51
|
McClenahan SD, Bok K, Neill JD, Smith AW, Rhodes CR, Sosnovtsev SV, Green KY, Romero CH. A capsid gene-based real-time reverse transcription polymerase chain reaction assay for the detection of marine vesiviruses in the Caliciviridae. J Virol Methods 2009; 161:12-8. [PMID: 19410604 PMCID: PMC2716420 DOI: 10.1016/j.jviromet.2009.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/20/2009] [Accepted: 04/23/2009] [Indexed: 11/26/2022]
Abstract
A real-time reverse transcription polymerase chain reaction (rtRT-PCR) assay was developed for the identification of marine vesiviruses. The primers were designed to target a 176-nucleotide fragment within a highly conserved region of the San Miguel sea lion viruses (SMSVs) capsid gene. The assay detected viral RNA from nine marine vesivirus serotypes described previously, including two serotypes (SMSV-8 and -12) not identified with presently available molecular assays, a highly related bovine vesivirus strain (Bos-1), a mink vesivirus strain (MCV), and two novel genotypes isolated recently from Steller sea lions (SSL V810 and V1415). The real-time assay did not amplify sequences from the corresponding genomic regions of feline calicivirus (also in the genus Vesivirus) and representative members of the genus Norovirus. The rtRT-PCR assay described below may prove useful as a diagnostic tool for the detection of currently circulating, emerging and previously described marine vesiviruses in clinical samples, especially when large numbers are screened in surveillance studies of these restricted viruses.
Collapse
Affiliation(s)
- Shasta D. McClenahan
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave., Bldg 1017, Gainesville, FL 32610, USA
| | - Karin Bok
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John D. Neill
- National Animal Disease Center, USDA, Ames, IA 50010, USA
| | - Alvin W. Smith
- Laboratory for Calicivirus Studies, Oregon State University Corvallis, OR 97331, USA
| | - Crystal R. Rhodes
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stanislav V. Sosnovtsev
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kim Y. Green
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carlos H. Romero
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, 2015 SW 16th Ave., Bldg 1017, Gainesville, FL 32610, USA
| |
Collapse
|
52
|
Molecular detection and prevalence of porcine caliciviruses in eastern China from 2008 to 2009. Arch Virol 2009; 154:1625-30. [PMID: 19763779 DOI: 10.1007/s00705-009-0487-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
Abstract
Caliciviruses causing diarrhea have been reported in both industrial and developing countries, including China, in recent years. Porcine caliciviruses that are closely related to human sapoviruses (SaVs) and noroviruses (NoVs) have also been detected in swine, which has raised discussion about the animal reservoir and the potential risk for zoonotic transmission to humans. The objective of this work was to determine the frequency and age distribution of SaVs and NoVs in pigs and to characterize the strains prevalent in eastern China. A total of 904 stool samples from pigs of different ages were collected from eastern China from April 2008 to March 2009 and tested for both SaVs and NoVs using reverse transcription-polymerase chain reaction (RT-PCR). Our results indicate that 8 (0.9%) stool samples were positive for SaVs and 2 (0.2%) for NoVs. Phylogenetic analysis of partial sequences of the RNA-dependent RNA polymerase (RdRp) gene indicated that all of the SaV strains belonged to the GIII SaVs, while the two NoV strains belonged to the GII NoV genogroup. The 8 SaV strains were further divided into two clusters, which clustered closely with the Netherlands isolate (AY615804) and the Chinese strain (EU599212), respectively. The two NoV strains shared about 67.3-67.6% nucleotide homology with a human norovirus strain (DQ369797), the only NoV strain from mainland China available in GenBank. Moreover, our results suggest that SaV infections are more frequent in 0-1 month-old pigs than in older ones. In conclusion, the present study provides evidence that PoSaVs and PoNoVs exist in swine in eastern China.
Collapse
|
53
|
Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae. Virus Genes 2009; 39:66-75. [PMID: 19396587 DOI: 10.1007/s11262-009-0360-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 04/13/2009] [Indexed: 12/19/2022]
Abstract
This study reports the molecular characterization of novel caliciviruses, the St-Valérien-like viruses, which were isolated from pig feces in the province of Quebec, Canada between 2005 and 2007. The genomes of St-Valérien-like viruses contain 6409 nucleotides and include two main open reading frames (ORFs). ORF1 encodes the non structural (NS) polyprotein and the major capsid protein (VP1) while ORF2 encodes the putative basic minor capsid protein. Typical conserved amino acid motifs predict a gene order reminiscent of calicivirus genomes. Phylogenetic, pairwise homology, and distance analyses performed on complete genomic sequences and partial amino acid sequences from the NTPase, polymerase, and major capsid protein segregated the St-Valérien-like viruses in a unique cluster sharing a common root with the Tulane virus and the noroviruses. Based on the genomic analyses presented, the St-Valérien-like viruses are members of a new genus of Caliciviridae for which we propose the name Valovirus.
Collapse
|
54
|
Pignatelli J, Jimenez M, Luque J, Rejas M, Lavazza A, Rodriguez D. Molecular characterization of a new PToV strain. Evolutionary implications. Virus Res 2009; 143:33-43. [PMID: 19463719 PMCID: PMC7114482 DOI: 10.1016/j.virusres.2009.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/26/2009] [Accepted: 02/27/2009] [Indexed: 02/02/2023]
Abstract
Toroviruses are emergent viruses, belonging to the Nidovirales order, that remain mostly ignored, despite they are able to infect different species of domestic animals and humans, causing enteric diseases and diarrhea. Thus far, only five variants of porcine torovirus (PToV) have been identified. In this report we describe the identification and partial characterization of a new strain of porcine torovirus (PToV-BRES) that was detected by RT-PCR in a swine faecal specimen from a farm in Brescia (Italy). The complete genes coding for the nucleocapsid (N), hemagglutinin-esterase (HE) and membrane (M) proteins were amplified, and sequence analysis showed that PToV-BRES is a new PToV strain that, based on the HE gene sequence, is phylogenetically related to P4 strain, that was up to now the only member of a distinct PToV lineage. The nucleocapsid protein from PToV-BRES was expressed in insect cells as a his-tagged protein, purified by affinity chromatography and used to develop an ELISA method to detect antibodies against PToV. This assay was evaluated using a serum collection including 45 samples from three commercial farms from Spain. High antibody prevalence against PToV was observed in the three farms, both in adult animals and in piglets, which could suggest that PToV might be endemic in Spanish porcine population. The ELISA method developed in this work could be useful in future epidemiological surveys about toroviruses.
Collapse
Affiliation(s)
- J. Pignatelli
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - M. Jimenez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - J. Luque
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - M.T. Rejas
- Electron Microscopy Facility, Centro de Biología Molecular Severo Ochoa, CSIC, C/Nicolás Cabrera 1, 28049 Madrid, Spain
| | - A. Lavazza
- Istituto Zooprofilattico Sperimentale della Lombarda e dell’Emilia Romagna, Brescia, Italy
| | - D. Rodriguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, C/Darwin 3, 28049 Madrid, Spain
- Corresponding author. Tel.: +34 915854549; fax: +34 915854506.
| |
Collapse
|
55
|
Park SI, Park DH, Saif LJ, Jeong YJ, Shin DJ, Chun YH, Park SJ, Kim HJ, Hosmillo M, Kwon HJ, Kang MI, Cho KO. Development of SYBR Green real-time RT-PCR for rapid detection, quantitation and diagnosis of unclassified bovine enteric calicivirus. J Virol Methods 2009; 159:64-8. [PMID: 19442847 PMCID: PMC7119535 DOI: 10.1016/j.jviromet.2009.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/24/2009] [Accepted: 03/02/2009] [Indexed: 11/16/2022]
Abstract
Unclassified bovine enteric calicivirus (BECV) is a newly recognized bovine enteric calicivirus that differs from bovine norovirus, and which causes diarrhea in the small intestines of calves. To date, methods such as real-time reverse transcription-polymerase chain reaction (RT-PCR) have not been developed for the rapid detection, quantitation and diagnosis of BECV. Presently, a BECV-specific SYBR Green real-time RT-PCR assay was evaluated and optimized. Diarrheic specimens (n = 118) collected from 2004 to 2005 were subjected to RT-PCR, nested PCR and SYBR Green real-time RT-PCR. By conventional RT-PCR and nested PCR, 9 (7.6%) and 59 (50%) samples tested positive, respectively, whereas the SYBR Green assay detected BECV in 91 (77.1%) samples. Using BECV RNA standards generated by in vitro transcription, the SYBR Green real-time RT-PCR assay sensitively detected BECV RNA to 1.1 × 100 copies/μl (correlation coefficiency = 0.98). The detection limits of the RT-PCR and nested PCR were 1.1 × 105 and 1.1 × 102 copies/μl, respectively. These results indicate that the SYBR Green real-time RT-PCR assay is more sensitive than conventional RT-PCR and nested PCR assays, and has potential as a reliable, reproducible, specific, sensitive and rapid tool for the detection, quantitation and diagnosis of unclassified BECV.
Collapse
Affiliation(s)
- Sang-Ik Park
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
L’Homme Y, Sansregret R, Plante-Fortier É, Lamontagne AM, Lacroix G, Ouardani M, Deschamps J, Simard G, Simard C. Genetic diversity of porcine Norovirus and Sapovirus: Canada, 2005–2007. Arch Virol 2009; 154:581-93. [DOI: 10.1007/s00705-009-0344-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Accepted: 02/23/2009] [Indexed: 02/05/2023]
|
57
|
|
58
|
Noroviruses and sapoviruses in pigs in Belgium. Arch Virol 2008; 153:1927-31. [DOI: 10.1007/s00705-008-0189-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/25/2008] [Indexed: 11/25/2022]
|
59
|
Abstract
Viruses are very small and most of them can be seen only by TEM (transmission electron microscopy). TEM has therefore made a major contribution to virology, including the discovery of many viruses, the diagnosis of various viral infections and fundamental investigations of virus-host cell interactions. However, TEM has gradually been replaced by more sensitive methods, such as the PCR. In research, new imaging techniques for fluorescence light microscopy have supplanted TEM, making it possible to study live cells and dynamic interactions between viruses and the cellular machinery. Nevertheless, TEM remains essential for certain aspects of virology. It is very useful for the initial identification of unknown viral agents in particular outbreaks, and is recommended by regulatory agencies for investigation of the viral safety of biological products and/or the cells used to produce them. In research, only TEM has a resolution sufficiently high for discrimination between aggregated viral proteins and structured viral particles. Recent examples of different viral assembly models illustrate the value of TEM for improving our understanding of virus-cell interactions.
Collapse
|
60
|
Identification of a porcine calicivirus related genetically to human sapoviruses. J Clin Microbiol 2008; 46:1907-13. [PMID: 18417656 DOI: 10.1128/jcm.00341-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whether animals may act as reservoirs for human caliciviruses is unclear. By sequence analysis of a short fragment of the RNA-dependent RNA polymerase (RdRp) region, porcine sapovirus (SaV) strains that genetically resemble human SaVs have been detected in piglets, but more-informative sequences (capsid gene) were not available for a precise characterization. In this study, the 3' terminus (the 3' end of open reading frame 1 [ORF1], including the polymerase complex and the complete capsid; ORF2; and the 3' untranslated region) of one such human SaV-like strain, 43/06-18p3/2006/It, was determined, revealing that these viruses are more related genetically to human (47.4 to 54.9% amino acid identity) than to animal (35.2 to 44.7% amino acid identity) SaVs in the capsid gene. In addition, the recombination-prone RdRp-capsid junction region was highly conserved with those of human SaVs of genogroup GI. The presence of porcine viruses similar to human SaVs is a significant finding because of the potential for zoonotic infections or generation of porcine/human recombinants.
Collapse
|
61
|
Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. J Virol 2008; 82:5408-16. [PMID: 18385231 DOI: 10.1128/jvi.00070-08] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we report the characterization of a novel calicivirus (CV), the Tulane virus (TV), which was isolated from stool samples of captive juvenile rhesus macaques (Macaca mulatta) of the Tulane National Primate Research Center. The complete genome of TV contains 6,714 nucleotides plus a poly(A) tail and is organized into three open reading frames (ORFs) that encode the nonstructural (NS) polyprotein (ORF1); the capsid protein (ORF2), with an estimated molecular mass of 57.9 kDa; and a possible minor structural protein (ORF3), with an isoelectric point (pI) of 10.0 and a calculated molecular mass of 22.8 kDa. The NS polyprotein revealed all typical CV amino acid motifs, including GXXGXGKT (NTPase), EYXEX (Vpg), GDCG (protease), and GLPSG and YGDD (polymerase). Phylogenetic trees constructed for the NS polyprotein, NTPase, protease, polymerase, and capsid protein sequences consistently placed the TV on a branch rooted with Norovirus, but with distances equal to those between other genera. The TV can be cultured in a monkey kidney cell line (LLC-MK2) with the appearance of typical cytopathic effect. TV exhibits a typical CV morphology, with a diameter of 36 nm, and has a buoyant density of 1.37 g/ml. According to these physicochemical and genetic characteristics, TV represents a new CV genus for which we propose the name "Recovirus" (rhesus enteric CV). Although the pathogenicity of TV in rhesus macaques remains to be elucidated, the likelihood of TV causing intestinal infection and the availability of a tissue culture system make this virus a valuable surrogate for human CVs.
Collapse
|
62
|
Barry AF, Alfieri AF, Alfieri AA. High genetic diversity in RdRp gene of Brazilian porcine sapovirus strains. Vet Microbiol 2008; 131:185-91. [PMID: 18403136 DOI: 10.1016/j.vetmic.2008.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 02/16/2008] [Accepted: 02/28/2008] [Indexed: 11/25/2022]
Abstract
Sapovirus is one genus within Caliciviridae family that causes diarrhea in humans and animals. Sapovirus (SaV) has been classified into seven genogroups (GI to GVII). The GIII, GVI, and GVII, which prototype is Cowden, JJ681, and K7/JP strains, respectively, infect pigs. The objective of this study was to characterize wild-type Brazilian SaV strains from piglet stool samples and determine SaV infection frequency, age distribution and association with diarrheic disease. Stool samples from 113 piglets up to 28-days-old were collected from 34 pig farms located in the States of Minas Gerais (MG), Mato Grosso do Sul (MS), Paraná (PR), Santa Catarina (SC), and Rio Grande do Sul (RS), during 2004 and 2005. The specimens were evaluated for enteric calicivirus by RT-PCR assay with primers p289/290, designed to detect the polymerase gene of SaV and norovirus. Thirty four (30.1%) samples were positive for SaV and five amplicons were sequenced. Phylogenetic analyses placed BRA29-MS/04 and BRA52-PR/05 sequences into the GIII of SaV genus. BRA04-SC/04, BRA21-RS/04, and BRA37-MG/05 demonstrated low identity with the Cowden strain but were closely related (up to 86.3%) to the Japanese and Dutch SaV strains, grouping together in a new cluster (GVIII?) in the phylogenetic tree. SaV infection was detected more frequently (p=0.0001) in animals between 22 and 28 days of age, in equal frequencies in piglets with and without diarrhea (p=0.59), and in the five Brazilian States. In this study, such as other unclassified worldwide SaVs, the Brazilian strains showed high genetic variability. Furthermore, the distribution and frequency of SaV infection provides evidence that the virus is circulating in Brazilian pig herds.
Collapse
Affiliation(s)
- Aline F Barry
- Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Campus Universitário, Londrina, Paraná, Brazil
| | | | | |
Collapse
|
63
|
Park SI, Jeong C, Park SJ, Kim HH, Jeong YJ, Hyun BH, Chun YH, Kang MI, Cho KO. Molecular detection and characterization of unclassified bovine enteric caliciviruses in South Korea. Vet Microbiol 2008; 130:371-9. [PMID: 18387758 PMCID: PMC7126893 DOI: 10.1016/j.vetmic.2008.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 12/05/2022]
Abstract
The unclassified bovine enteric calicivirus (BEC) is a new bovine enteric calicivirus that is different from bovine norovirus, and causes diarrhea and pathologies in the small intestine of calves. This virus includes Nebraska (NB)- and Newbury agent 1 (NA1)-like strains. The prevalence of this BEC and its genetic characterization has only been reported in the UK and the USA. This study examined the prevalence and genetic diversity of these BECs in diarrheic calves in South Korea. Among a total of 645 diarrheic fecal specimens obtained from 629 cattle herds, these unclassified BECs were detected in 59 (9.1%) diarrheic fecal samples from 57 herds (9.3%) by either RT-PCR or nested PCR. Sequence and phylogenetic analyses of the partial RdRp gene showed that all the Korean BECs clustered together and were closely related to the NB-like viruses (80.9–88.1% nucleotide and 84.5–98.4% amino acid) but not to the NA1-like viruses (75.8–78.4% nucleotide and 79.7–82.8% amino acid). Although these viruses could not be classified into NA1- and NB-like viruses from the sequence and phylogenetic data of the entire capsid gene, all the Korean BECs clustered together on a branch separate from the other known BECs. These results show that these BEC infections are endemic in diarrheic calves in South Korea. The infecting strains are genetically closer to the NB-like viruses but have a distinct evolutionary pathway.
Collapse
Affiliation(s)
- Sang-Ik Park
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-75, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wang QH, Costantini V, Saif LJ. Porcine enteric caliciviruses: genetic and antigenic relatedness to human caliciviruses, diagnosis and epidemiology. Vaccine 2007; 25:5453-66. [PMID: 17234307 PMCID: PMC2735111 DOI: 10.1016/j.vaccine.2006.12.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 11/29/2006] [Accepted: 12/11/2006] [Indexed: 11/17/2022]
Abstract
Porcine enteric caliciviruses include sapoviruses and noroviruses. Porcine sapoviruses infect pigs of all ages and cause diarrhea in young pigs, whereas porcine noroviruses were detected exclusively from adult pigs without clinical signs. Importantly, certain porcine norovirus strains were genetically and antigenically related to human noroviruses. This raises public health concerns that pigs may be reservoirs for emergence of epidemic human norovirus strains. This article reviews the discovery of porcine noroviruses and sapoviruses, their classification, diagnosis, epidemiology and genetic and antigenic relatedness to human caliciviruses.
Collapse
Affiliation(s)
- Qiu-Hong Wang
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Veronica Costantini
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691
| | - Linda J. Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691
| |
Collapse
|
65
|
McDonald RA, Birtles RJ, McCracken C, Day MJ. Histological and serological evidence of disease among invasive, non-native stoats Mustela erminea. Vet J 2007; 175:403-8. [PMID: 17434325 PMCID: PMC7110800 DOI: 10.1016/j.tvjl.2007.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 01/09/2007] [Accepted: 01/31/2007] [Indexed: 11/20/2022]
Abstract
Invasive, non-native species are a major threat to global biodiversity. Stoats were introduced from Britain to New Zealand in the 1880s and have since caused grave conservation problems. A histopathological and serological survey of disease and infection in stoats from New Zealand was undertaken to identify agents that might be used or modified to control this population. Of 60 stoats examined, 63% exhibited inflammation of the lung, mostly occurring as local or diffuse interstitial pneumonia, 30% showed signs of inflammatory liver disease and 14% were positive for antibodies reactive with feline calicivirus. In Britain only 11% of 44 stoats exhibited symptoms of pulmonary inflammatory disease, suggesting higher rates of infection or compromise of the pulmonary immune system among invasive stoats, possibly related to genetic founder effects or environmental variation. These findings could be exploited in biological control programmes.
Collapse
Affiliation(s)
- Robbie A McDonald
- Quercus, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | | | | |
Collapse
|
66
|
Jeong C, Park SI, Park SH, Kim HH, Park SJ, Jeong JH, Choy HE, Saif LJ, Kim SK, Kang MI, Hyun BH, Cho KO. Genetic diversity of porcine sapoviruses. Vet Microbiol 2007; 122:246-57. [PMID: 17382492 PMCID: PMC7117395 DOI: 10.1016/j.vetmic.2007.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 01/22/2007] [Accepted: 02/02/2007] [Indexed: 11/28/2022]
Abstract
Sapoviruses (SaVs) within the Caliciviridae family are an important cause of gastroenteritis in both humans and animals. Although the widespread occurrence of divergent human SaV strains has been reported, there have only been a few studies of porcine SaVs examining their genetic diversity. The aim of this study was to assess the genetic diversity of porcine SaVs in piglets with diarrhea in South Korea. Two hundred and thirty-seven fecal specimens from piglets with diarrhea were examined from 78 farms over a 2-year period from six provinces in South Korea. Overall, 69 (29.1%) of the samples from five provinces tested positive for porcine SaVs by either RT-PCR or nested PCR with the primer pairs specific to porcine SaVs. An analysis of the partial capsid gene (757 bp) of 12 porcine SaVs detected from fecal samples showed genetic divergence, not only among the Korean porcine SaVs (67.7–99.1%), but also between Korean and American porcine SaVs (69.1–90.2%). Interestingly, one strain (Po/SaV/JN-MA113/05/Korea), formed a second porcine SaV/GIII genotype, and is tentatively called GIII/2. This strain had a 0.236–0.405 inter-cluster distance with the other strains in the same genogroup, which is comparable to the distances between the established GI and GII SaVs. Furthermore, two potential recombinant porcine SaVs were identified. In conclusion, porcine SaV infections are common in diarrheic piglets in South Korea. The infecting strains are genetically diverse, and include a newly recognized genotype and recombinant viruses within genogroup III.
Collapse
Affiliation(s)
- Cheol Jeong
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Sang-Ik Park
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Sung-Hee Park
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Ha-Hyun Kim
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Su-Jin Park
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Jae-Ho Jeong
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Hyon E. Choy
- Genome Research Center for Enteropathogenic Bacteria, Chonnam National University Medical College, Gwangju 501-746, South Korea
| | - Linda J. Saif
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, United States
| | - Sang-Ki Kim
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Mun-Il Kang
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | - Bang-Hun Hyun
- National Veterinary Research and Quarantine Services, Kyonggi-do 430-824, South Korea
| | - Kyoung-Oh Cho
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
- Corresponding author. Tel.: +82 62 530 2845; fax: +82 62 530 2809.
| |
Collapse
|
67
|
Yin Y, Tohya Y, Ogawa Y, Numazawa D, Kato K, Akashi H. Genetic analysis of calicivirus genomes detected in intestinal contents of piglets in Japan. Arch Virol 2006; 151:1749-59. [PMID: 16575478 PMCID: PMC7087045 DOI: 10.1007/s00705-006-0750-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 02/27/2006] [Indexed: 12/01/2022]
Abstract
Enteric caliciviruses, noroviruses, and sapoviruses are emerging pathogens responsible for diarrhea or gastroenteritis in their respective hosts. In this study, swine enteric caliciviruses were detected in ten samples of intestinal contents from 24 piglets in Japan by reverse transcription-polymerase chain reaction using a broadly reactive primer pair (P290/289) that targeted the highly conserved RNA polymerase regions of the enteric caliciviruses. From the positive samples, the entire viral genome of strain K7/JP and 3'-end parts of the genomes of strains K5/JP and K10/JP were cloned and sequenced. K7/JP had an RNA genome of 7144 bases, excluding its 3' poly (A) tail. The K7/JP genome possessed two open reading frames and characteristics common to sapoviruses. In phylogenetic analysis using amino acid sequences of VP1, K5/JP was demonstrated to be close to the noroviruses previously detected in pigs, and K7/JP and K10/JP were considered to be classified as a new genogroup of sapoviruses.
Collapse
Affiliation(s)
- Y Yin
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
68
|
Wang QH, Han MG, Funk JA, Bowman G, Janies DA, Saif LJ. Genetic diversity and recombination of porcine sapoviruses. J Clin Microbiol 2006; 43:5963-72. [PMID: 16333083 PMCID: PMC1317165 DOI: 10.1128/jcm.43.12.5963-5972.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sapoviruses (SaVs) are emerging enteric pathogens that cause diarrhea in humans and animals. Human SaVs are genetically variable and have been classified into four genogroups (GI, -II, -IV, and -V). To date, only two genetically similar porcine SaV strains have been reported that belong to GIII. To investigate the genetic diversity of porcine SaVs and their genetic relatedness to human strains, we sequenced 286 nucleotides (nt) of the RNA-dependent RNA polymerase (RdRp) region of nine porcine SaVs detected from field pig fecal samples collected in U.S. swine farms during the period from 1999 to 2003. One strain (Po/SaV/MI-QW19/2002/US) was most closely related to human GII SaVs. We also sequenced 3 kb of the viral genome, including the partial RdRp (766 to 790 nt), the complete capsid, the ORF2 and the 3'-untranslated region of four strains representative for the positive farms or for the distinct genetic clusters. From the sequence analysis of the complete capsid, we identified a potential new genogroup of porcine SaVs, with Po/SaV/OH-JJ681/00/US as the representative strain. Furthermore, two potential porcine SaV recombinants were identified. To our knowledge this is the first report of a porcine SaV strain more closely related genetically to human SaVs and the occurrence of porcine SaV recombinants. The presence of porcine SaVs more similar to human SaVs is a significant finding because of the potential for zoonotic infections or generation of porcine/human recombinants if intragenogroup human strains exist.
Collapse
Affiliation(s)
- Qiu-Hong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | | | | | | | |
Collapse
|
69
|
Wang QH, Chang KO, Han MG, Sreevatsan S, Saif LJ. Development of a new microwell hybridization assay and an internal control RNA for the detection of porcine noroviruses and sapoviruses by reverse transcription-PCR. J Virol Methods 2005; 132:135-45. [PMID: 16274751 DOI: 10.1016/j.jviromet.2005.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/20/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
Recently, genetically diverse porcine noroviruses (NoV) and sapoviruses (SaV) were identified from field pig fecal samples. Reverse transcription (RT)-PCR is the primary method used for detection of human NoVs and SaVs. However, RT-PCR inhibitors frequently cause false-negative results. In this study, a competitive internal control (IC) RNA, specific for use in the SaV RT-PCR assay, was developed to monitor inhibition of RT-PCR; primers for detection of genetically diverse porcine NoVs and SaVs were designed; and microwell hybridization assays to confirm the specific RT-PCR products were developed. The primer pairs and the RT-PCR-hybridization combinations were compared using representative porcine NoV and SaV strains, positive pig fecal samples and a panel of 30 field pig fecal samples. Extracted RNA from 3 of 30 samples failed to amplify the IC RNA. However, this inhibition was not present after a 10-fold dilution of the extracted RNA. The five different RT-PCR-hybridization combinations developed specifically detected all three genotypes of porcine NoVs, all GIII porcine SaVs, unclassified JJ681-like, QW19 and LL26-like porcine SaVs, respectively. These RT-PCR-hybridization assays are specific, less time consuming and economical and particularly applicable to testing large number of samples for porcine NoVs and SaVs.
Collapse
Affiliation(s)
- Qiu-Hong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | | | | | |
Collapse
|
70
|
Farkas T, Nakajima S, Sugieda M, Deng X, Zhong W, Jiang X. Seroprevalence of noroviruses in swine. J Clin Microbiol 2005; 43:657-61. [PMID: 15695660 PMCID: PMC548037 DOI: 10.1128/jcm.43.2.657-661.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Noroviruses (NVs) are important human pathogens that cause acute gastroenteritis. Genetically related animal enteric NVs have also been described, but there is no evidence of interspecies transmission of NVs. In this study we characterized antibody prevalence among domestic pigs by using recombinant capsid antigens of two human NVs (Norwalk and Hawaii) and one swine NV (SW918) that is genetically related to GII human NVs. Recombinant SW918 capsid protein expressed in baculovirus self-assembled into virus-like particles (VLPs) that were detected by antibodies against GII (Hawaii and Mexico), but not GI (Norwalk and VA115), human NVs. NVs recognize human histo-blood group antigens as receptors, but SW918 VLPs did not bind to human saliva samples with major histo-blood group types. Seventy-eight of 110 (71%) pig serum samples from the United States and 95 of 266 (36%) pig serum samples from Japan possessed antibodies against SW918. Serum samples from pigs in the United States were also tested for antibodies against human NVs; 63% were positive for Norwalk virus (GI) and 52% for Hawaii virus (GII). These results indicate that NV infections are common among domestic pigs; the finding of antigenic relationships between SW918 and human NVs and the detection of antibodies against both GI and GII human NVs in domestic animals highlights the importance of further studies on NV gastroenteritis as a possible zoonotic disease.
Collapse
Affiliation(s)
- Tibor Farkas
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
71
|
Oehmig A, Büttner M, Weiland F, Werz W, Bergemann K, Pfaff E. Identification of a calicivirus isolate of unknown origin. J Gen Virol 2003; 84:2837-2845. [PMID: 13679618 DOI: 10.1099/vir.0.19042-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chinese hamster ovary (CHO) cells manifesting striking cytopathogenic changes in culture were investigated to determine the causative agent. Electron microscopic analyses revealed viral particles of about 40 nm in diameter, displaying typical calicivirus morphology. To date, this virus, designated isolate 2117, exclusively replicates in CHO cells, achieving only moderate titres. After cloning, the coding region of 7928 nucleotides, the 3' non-coding region and the poly(A) tail were sequenced. The genome consists of three open reading frames (ORFs), with the first and second ORF having the same reading frame. The overall genomic organization as well as the nucleotide sequence of isolate 2117 is most similar to that of a recently described canine calicivirus, but also shows significant similarity to the sequences of mink calicivirus and other caliciviruses within the genus Vesivirus: In Western blots, using antibodies against the viral protease, a stable, unprocessed 3CD protein of 68 kDa was identified in homogenates of 2117-infected CHO cells. Furthermore, antibodies raised against ORF 3 reacted with the respective protein in 2117-virions, demonstrating that this predicted 9 kDa protein is a minor structural component of the virion. In addition, an RT-PCR assay was established to detect 2117 viral RNA in biological products such as foetal bovine serum, which will aid the discovery of the origin and host of the virus.
Collapse
Affiliation(s)
- Angelika Oehmig
- Federal Research Center for Virus Diseases of Animals, PO Box 1149, 72001 Tübingen, Germany
| | - Mathias Büttner
- Federal Research Center for Virus Diseases of Animals, PO Box 1149, 72001 Tübingen, Germany
| | - Frank Weiland
- Federal Research Center for Virus Diseases of Animals, PO Box 1149, 72001 Tübingen, Germany
| | - William Werz
- Boehringer Ingelheim Pharma KG, Biberach an der Riss, Germany
| | - Klaus Bergemann
- Boehringer Ingelheim Pharma KG, Biberach an der Riss, Germany
| | - Eberhard Pfaff
- Federal Research Center for Virus Diseases of Animals, PO Box 1149, 72001 Tübingen, Germany
| |
Collapse
|
72
|
Smiley JR, Hoet AE, Tråvén M, Tsunemitsu H, Saif LJ. Reverse transcription-PCR assays for detection of bovine enteric caliciviruses (BEC) and analysis of the genetic relationships among BEC and human caliciviruses. J Clin Microbiol 2003; 41:3089-99. [PMID: 12843048 PMCID: PMC165218 DOI: 10.1128/jcm.41.7.3089-3099.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two genetically distinct bovine enteric caliciviruses (BECs) have been identified: the norovirus (NLV) Jena and Newbury Agent-2 (NA-2) BECs, which are genetically related to human noroviruses, and the Nebraska (NB) BECs, which is related to sapoviruses and lagoviruses but may also represent a new calicivirus genus. The prevalence of these two BEC genotypes in cattle is unknown. Although reverse transcription-PCR (RT-PCR) primers for human NLV recognize NLV-BECs, the genetic relationships between NLV from humans and the NLV-BECs commonly circulating in cattle is undefined. In the present study, veal calf fecal samples were assayed for enteric caliciviruses by using six RT-PCR primer sets designed for the detection of human NLVs or BECs. Caliciviruses genetically related to the NLV-BEC Jena and NA-2 strains or to the recently characterized NB BEC strain were identified in three of four and four of four sampled veal herds, respectively. Extended 3'-terminal genome sequences of two NLV-BECs, designated CV95-OH and CV186-OH, encoding the RNA-dependent RNA polymerase (RdRp; open reading frame 1 [ORF-1]), VP1 (ORF-2), and VP2 (ORF-3) genes were determined. Phylogenetic and sequence identity analyses of each genome region demonstrated these viruses to be most closely related to the NLV-BEC Jena and NA-2 strains. In initial testing, the human P289-P290 (P289/290) primer set was found to be the most sensitive for calicivirus detection. However, its failure to identify all positive fecal pools (as determined by other assays) led us to design two new primer sets, CBECU-F/R and NBU-F/R, for the sensitive and specific detection of NLV-BEC (NLV-BEC Jena and NA-2) and BEC-NB-like viruses, respectively. The RT-PCR assays with the new primers were compared against other primer sets, including P289/290. Composite results of the tests completed by using the new assays identified 72% (54 of 75) of veal calf fecal samples as positive, with 21 of 21 sequenced reaction products specific for the target RdRp gene. The same design strategy used for the new BEC assays may also be applicable to the design of similar assays for the detection of human caliciviruses (HuCVs). Our data support the genetic relationship between NLV-BECs and NLV-HuCVs but with the NLV-BECs comprising two clusters within a third NLV genogroup.
Collapse
Affiliation(s)
- J R Smiley
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691-4096, USA
| | | | | | | | | |
Collapse
|
73
|
Smiley JR, Chang KO, Hayes J, Vinjé J, Saif LJ. Characterization of an enteropathogenic bovine calicivirus representing a potentially new calicivirus genus. J Virol 2002; 76:10089-98. [PMID: 12239283 PMCID: PMC136553 DOI: 10.1128/jvi.76.20.10089-10098.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine enteric caliciviruses (BEC) are associated with diarrhea in young calves. The BEC strains detected in Europe form a third genogroup within the genus "Norwalk-like viruses" (NLV) of the family Caliciviridae. In this report, we present sequence, clinical, and histological data characterizing a novel enteropathogenic BEC strain, NB, detected in fecal specimens from calves in the United States. The complete RNA genome of the NB virus is 7,453 bases long and is organized into two open reading frames (ORFs). ORF-1 is 2,210 amino acids long and encodes a large nonstructural polyprotein contiguous with the major capsid protein (VP1), similar to the lagoviruses and "Sapporo-like viruses" (SLV). The conserved calicivirus motifs were identified in the nonstructural proteins. ORF-2 is located at the 3' end of the genome and encodes a small basic protein (VP2) of 225 amino acids. The 5' and 3' untranslated regions are 74 and 67 bases long, respectively. Among caliciviruses, NB virus shows amino acid identities of 14.1 to 22.6% over the entire ORF-1 nonstructural-protein sequence with NLV, SLV, vesivirus, and lagovirus strains, while the overall sequence identity of the complete NB VP-1 with other caliciviruses is low, varying between 14.6 and 26.7%. Phylogenetic analysis of the complete VP1 protein, including strains from all four calicivirus genera, showed the closest grouping of NB virus to be with viruses in the genus Lagovirus, which cause liver infections and systemic hemorrhage in rabbits. In gnotobiotic calves, however, NB virus elicited only diarrhea and intestinal lesions that were most severe in the upper small intestine (duodenum and jejunum), similar to the NLV BEC strains. The tissues of major organs, including the lung, liver, kidney, and spleen, had no visible microscopic lesions.
Collapse
Affiliation(s)
- J R Smiley
- The Ohio State University-Ohio Agricultural Research and Development Center, Food Animal Health Research Program, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | | | | | |
Collapse
|
74
|
Mochizuki M, Hashimoto M, Roerink F, Tohya Y, Matsuura Y, Sasaki N. Molecular and seroepidemiological evidence of canine calicivirus infections in Japan. J Clin Microbiol 2002; 40:2629-31. [PMID: 12089292 PMCID: PMC120604 DOI: 10.1128/jcm.40.7.2629-2631.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Calicivirus infection of dogs was epidemiologically investigated by using canine calicivirus (CaCV) strain 48 as a reference. Similar RNA polymerase gene sequences and neutralizing antibodies against CaCV were detected in 1.7% of clinical specimens and 57% of serum samples, respectively, suggesting a high prevalence of CaCV in dog populations.
Collapse
Affiliation(s)
- Masami Mochizuki
- Laboratory of Clinical Microbiology, Kyoritsu Seiyaku Corporation, 1-12-4 Kudankita, Chiyoda-ku, Tokyo 102-0073, Japan.
| | | | | | | | | | | |
Collapse
|
75
|
Englund L, Chriél M, Dietz HH, Hedlund KO. Astrovirus epidemiologically linked to pre-weaning diarrhoea in mink. Vet Microbiol 2002; 85:1-11. [PMID: 11792486 DOI: 10.1016/s0378-1135(01)00472-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Diarrhoea and excessive secretion from the cervical apocrine glands in young, suckling mink kits is a well-known, but poorly defined, syndrome often referred to as "sticky", "greasy", or "wet" kits. We have performed a case-control study, at farm level as well as at mink kit level, in Denmark and Sweden to investigate whether enteric virus infections may be a risk factor in the development of pre-weaning diarrhoea. Tissue samples from the enteric tract of 180 sacrificed mink kits were analysed histologically. Faecal contents were examined by electron microscopy (EM). Astrovirus was detected in abundance and found to be a significant risk factor both at farm level (OR=21.60, p<0.001) and at mink kit level (OR=7.95, p<0.001). Other factors, i.e. low body weight, coccoid bacteria adherent to the enteric villi, and presence of calicivirus were also shown to increase the risk of pre-weaning diarrhoea, although with less impact than astrovirus.
Collapse
Affiliation(s)
- L Englund
- Department of Small Animals, National Veterinary Institute, SE-751 89 Uppsala, Sweden.
| | | | | | | |
Collapse
|
76
|
Guo M, Hayes J, Cho KO, Parwani AV, Lucas LM, Saif LJ. Comparative pathogenesis of tissue culture-adapted and wild-type Cowden porcine enteric calicivirus (PEC) in gnotobiotic pigs and induction of diarrhea by intravenous inoculation of wild-type PEC. J Virol 2001; 75:9239-51. [PMID: 11533186 PMCID: PMC114491 DOI: 10.1128/jvi.75.19.9239-9251.2001] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine enteric calicivirus (PEC/Cowden) causes diarrhea in pigs, grows in cell culture, and is morphologically and genetically similar to the Sapporo-like human caliciviruses. Genetic analysis revealed that the tissue culture-adapted (TC) Cowden PEC has one distant and three clustered amino acid substitutions in the capsid region and 2 amino acid changes in the RNA polymerase region compared to wild-type (WT) PEC (M. Guo, K.-O. Chang, M. E. Hardy, Q. Zhang, A. V. Parwani, and L. J. Saif, J. Virol. 73:9625-9631, 1999). In this study, the TC PEC, passaged in a porcine kidney cell line, and the WT PEC, passaged in gnotobiotic (Gn) pigs, were used to orally inoculate 13 4- to 6-day-old Gn pigs. No diarrhea developed in the TC-PEC-exposed pigs, whereas moderate diarrhea developed in the WT-PEC orally inoculated pigs, persisting for 2 to 5 days. Fecal virus shedding persisting for at least 7 days was detected by both reverse transcription (RT)-PCR and antigen-enzyme-linked immunosorbent assay (antigen-ELISA) in both TC-PEC and WT-PEC orally inoculated pigs but not in mock-inoculated pigs. The PEC particles were detected by immunoelectron microscopy (IEM) in intestinal contents from all the WT-PEC-inoculated pigs, but not from the TC-PEC-inoculated pigs. Mild (duodenum and jejunum) or no (ileum) villous atrophy was observed in histologic sections of the small intestines of TC-PEC-inoculated pigs, whereas WT PEC caused mild to severe (duodenum and jejunum) villous atrophy and fusion. Scanning electron microscopy confirmed mild shortening and blunting of villi in the duodenum and jejunum of the TC-PEC-inoculated pigs, in contrast to moderate to severe villous shortening and blunting in the duodenum and jejunum of WT-PEC-inoculated pigs. Higher numbers of PEC antigen-positive villous enterocytes were detected by immunofluorescent (IF) staining in the proximal small intestine of the WT-PEC-inoculated pigs, in contrast to low numbers of PEC antigen-positive enterocytes in only one of four TC-PEC-inoculated pigs. No PEC antigen-positive cells were observed in the colon or extraintestinal tissues of all inoculated pigs or in the small intestine of one mock-inoculated pig. Thus, the TC PEC was at least partially attenuated (no diarrhea, mild lesions) after serial passage in cell culture. In further experiments, three 4- to 6-day-old Gn pigs were intravenously (i.v.) inoculated with WT PEC, and all pigs developed diarrhea and villous atrophy in the small intestines resembling that observed in the orally inoculated pigs. Fecal viral shedding persisting for 8 days was detected by both RT-PCR and antigen-ELISA, and PEC was detected by IEM in feces or intestinal contents. The PEC RNA and antigens (at low titers) were detected in acute-phase sera from all the WT-PEC i.v.-inoculated pigs and also from seven of nine of the WT-PEC orally inoculated pigs. Oral or i.v. inoculation of four additional pigs with the PEC-positive acute-phase sera induced diarrhea, small intestinal lesions, PEC shedding in feces, and seroconversion to PEC, confirming the occurrence of viremia during PEC infection, with infectious PEC present in acute-phase sera. No diarrhea, histopathologic changes, or IF staining in the small intestine or fecal or serum detection of PEC was evident in two pigs i.v. mock-inoculated or a pig inoculated i.v. with inactivated WT PEC. To our knowledge, this is the first report of an attenuated enteric calicivirus, the induction of diarrhea, and intestinal lesions in Gn pigs caused by i.v. inoculation of WT PEC and the presence of viremia following PEC infection.
Collapse
Affiliation(s)
- M Guo
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | | | | | | | | | | |
Collapse
|
77
|
Guo M, Qian Y, Chang KO, Saif LJ. Expression and self-assembly in baculovirus of porcine enteric calicivirus capsids into virus-like particles and their use in an enzyme-linked immunosorbent assay for antibody detection in swine. J Clin Microbiol 2001; 39:1487-93. [PMID: 11283075 PMCID: PMC87958 DOI: 10.1128/jcm.39.4.1487-1493.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine enteric calicivirus (PEC) causes diarrhea and intestinal lesions in pigs. PEC strain Cowden grows to low to moderate titers in cell culture but only with the addition of intestinal contents from uninfected gnotobiotic pigs (W. T. Flynn and L. J. Saif, J. Clin. Microbiol. 26:206--212, 1988; A. V. Parwani, W. T. Flynn, K. L. Gadfield, and L. J. Saif, Arch. Virol. 120:115--122, 1991). Cloning and sequence analysis of the PEC Cowden full-length genome revealed that it is most closely related genetically to the human Sapporo-like viruses. In this study, the complete PEC capsid gene was subcloned into the plasmid pBlueBac4.5 and the recombinant baculoviruses were identified by plaque assay and PCR. The PEC capsid protein was expressed in insect (Sf9) cells inoculated with the recombinant baculoviruses, and the recombinant capsid proteins self- assembled into virus-like particles (VLPs) that were released into the cell supernatant and purified by CsCl gradient centrifugation. The PEC VLPs had the same molecular mass (58 kDa) as the native virus capsid and reacted with pig hyperimmune and convalescent-phase sera to PEC Cowden in enzyme-linked immunosorbent assay (ELISA) and Western blotting. The PEC capsid VLPs were morphologically and antigenically similar to the native virus by immune electron microscopy. High titers (1:102,400 to 204,800) of PEC-specific antibodies were induced in guinea pigs inoculated with PEC VLPs, suggesting that the VLPs could be useful for future candidate PEC vaccines. A fixed-cell ELISA and VLP ELISA were developed to detect PEC serum antibodies in pigs. For the fixed-cell ELISA, Sf9 cells were infected with recombinant baculoviruses expressing PEC capsids, followed by cell fixation with formalin. For the VLP ELISA, the VLPs were used for the coating antigen. Our data indicate that both tests were rapid, specific, and reproducible and might be used for large-scale serological investigations of PEC antibodies in swine.
Collapse
Affiliation(s)
- M Guo
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | | | | | | |
Collapse
|