52
|
Interactive effects of moss-dominated crusts and Artemisia ordosica on wind erosion and soil moisture in Mu Us sandland, China. ScientificWorldJournal 2014; 2014:649816. [PMID: 24982973 PMCID: PMC4058808 DOI: 10.1155/2014/649816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/29/2022] Open
Abstract
To better understand the effects of biological soil crusts (BSCs) on soil moisture and wind erosion and study the necessity and feasibility of disturbance of BSCs in the Mu Us sandland, the effects of four treatments, including moss-dominated crusts alone, Artemisia ordosica alone, bare sand, and Artemisia ordosica combined with moss-dominated crusts, on rainwater infiltration, soil moisture, and annual wind erosion were observed. The major results are as follows. (1) The development of moss-dominated crusts exacerbated soil moisture consumption and had negative effects on soil moisture in the Mu Us sandland. (2) Moss-dominated crusts significantly increased soil resistance to wind erosion, and when combined with Artemisia ordosica, this effect became more significant. The contribution of moss-dominated crusts under Artemisia ordosica was significantly lower than that of moss-dominated crusts alone in sites where vegetative coverage > 50%. (3) Finally, an appropriate disturbance of moss-dominated crusts in the rainy season in sites with high vegetative coverage improved soil water environment and vegetation succession, but disturbance in sites with little or no vegetative cover should be prohibited to avoid the exacerbation of wind erosion.
Collapse
|
53
|
Escudero A, Palacio S, Maestre FT, Luzuriaga AL. Plant life on gypsum: a review of its multiple facets. Biol Rev Camb Philos Soc 2014; 90:1-18. [DOI: 10.1111/brv.12092] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Adrián Escudero
- Biodiversity and Conservation Unit, Department of Biology and Geology; Universidad Rey Juan Carlos; Móstoles Madrid E-28933 Spain
| | - Sara Palacio
- Conservation of Biodiversity and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC); Jaca Huesca E-22700 Spain
| | - Fernando T. Maestre
- Biodiversity and Conservation Unit, Department of Biology and Geology; Universidad Rey Juan Carlos; Móstoles Madrid E-28933 Spain
| | - Arantzazu L. Luzuriaga
- Biodiversity and Conservation Unit, Department of Biology and Geology; Universidad Rey Juan Carlos; Móstoles Madrid E-28933 Spain
| |
Collapse
|
54
|
Maestre FT, Escolar C, de Guevara ML, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gozalo B, Gallardo A. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. GLOBAL CHANGE BIOLOGY 2013; 19:3835-47. [PMID: 23818331 PMCID: PMC3942145 DOI: 10.1111/gcb.12306] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/06/2013] [Indexed: 05/24/2023]
Abstract
Dryland ecosystems account for ca. 27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities dominated by lichens, mosses, bacteria and fungi (biocrusts). We conducted a full factorial warming and rainfall exclusion experiment at two semiarid sites in Spain to show how an average increase of air temperature of 2-3 °C promoted a drastic reduction in biocrust cover (ca. 44% in 4 years). Warming significantly increased soil CO2 efflux, and reduced soil net CO2 uptake, in biocrust-dominated microsites. Losses of biocrust cover with warming through time were paralleled by increases in recalcitrant C sources, such as aromatic compounds, and in the abundance of fungi relative to bacteria. The dramatic reduction in biocrust cover with warming will lessen the capacity of drylands to sequester atmospheric CO2 . This decrease may act synergistically with other warming-induced effects, such as the increase in soil CO2 efflux and the changes in microbial communities to alter C cycling in drylands, and to reduce soil C stocks in the mid to long term.
Collapse
Affiliation(s)
- Fernando T. Maestre
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Cristina Escolar
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Mónica Ladrón de Guevara
- Estación Experimental de Zonas Áridas (CSIC), Carretera de Sacramento, s/n, 04120 La Cañada de San Urbano-Almería, Spain
| | - José L. Quero
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
- Departamento de Ingeniería Forestal, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Campus de Rabanales, Crta. N-IV km. 396, 14071 Córdoba, Spain
| | - Roberto Lázaro
- Estación Experimental de Zonas Áridas (CSIC), Carretera de Sacramento, s/n, 04120 La Cañada de San Urbano-Almería, Spain
| | - Manuel Delgado-Baquerizo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013 Sevilla, Spain
| | - Victoria Ochoa
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Miguel Berdugo
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Beatriz Gozalo
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Antonio Gallardo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013 Sevilla, Spain
| |
Collapse
|
56
|
Escolar C, Martínez I, Bowker MA, Maestre FT. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Philos Trans R Soc Lond B Biol Sci 2013; 367:3087-99. [PMID: 23045707 DOI: 10.1098/rstb.2011.0344] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect the structure and composition of BSCs, and the functioning of their constituents. Using a manipulative experiment conducted over 3 years in a semi-arid site from central Spain, we evaluated how the composition, structure and performance of lichen-dominated BSCs respond to a 2.4°C increase in temperature, and to an approximately 30 per cent reduction of total annual rainfall. In areas with well-developed BSCs, warming promoted a significant decrease in the richness and diversity of the whole BSC community. This was accompanied by important compositional changes, as the cover of lichens suffered a substantial decrease with warming (from 70 to 40% on average), while that of mosses increased slightly (from 0.3 to 7% on average). The physiological performance of the BSC community, evaluated using chlorophyll fluorescence, increased with warming during the first year of the experiment, but did not respond to rainfall reduction. Our results indicate that ongoing climate change will strongly affect the diversity and composition of BSC communities, as well as their recovery after disturbances. The expected changes in richness and composition under warming could reduce or even reverse the positive effects of BSCs on important soil processes. Thus, these changes are likely to promote an overall reduction in ecosystem processes that sustain and control nutrient cycling, soil stabilization and water dynamics.
Collapse
Affiliation(s)
- Cristina Escolar
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles 28933, Spain.
| | | | | | | |
Collapse
|
58
|
Tighe M, Haling RE, Flavel RJ, Young IM. Ecological succession, hydrology and carbon acquisition of biological soil crusts measured at the micro-scale. PLoS One 2012; 7:e48565. [PMID: 23119058 PMCID: PMC3484118 DOI: 10.1371/journal.pone.0048565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
The hydrological characteristics of biological soil crusts (BSCs) are not well understood. In particular the relationship between runoff and BSC surfaces at relatively large (>1 m(2)) scales is ambiguous. Further, there is a dearth of information on small scale (mm to cm) hydrological characterization of crust types which severely limits any interpretation of trends at larger scales. Site differences and broad classifications of BSCs as one soil surface type rather than into functional form exacerbate the problem. This study examines, for the first time, some hydrological characteristics and related surface variables of a range of crust types at one site and at a small scale (sub mm to mm). X-ray tomography and fine scale hydrological measurements were made on intact BSCs, followed by C and C isotopic analyses. A 'hump' shaped relationship was found between the successional stage/sensitivity to physical disturbance classification of BSCs and their hydrophobicity, and a similar but 'inverse hump' relationship exists with hydraulic conductivity. Several bivariate relationships were found between hydrological variables. Hydraulic conductivity and hydrophobicity of BSCs were closely related but this association was confounded by crust type. The surface coverage of crust and the microporosity 0.5 mm below the crust surface were closely associated irrespective of crust type. The δ (13)C signatures of the BSCs were also related to hydraulic conductivity, suggesting that the hydrological characteristics of BSCs alter the chemical processes of their immediate surroundings via the physiological response (C acquisition) of the crust itself. These small scale results illustrate the wide range of hydrological properties associated with BSCs, and suggest associations between the ecological successional stage/functional form of BSCs and their ecohydrological role that needs further examination.
Collapse
Affiliation(s)
- Matthew Tighe
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia.
| | | | | | | |
Collapse
|