue, Davis, CA 95616, USA
| | - Lynn B. Martin
- University of South Florida, Department of Integrative Biology, 4202 East Fowler Ave., SCA110, Tampa, FL 33620, USA
| | - Michaela Hau
- Princeton University, Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton, NJ 08540, USA
- Max Planck Institute for Ornithology, Department of Migration and Immuno-ecology, Schlossallee 2, D-78315 Radolfzell, Germany
| |
Collapse
|
94
|
Pap PL, Czirják GA, Vágási CI, Barta Z, Hasselquist D. Sexual dimorphism in immune function changes during the annual cycle in house sparrows. Naturwissenschaften 2010; 97:891-901. [PMID: 20706704 DOI: 10.1007/s00114-010-0706-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 12/20/2022]
Abstract
Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows (Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions.
Collapse
Affiliation(s)
- Péter László Pap
- Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, 4032, Debrecen, Egyetem tér 1, Hungary.
| | | | | | | | | |
Collapse
|
95
|
Adelman JS, Córdoba-Córdoba S, Spoelstra K, Wikelski M, Hau M. Radiotelemetry reveals variation in fever and sickness behaviours with latitude in a free-living passerine. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01702.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
96
|
Cutrera AP, Zenuto RR, Luna F, Antenucci CD. Mounting a specific immune response increases energy expenditure of the subterranean rodent Ctenomys talarum (tuco-tuco): implications for intraspecific and interspecific variation in immunological traits. J Exp Biol 2010; 213:715-24. [DOI: 10.1242/jeb.037887] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
It was recently hypothesised that specific induced defences, which require substantial time and resources and are mostly beneficial against repeated infections, are more likely to be favoured in ‘slow-living-pace’ species. Therefore, understanding how different types of immune defences might vary with life history requires knowledge of the costs and benefits of defence components. Studies that have explored the energetic costs of immunity in vertebrates have done so with a focus primarily on birds and less so on mammals, particularly surface-dwelling rodents. In this study, we evaluated whether an experimental induction of the immune system with a non-pathogenic antigen elevates the energetic expenditure of a subterranean rodent: Ctenomys talarum (tuco-tucos). In both seasons studied, a significant increase in oxygen consumption was verified in immune-challenged tuco-tucos injected with sheep red blood cells (SRBC) compared with control animals. The increase in oxygen consumption 10 days after the exposure to SRBC was lower for female tuco-tucos monitored in the breeding season compared with females in the non-breeding season. Interestingly, antibody titres of female tuco-tucos did not decrease during the breeding season. Our results add new insight into the role of other factors such as basal metabolic rate or degree of parasite exposure besides ‘pace of life’ in modulating the interspecific immunological variation observed in natural populations of mammals.
Collapse
Affiliation(s)
- A. P. Cutrera
- Laboratorio de Ecofisiología, Departamento de Biología—Universidad Nacional de Mar del Plata, C. C. 1245, Mar del Plata, Argentina
| | - R. R. Zenuto
- Laboratorio de Ecofisiología, Departamento de Biología—Universidad Nacional de Mar del Plata, C. C. 1245, Mar del Plata, Argentina
| | - F. Luna
- Laboratorio de Ecofisiología, Departamento de Biología—Universidad Nacional de Mar del Plata, C. C. 1245, Mar del Plata, Argentina
| | - C. D. Antenucci
- Laboratorio de Ecofisiología, Departamento de Biología—Universidad Nacional de Mar del Plata, C. C. 1245, Mar del Plata, Argentina
| |
Collapse
|
97
|
Addison B, Klasing KC, Robinson WD, Austin SH, Ricklefs RE. Ecological and life-history factors influencing the evolution of maternal antibody allocation: a phylogenetic comparison. Proc Biol Sci 2009; 276:3979-87. [PMID: 19710063 DOI: 10.1098/rspb.2009.1296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maternally derived yolk antibodies provide neonates with immune protection in early life at negligible cost to mothers. However, developmental effects on the neonate's future immunity are potentially costly and thus could limit yolk antibody deposition. The benefits to neonatal immunity must be balanced against costs, which may depend on neonate vulnerability to pathogens, developmental trajectories and the immunological strategies best suited to a species' pace of life. We measured yolk antibodies and life-history features of 23 species of small Neotropical birds and assessed the evidence for each of several hypotheses for life history and ecological effects on the evolution of yolk antibody levels. Developmental period and yolk antibodies are negatively related, which possibly reflect the importance of humoral immune priming through antigen exposure, and selection to avoid autoimmunity, in species with a slower pace of life. There is also a strong relationship between body size and yolk antibody concentration, suggesting that larger species are architecturally equipped to produce and transfer higher concentrations of antibodies. These results suggest that developmental effects of maternally derived antibodies, such as imprinting effects on B-cell diversity or autoimmune effects, are important and deserve more consideration in future research.
Collapse
Affiliation(s)
- Brianne Addison
- Biology Department, University of Missouri-St Louis, , 1 University Boulevard, St Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
98
|
Schmidt KL, Chin EH, Shah AH, Soma KK. Cortisol and corticosterone in immune organs and brain of European starlings: developmental changes, effects of restraint stress, comparison with zebra finches. Am J Physiol Regul Integr Comp Physiol 2009; 297:R42-51. [DOI: 10.1152/ajpregu.90964.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glucocorticoids (GCs) are produced in the adrenal glands and also in extra-adrenal sites, including immune organs and brain. Here, we examined regulation of systemic GC levels in plasma and local GC levels in immune organs and brain during development. We conducted two studies and examined a total of 462 samples from 70 subjects. In study 1, we determined corticosterone and cortisol levels in the plasma, immune organs, and brain of wild European starlings on posthatch day 0 (P0) and P10 (at baseline and after 45 min of restraint). Baseline corticosterone and cortisol levels were low in the immune organs and brain at P0 and P10, providing little evidence for local GC synthesis in starlings. At P0, restraint had no significant effects on corticosterone or cortisol levels in the plasma or tissues; however, there was a trend for restraint to increase both corticosterone and cortisol in the immune organs. At P10, restraint increased corticosterone levels in the plasma and all tissues, but restraint increased cortisol levels in the plasma, thymus, and diencephalon only. In study 2, we directly compared GC levels in European starlings and zebra finches at P4. In zebra finches but not starlings, cortisol levels were higher in the immune organs than in plasma. This difference in immune GC levels might be due to evolutionary lineage, life history strategy, or experiential factors, such as parasite exposure. This is the first study to measure immune GC levels in wild animals and one of the first studies to measure local GC levels after restraint stress.
Collapse
|
99
|
Bisson IA, Butler LK, Hayden TJ, Romero LM, Wikelski MC. No energetic cost of anthropogenic disturbance in a songbird. Proc Biol Sci 2009; 276:961-9. [PMID: 19129135 DOI: 10.1098/rspb.2008.1277] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic or natural disturbances can have a significant impact on wild animals. Therefore, understanding when, how and what type of human and natural events disturb animals is a central problem in wildlife conservation. However, it can be difficult to identify which particular environmental stressor affects an individual most. We use heart rate telemetry to quantify the energy expenditure associated with different types of human-mediated and natural disturbances in a breeding passerine, the white-eyed vireo (Vireo griseus). We fitted 0.5g heart rate transmitters to 14 male vireos and continuously recorded heart rate and activity for two days and three nights on a military installation. We calibrated heart rate to energy expenditure for five additional males using an open-flow, push-through respirometry system showing that heart rate predicted 74 per cent of energy expenditure. We conducted standardized disturbance trials in the field to experimentally simulate a natural stressor (predator presence) and two anthropogenic stressors. Although birds initially showed behavioural and heart rate reactions to some disturbances, we could not detect an overall increase in energy expenditure during 1- or 4-hours disturbances. Similarly, overall activity rates were unaltered between control and experimental periods, and birds continued to perform parental duties despite the experimental disturbances. We suggest that vireos quickly determined that disturbances were non-threatening and thus showed no (costly) physiological response. We hypothesize that the lack of a significant response to disturbance in vireos is adaptive and may be representative of animals with fast life histories (e.g. short lifespan, high reproductive output) so as to maximize energy allocation to reproduction. Conversely, we predict that energetic cost of human-mediated disturbances will be significant in slow-living animals.
Collapse
Affiliation(s)
- Isabelle-Anne Bisson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA.
| | | | | | | | | |
Collapse
|
100
|
Février Y, Russo J, Madec L. Intraspecific variation in life history traits of a land snail after a bacterial challenge. J Zool (1987) 2009. [DOI: 10.1111/j.1469-7998.2008.00523.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|