51
|
Rodriguez M, Snoek LB, Riksen JAG, Bevers RP, Kammenga JE. Genetic variation for stress-response hormesis in C. elegans lifespan. Exp Gerontol 2012; 47:581-7. [PMID: 22613270 DOI: 10.1016/j.exger.2012.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/17/2012] [Accepted: 05/07/2012] [Indexed: 12/01/2022]
Abstract
Increased lifespan can be associated with greater resistance to many different stressors, most notably thermal stress. Such hormetic effects have also been found in C. elegans where short-term exposure to heat lengthens the lifespan. Genetic investigations have been carried out using mutation perturbations in a single genotype, the wild type Bristol N2. Yet, induced mutations do not yield insight regarding the natural genetic variation of thermal tolerance and lifespan. We investigated the genetic variation of heat-shock recovery, i.e. hormetic effects on lifespan and associated quantitative trait loci (QTL) in C. elegans. Heat-shock resulted in an 18% lifespan increase in wild type CB4856 whereas N2 did not show a lifespan elongation. Using recombinant inbred lines (RILs) derived from a cross between wild types N2 and CB4856 we found natural variation in stress-response hormesis in lifespan. Approx. 28% of the RILs displayed a hormesis effect in lifespan. We did not find any hormesis effects for total offspring. Across the RILs there was no relation between lifespan and offspring. The ability to recover from heat-shock mapped to a significant QTL on chromosome II which overlapped with a QTL for offspring under heat-shock conditions. The QTL was confirmed by introgressing relatively small CB4856 regions into chromosome II of N2. Our observations show that there is natural variation in hormetic effects on C. elegans lifespan for heat-shock and that this variation is genetically determined.
Collapse
Affiliation(s)
- Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
52
|
Abstract
Weak stresses (including weak oxidative stress, cytostatic agents, heat shock, hypoxia, calorie restriction) may extend lifespan. Known as hormesis, this is the most controversial notion in gerontology. For one, it is believed that aging is caused by accumulation of molecular damage. If so, hormetic stresses (by causing damage) must shorten lifespan. To solve the paradox, it was suggested that, by activating repair, hormetic stresses eventually decrease damage. Similarly, Baron Munchausen escaped from a swamp by pulling himself up by his own hair. Instead, I discuss that aging is not caused by accumulation of molecular damage. Although molecular damage accumulates, organisms do not live long enough to age from this accumulation. Instead, aging is driven by overactivated signal-transduction pathways including the TOR (Target of Rapamycin) pathway. A diverse group of hormetic conditions can be divided into two groups. "Hormesis A" inhibits the TOR pathway. "Hormesis B" increases aging-tolerance, defined as the ability to survive catastrophic complications of aging. Hormesis A includes calorie restriction, resveratrol, rapamycin, p53-inducing agents and, in part, physical exercise, heat shock and hypoxia. Hormesis B includes ischemic preconditioning and, in part, physical exercise, heat shock, hypoxia and medical interventions.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
53
|
Temmerman L, Bogaerts A, Meelkop E, Cardoen D, Boerjan B, Janssen T, Schoofs L. A proteomic approach to neuropeptide function elucidation. Peptides 2012; 34:3-9. [PMID: 21920396 DOI: 10.1016/j.peptides.2011.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/21/2022]
Abstract
Many of the diverse functions of neuropeptides are still elusive. As they are ideally suited to modulate traditional signaling, their added actions are not always detectable under standard laboratory conditions. The search for function assignment to peptide encoding genes can therefore greatly benefit from molecular information. Specific molecular changes resulting from neuropeptide signaling may direct researchers to yet unknown processes or conditions, for which studying these signaling systems may eventually lead to phenotypic confirmation. Here, we applied gel-based proteomics after pdf-1 neuropeptide gene knockout in the model organism Caenorhabditis elegans. It has previously been described that pdf-1 null mutants display a locomotion defect, being slower and making more turns and reversals than wild type worms. The vertebrate functional homolog of PDF-1, vasocative intestinal peptide (VIP), is known to influence a plethora of processes, which have so far not been investigated for pdf-1. Because proteins represent the actual effectors inside an organism, proteomic analysis can guide our view to novel pdf-1 actions in the nematode worm. Our data show that knocking out pdf-1 results in alteration of levels of proteins involved in fat metabolism, stress resistance and development. This indicates a possible conservation of VIP-like actions for pdf-1 in C. elegans.
Collapse
Affiliation(s)
- L Temmerman
- Functional Genomics and Proteomics, Naamsestraat 59, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
54
|
Calabrese EJ. Hormesis: Toxicological foundations and role in aging research. Exp Gerontol 2012; 48:99-102. [PMID: 22525590 DOI: 10.1016/j.exger.2012.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 01/26/2023]
Abstract
The field of toxicology adopted the threshold dose response in the early decades of the 20th century. The model was rapidly incorporated into governmental regulatory assessment procedures and became a central feature of chemical evaluation and assessment. The toxicological community never validated the capacity of this model to make accurate predictions throughout the remainder of the 20th century. A series of recent investigations have demonstrated that the threshold and linear dose response model failed to make accurate predictions in the low dose zone. Such findings demonstrate a profound failure by the toxicology community on the central pillar of its discipline and one with profound public health, medical and economic implications. Ironically, the hormetic dose response, which was rejected by the toxicology community during the early decades of the 20th century, accurately predicted responses in the low dose zone in the same three large-scale validation assessments. Within the past two decades hormetic dose responses have been frequently reported in the experimental biogerontology literature, associated with endpoints associated enhancing healthy aging and longevity. The low dose stimulatory response of the hormetic dose response model represents the quantification of enhanced biological performance in the experimental facilitation of aging quality via multiple endpoints and mechanisms and in the extension of lifespan in such animal models research.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Public Health, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
55
|
Abstract
It has long been understood that many of the same manipulations that increase longevity in Caenorhabditis elegans also increase resistance to various acute stressors, and vice-versa; moreover these findings hold in more complex organisms as well. Nevertheless, the mechanistic relationship between these phenotypes remains unclear, and in many cases the overlap between stress resistance and longevity is inexact. Here we review the known connections between stress resistance and longevity, discuss instances in which these connections are absent, and summarize the theoretical explanations that have been posited for these phenomena.
Collapse
Affiliation(s)
- Katherine I. Zhou
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| | - Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| | - Frank J. Slack
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| |
Collapse
|
56
|
Defays R, Gómez FH, Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM. Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster. Exp Gerontol 2011; 46:819-26. [PMID: 21798333 DOI: 10.1016/j.exger.2011.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/04/2011] [Accepted: 07/11/2011] [Indexed: 02/02/2023]
Abstract
Longevity is a typical quantitative trait which is influenced by multiple genes. Here we explore the genetic variation in longevity of Drosophila melanogaster in both mildly heat-stressed and control flies. Quantitative trait loci (QTL) analysis for longevity was performed in a single-sex environment at 25°C with and without a mild heat-stress pre-treatment, using a previously reported set of recombinant inbred lines (RIL). QTL regions for longevity in heat-stressed flies overlapped with QTL for longevity in control flies. All longevity QTL co-localized with QTL for longevity identified in previous studies using very different sets of RIL in mixed sex environments, though the genome is nearly saturated with QTL for longevity when considering all previous studies. Heat stress decreased the number of significant QTL for longevity if compared to the control environment. Our mild heat-stress pre-treatment had a beneficial effect (hormesis) more often in shorter-lived than in longer-lived RIL.
Collapse
Affiliation(s)
- Raquel Defays
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C-1428-EHA) Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
57
|
Ranjini MS, Ramachandra NB. Differential response to hormesis by laboratory evolved short-lived and long-lived cytoraces ofnasuta-albomicanscomplex ofDrosophila. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/11250003.2010.509134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
58
|
Barnes SK, Ozanne SE. Pathways linking the early environment to long-term health and lifespan. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 106:323-36. [PMID: 21147148 DOI: 10.1016/j.pbiomolbio.2010.12.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/21/2022]
Abstract
The intrauterine environment is a major contributor to normal physiological growth and development of an individual. Disturbances at this critical time can affect the long-term health of the offspring. Low birth weight individuals have strong correlations with increased susceptibility to type 2 diabetes and cardiovascular disease in later-life. These observations led to the Thrifty Phenotype Hypothesis which suggested that these associations arose because of the response of a growing fetus to a suboptimal environment such as poor nutrition. Animal models have shown that environmentally induced intrauterine growth restriction increases the risk of a variety of diseases later in life. These detrimental features are also observed in high birth weight offspring from mothers who were obese or consumed a high fat diet during gestation. Recent advances in our understanding of the mechanisms underlying this phenomenon have elucidated several potential candidates for the long-term effects of the early environment on the function and metabolism of a cell. These include: (1) Epigenetic alterations (e.g. DNA methylation and histone modifications), which regulate specific gene expression and can be influenced by the environment, both during gestation and early postnatal life and (2) Oxidative stress that changes the balance between reactive oxygen species generation (e.g. through mitochondrial dysfunction) and antioxidant defense capacity. This has permanent effects on cellular ageing such as regulation of telomere length. Further understanding of these processes will help in the development of therapeutic strategies to increase healthspan and reduced the burden of age-associated diseases.
Collapse
Affiliation(s)
- S K Barnes
- Metabolic Research Laboratories, University of Cambridge, Level 4, Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
59
|
Haigis MC, Yankner BA. The aging stress response. Mol Cell 2010; 40:333-44. [PMID: 20965426 DOI: 10.1016/j.molcel.2010.10.002] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 12/25/2022]
Abstract
Aging is the outcome of a balance between damage and repair. The rate of aging and the appearance of age-related pathology are modulated by stress response and repair pathways that gradually decline, including the proteostasis and DNA damage repair networks and mitochondrial respiratory metabolism. Highly conserved insulin/IGF-1, TOR, and sirtuin signaling pathways in turn control these critical cellular responses. The coordinated action of these signaling pathways maintains cellular and organismal homeostasis in the face of external perturbations, such as changes in nutrient availability, temperature, and oxygen level, as well as internal perturbations, such as protein misfolding and DNA damage. Studies in model organisms suggest that changes in signaling can augment these critical stress response systems, increasing life span and reducing age-related pathology. The systems biology of stress response signaling thus provides a new approach to the understanding and potential treatment of age-related diseases.
Collapse
Affiliation(s)
- Marcia C Haigis
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
60
|
Le Bourg E. A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology 2010; 12:185-93. [PMID: 21132363 DOI: 10.1007/s10522-010-9309-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/24/2010] [Indexed: 11/30/2022]
Abstract
A cold stress applied to young flies can have positive effects on longevity, behavioral aging, and resistance to heat and infection. However, the same mild stress, if applied at older ages, i.e. in frailer flies, could be a strong stress with negative effects. Cold stress was applied at various ages (weeks 1-2, 2-3, 3-4, and 4-5) and its effect on longevity and on resistance at 6 weeks of age to heat or fungal infection was observed. In males, the cold stress had positive effects on longevity and resistance to infection, except when applied at the oldest age. No positive effect on longevity or resistance to infection was detected in cold-stressed females, as already observed in previous experiments using a cold stress at young age only. By contrast, cold stress applied at various ages increased resistance to heat in both sexes. Therefore, a mild stress can have positive effects on longevity and resistance to strong stresses not only when used at a young age, but also at older ages.
Collapse
Affiliation(s)
- Eric Le Bourg
- Centre de Recherche sur la Cognition Animale, UMR CNRS, Université Paul-Sabatier, Toulouse, France.
| |
Collapse
|
61
|
Abstract
There is increasing evidence that some non-essential substances or environmental stressors can have stimulatory or beneficial effects at low exposure levels while being toxic at higher levels, and that environmental 'priming' of certain physiological processes can result in their improved functioning in later life. These kinds of nonlinear dose-response relationships are referred to as hormetic responses and have been described across a wide range of organisms (from bacteria to vertebrates), in response to exposure to at least 1000 different chemical and environmental stressors. Although most work in this area has been in the fields of toxicology and human health, the concept of hormesis also has general applicability in ecology and evolutionary biology as it provides an important conceptual link between environmental conditions and organism function - both at the time of initial exposure to stressors and later in life. In this review, we discuss and clarify the different ways in which the term hormesis is used and provide a framework that we hope will be useful for ecologists interested in the fitness consequences of exposure to stressors. By using ecologically relevant examples from the existing literature, we show that hormesis is connected with both acclimation and phenotypic plasticity, and may play an important role in allowing animals to adjust to changing environments.
Collapse
Affiliation(s)
- David Costantini
- Division of Ecology and Evolutionary Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
62
|
Mongkoldhumrongkul N, Swain SC, Jayasinghe SN, Stürzenbaum S. Bio-electrospraying the nematode Caenorhabditis elegans: studying whole-genome transcriptional responses and key life cycle parameters. J R Soc Interface 2010; 7:595-601. [PMID: 19776148 PMCID: PMC2842783 DOI: 10.1098/rsif.2009.0364] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/24/2009] [Indexed: 01/26/2023] Open
Abstract
Bio-electrospray, the direct jet-based cell handling approach, is able to handle a wide range of cells (spanning immortalized, primary to stem cells). Studies at the genomic, genetic and the physiological levels have shown that, post-treatment, cellular integrity is unperturbed and a high percentage (more than 70%, compared with control) of cells remain viable. Although, these results are impressive, it may be argued that cell-based systems are oversimplistic. Therefore, it is important to evaluate the bio-electrospray technology using sensitive and dynamically developing multi-cellular organisms that share, at least some, similarities with multi-cell microenvironments encountered with tissues and organs. This study addressed this issue by using a well-characterized model organism, the non-parasitic nematode Caenorhabditis elegans. Nematode cultures were subjected to bio-electrospraying and compared with positive (heat shock) and negative controls (appropriate laboratory culture controls). Overall, bio-electrospraying did not modulate the reproductive output or induce significant changes in in vivo stress-responsive biomarkers (heat shock proteins). Likewise, whole-genome transcriptomics could not identify any biological processes, cellular components or molecular functions (gene ontology terms) that were significantly enriched in response to bio-electrospraying. This demonstrates that bio-electrosprays can be safely applied directly to nematodes and underlines its potential future use in the creation of multi-cellular environments within clinical applications.
Collapse
Affiliation(s)
- Napachanok Mongkoldhumrongkul
- BioPhysics Group, Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Suresh C. Swain
- Pharmaceutical Science Division, King's College London, School of Biomedical and Health Sciences, 150 Stamford Street, London SE1 9NH, UK
| | - Suwan N. Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Stephen Stürzenbaum
- Pharmaceutical Science Division, King's College London, School of Biomedical and Health Sciences, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
63
|
Abstract
Despite the fact that the phenomenon of hormesis has been known for many years it is still very much an area of controversy just how useful hormetic treatments are in preventing age-related human diseases and increasing life expectancy. Since there are no data in humans demonstrating hormesis as an effective anti-ageing strategy we turn to a simple model organism for insight. In this review we explore what can be predicted about the usefulness of hormetic treatments in humans based upon studies conducted in the soil nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Arnold Kahn
- Buck Institute for Age Research, Novato, CA, USA
| | | |
Collapse
|
64
|
Onodera A, Yanase S, Ishii T, Yasuda K, Miyazawa M, Hartman PS, Ishii N. Post-dauer life span of Caenorhabditis elegans dauer larvae can be modified by X-irradiation. JOURNAL OF RADIATION RESEARCH 2009; 51:67-71. [PMID: 19851044 DOI: 10.1269/jrr.09093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The time spent as a dauer larva does not affect adult life span in Caenorhabditis elegans, as if aging is suspended in this quiescent developmental stage. We now report that modest doses X-irradiation of dauer larvae increased their post-dauer longevity. Post-irradiation incubation of young dauer larvae did not modify this beneficial effect of radiation. Conversely, holding dauer larvae prior to irradiation rendered them refractory to this X-radiation-induced response. We present a model to explain these results. These experiments demonstrate that dauer larvae provide an excellent opportunity to study mechanisms by which X irradiation can extend life span.
Collapse
Affiliation(s)
- Akira Onodera
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
65
|
Gruber J, Ng LF, Poovathingal SK, Halliwell B. Deceptively simple but simply deceptive - Caenorhabditis elegans
lifespan studies: Considerations for aging and antioxidant effects. FEBS Lett 2009; 583:3377-87. [DOI: 10.1016/j.febslet.2009.09.051] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/01/2009] [Accepted: 09/29/2009] [Indexed: 01/01/2023]
|
66
|
Hormesis, aging and longevity. Biochim Biophys Acta Gen Subj 2009; 1790:1030-9. [DOI: 10.1016/j.bbagen.2009.01.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 12/31/2022]
|
67
|
Wu D, Cypser JR, Yashin AI, Johnson TE. Multiple mild heat-shocks decrease the Gompertz component of mortality in Caenorhabditis elegans. Exp Gerontol 2009; 44:607-12. [PMID: 19580861 PMCID: PMC2753291 DOI: 10.1016/j.exger.2009.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 06/03/2009] [Accepted: 06/29/2009] [Indexed: 01/06/2023]
Abstract
Exposure to mild heat-stress (heat-shock) can significantly increase the life expectancy of the nematode Caenorhabditis elegans. A single heat-shock early in life extends longevity by 20% or more and affects life-long mortality by decreasing initial mortality only; the rate of increase in subsequent mortality (Gompertz component) is unchanged. Repeated mild heat-shocks throughout life have a larger effect on life span than does a single heat-shock early in life. Here, we ask how multiple heat-shocks affect the mortality trajectory in nematodes and find increases of life expectancy of close to 50% and of maximum longevity as well. We examined mortality using large numbers of animals and found that multiple heat-shocks not only decrease initial mortality, but also slow the Gompertz rate of increase in mortality. Thus, multiple heat-shocks have anti-aging hormetic effects and represent an effective approach for modulating aging.
Collapse
Affiliation(s)
- Deqing Wu
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
68
|
Song HO, Lee W, An K, Lee HS, Cho JH, Park ZY, Ahnn J. C. elegans STI-1, the homolog of Sti1/Hop, is involved in aging and stress response. J Mol Biol 2009; 390:604-17. [PMID: 19467242 DOI: 10.1016/j.jmb.2009.05.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 11/25/2022]
Abstract
Environmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90. However, the biological role of STI-1 in vivo is poorly understood in metazoans. Here, we report the characterization of the Caenorhabditis elegans homolog of Sti1/Hop, which is approximately 56% identical with human STI-1. C. elegans STI-1 (CeSTI-1) is expressed in the pharynx, intestine, nervous system, and muscle from larvae to adults. Analysis of proteins immunoprecipitated with anti-STI-1 antibody by mass spectrometry revealed that CeSTI-1 can bind with both Hsp70 and Hsp90 homologs like its mammalian counterpart. sti-1 expression is elevated by heat stress, and an sti-1(jh125) null mutant shows decreased fertility under heat stress conditions. These mutants also show abnormally high lethality in extreme heat and may be functioning with DAF-16 in thermotolerance. In addition, sti-1(jh125) mutants have a shortened life span. Our results confirm that CeSTI-1 is a cochaperone protein that may maintain homeostatic functions during episodes of stress and can regulate longevity in nematodes.
Collapse
Affiliation(s)
- Hyun-Ok Song
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
69
|
Przybysz AJ, Choe KP, Roberts LJ, Strange K. Increased age reduces DAF-16 and SKN-1 signaling and the hormetic response of Caenorhabditis elegans to the xenobiotic juglone. Mech Ageing Dev 2009; 130:357-69. [PMID: 19428455 DOI: 10.1016/j.mad.2009.02.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 02/02/2009] [Accepted: 02/27/2009] [Indexed: 01/21/2023]
Abstract
Cells adapt to stressors by activating mechanisms that repair damage and protect them from further injury. Stress-induced damage accumulates with age and contributes to age associated diseases. Increased age attenuates the ability to mount a stress response, but little is known about the mechanisms by which this occurs. To begin addressing this problem, we studied hormesis in the nematode Caenorhabditis elegans. When exposed to a low concentration of the xenobiotic juglone, young worms mount a robust hormetic stress response and survive a subsequent exposure to a higher concentration of juglone that is normally lethal to naïve animals. Old worms are unable to mount this adaptive response. Microarray and RNAi analyses demonstrate that an altered transcriptional response to juglone is responsible in part for the reduced adaptation of old worms. Many genes differentially regulated in young versus old animals are known or postulated to be regulated by the FOXO homologue DAF-16 and the Nrf2 homologue SKN-1. Activation of these pathways is greatly reduced in juglone stressed old worms. DAF-16- and SKN-1-like transcription factors play highly conserved roles in regulating stress resistance and longevity genes. Our studies provide a foundation for developing a molecular understanding of how age affects cytoprotective transcriptional pathways.
Collapse
Affiliation(s)
- Aaron J Przybysz
- Department of Pharmacology, Vanderbilt University, 1161 21st Avenue South, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
70
|
Feeding a ROS-generator to Caenorhabditis elegans leads to increased expression of small heat shock protein HSP-16.2 and hormesis. GENES AND NUTRITION 2009; 4:59-67. [PMID: 19252938 DOI: 10.1007/s12263-009-0113-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 02/10/2009] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) are thought to be a driving force in the aging process. In transgenic Caenorhabditis elegans expressing green fluorescent protein (GFP) under control of the hsp-16.2 promoter (CL2070) 100 muM of the ROS-generator juglone induced GFP-expression. This was associated with translocation of DAF-16 to the nucleus as visualized in a transgenic strain expressing a DAF-16::GFP fusion protein (TJ356) and with increased cellular levels of reduced glutathione. RNA-interference for DAF-16 in CL2070 blocked the juglone-induced HSP-16.2 expression and the increase in glutathione levels. Higher concentrations of juglone did not further increase the adaptive responses but caused premature death, indicating hormetic adaptations unless the stressor exceeds the intrinsic protective capacity. The addition of the ROS-scavenger ascorbic acid finally blocked lifespan reductions and all of the adaptations to juglone stressing that ROS are indeed the molecular species that require protective response.
Collapse
|
71
|
Morimoto RI, Cuervo AM. Protein homeostasis and aging: taking care of proteins from the cradle to the grave. J Gerontol A Biol Sci Med Sci 2009; 64:167-70. [PMID: 19228787 DOI: 10.1093/gerona/gln071] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
All cells count on precise mechanisms that regulate protein homeostasis to maintain a stable and functional proteome. Alterations in these fine-tuned mechanisms underlie the pathogenesis of severe human diseases including, among others, common neurodegenerative disorders such as Alzheimer's or Parkinson's disease. A progressive deterioration in the ability of cells to preserve the stability of their proteome occurs with age, even in the absence of disease, and it likely contributes to different aspects of "normal" aging. A group of experts in different aspects of the biology of aging met recently to discuss the implications of altered protein homeostasis in aging, the current gaps in our understanding of the mechanisms responsible for proteome maintenance, and future opportunities for discovery in this area. We summarize here some of the key topics and main outcomes of the discussions.
Collapse
Affiliation(s)
- Richard I Morimoto
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
72
|
Zimniak P. Detoxification reactions: relevance to aging. Ageing Res Rev 2008; 7:281-300. [PMID: 18547875 DOI: 10.1016/j.arr.2008.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 12/23/2022]
Abstract
It is widely (although not universally) accepted that organismal aging is the result of two opposing forces: (i) processes that destabilize the organism and increase the probability of death, and (ii) longevity assurance mechanisms that prevent, repair, or contain damage. Processes of the first group are often chemical and physico-chemical in nature, and are either inevitable or only under marginal biological control. In contrast, protective mechanisms are genetically determined and are subject to natural selection. Life span is therefore largely dependent on the investment into protective mechanisms which evolve to optimize reproductive fitness. Recent data indicate that toxicants, both environmental and generated endogenously by metabolism, are major contributors to macromolecular damage and physiological dysregulation that contribute to aging; electrophilic carbonyl compounds derived from lipid peroxidation appear to be particularly important. As a consequence, detoxification mechanisms, including the removal of electrophiles by glutathione transferase-catalyzed conjugation, are major longevity assurance mechanisms. The expression of multiple detoxification enzymes, each with a significant but relatively modest effect on longevity, is coordinately regulated by signaling pathways such as insulin/insulin-like signaling, explaining the large effect of such pathways on life span. The major aging-related toxicants and their cognate detoxification systems are discussed in this review.
Collapse
Affiliation(s)
- Piotr Zimniak
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States.
| |
Collapse
|
73
|
Compounds that confer thermal stress resistance and extended lifespan. Exp Gerontol 2008; 43:882-91. [PMID: 18755260 DOI: 10.1016/j.exger.2008.08.049] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 08/21/2008] [Accepted: 08/21/2008] [Indexed: 02/07/2023]
Abstract
The observation that long-lived and relatively healthy animals can be obtained by simple genetic manipulation prompts the search for chemical compounds that have similar effects. Since aging is the most important risk factor for many socially and economically important diseases, the discovery of a wide range of chemical modulators of aging in model organisms could prompt new strategies for attacking age-related disease such as diabetes, cancer and neurodegenerative disorders [Collins, J.J., Evason, K., Kornfeld, K., 2006. Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp. Gerontol.; Floyd, R.A., 2006. Nitrones as therapeutics in age-related diseases. Aging Cell 5, 51-57; Gill, M.S., 2006. Endocrine targets for pharmacological intervention in aging in Caenorhabditis elegans. Aging Cell 5, 23-30; Hefti, F.F., Bales, R., 2006. Regulatory issues in aging pharmacology. Aging Cell 5, 3-8]. Resistance to multiple types of stress is a common trait in long-lived genetic variants of a number of species; therefore, we have tested compounds that act as stress response mimetics. We have focused on compounds with antioxidant properties and identified those that confer thermal stress resistance in the nematode Caenorhabditis elegans. Some of these compounds (lipoic acid, propyl gallate, trolox and taxifolin) also extend the normal lifespan of this simple invertebrate, consistent with the general model that enhanced stress resistance slows aging.
Collapse
|
74
|
Wu D, Cypser JR, Yashin AI, Johnson TE. The U-Shaped Response of Initial Mortality in Caenorhabditis elegans to Mild Heat Shock: Does It Explain Recent Trends in Human Mortality? J Gerontol A Biol Sci Med Sci 2008; 63:660-8. [DOI: 10.1093/gerona/63.7.660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
75
|
Evason K, Collins JJ, Huang C, Hughes S, Kornfeld K. Valproic acid extends Caenorhabditis elegans lifespan. Aging Cell 2008; 7:305-17. [PMID: 18248662 DOI: 10.1111/j.1474-9726.2008.00375.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aging is an important biological phenomenon and a major contributor to human disease and disability, but no drugs have been demonstrated to delay human aging. Caenorhabditis elegans is a valuable model for studies of animal aging, and the analysis of drugs that extend the lifespan of this animal can elucidate mechanisms of aging and might lead to treatments for age-related disease. By testing drugs that are Food and Drug Administration approved for human use, we discovered that the mood stabilizer and anticonvulsant valproic acid (VA) extended C. elegans lifespan. VA also delayed age-related declines of body movement, indicating that VA delays aging. Valproic acid is a small carboxylic acid that is the most frequently prescribed anticonvulsant drug in humans. A structure-activity analysis demonstrated that the related compound valpromide also extends lifespan. Valproic acid treatment may modulate the insulin/IGF-1 growth factor signaling pathway, because VA promoted dauer larvae formation and DAF-16 nuclear localization. To investigate the mechanism of action of VA in delaying aging, we analyzed the effects of combining VA with other compounds that extend the lifespan of C. elegans. Combined treatment of animals with VA and the heterocyclic anticonvulsant trimethadione caused a lifespan extension that was significantly greater than treatment with either of these drugs alone. These data suggest that the mechanism of action of VA is distinct from that of trimethadione, and demonstrate that lifespan-extending drugs can be combined to produce additive effects.
Collapse
Affiliation(s)
- Kimberley Evason
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
76
|
Mangel M. Environment, damage and senescence: modelling the life-history consequences of variable stress and caloric intake. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01410.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
77
|
Galbadage T, Hartman PS. Repeated temperature fluctuation extends the life span of Caenorhabditis elegans in a daf-16-dependent fashion. Mech Ageing Dev 2008; 129:507-14. [PMID: 18538371 DOI: 10.1016/j.mad.2008.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/21/2008] [Accepted: 04/12/2008] [Indexed: 11/18/2022]
Abstract
Thermocyclers were utilized to regularly shift nematodes between 12 degrees C and 25 degrees C throughout their life spans. When wild-type worms (N2) were "thermocycled" between 12 degrees C and 25 degrees C at 10-min intervals they lived almost as long as those that were incubated constantly at 12 degrees C. Shifting at 1-min or 1-h intervals lessened this effect. Similar results were observed for the long-lived mutants daf-2, eat-2 and clk-1, each of which prolongs life span through different mechanisms. In contrast, the life span of a daf-16 mutant was not prolonged by thermocycling worms, indicating that the effect is mediated by an insulin-like signaling pathway. To elucidate the molecular basis for the life span extension, two transgenic strains were employed in which heat shock proteins (HSPs) drove expression of the green fluorescent protein (GFP) gene. As expected, both HSPs were expressed at significantly higher levels in animals grown at 25 degrees C. Moreover, HSP expression in the thermocycled worms approximated that of animals grown at 25 degrees C more so than animals grown at 12 degrees C. This suggests that incubation at the higher temperatures for short time intervals induced stress-responsive gene expression that led to significant life span extension.
Collapse
|
78
|
Affiliation(s)
- Anund Hallén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
79
|
Reserpine can confer stress tolerance and lifespan extension in the nematode C. elegans. Biogerontology 2008; 9:309-16. [PMID: 18409080 DOI: 10.1007/s10522-008-9139-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
Abstract
Though the lifespan extension mechanism is partly understood from C. elegans to mice, a viable pharmacological intervention is not yet feasible. Here, we report that reserpine largely known as an antipsychotic-antihypertensive drug, can extend C. elegans lifespan. Chronic reserpine treatment from embryo stage or young adults extends the C. elegans lifespan robustly at 25 degrees C. Most importantly, the reserpine treated long lived worms are active (locomotion and pharyngeal pumping) for a long time thereby conferring high quality throughout life. Reserpine mediated lifespan extension is independent of the daf-16 pathway and partly requires serotonin. Reserpine treatment makes the worms highly thermotolerant. Thus, in addition to its known function, reserpine is able to provide stress tolerance and lifespan extension in C. elegans.
Collapse
|
80
|
Tedesco P, Jiang J, Wang J, Jazwinski SM, Johnson TE. Genetic analysis of hyl-1, the C. elegans homolog of LAG1/LASS1. AGE (DORDRECHT, NETHERLANDS) 2008; 30:43-52. [PMID: 19424872 PMCID: PMC2274941 DOI: 10.1007/s11357-008-9046-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 01/14/2008] [Indexed: 05/27/2023]
Abstract
Yeast LAG1 was one of the first longevity genes found. Subsequent analysis showed that it encodes a component of ceramide synthase. Homologs of LAG1 have been identified in all eukaryotes examined for their presence, and multiple homologs are the norm. In human and mouse, the LAG1 counterpart is called LASS1. The involvement of this gene in determining yeast replicative life span led us to ask whether longevity effects could be found in C. elegans. Extended longevity was seen when we used RNAi to decrease expression of the worm homolog of LAG1, termed hyl-1, for Homolog of Yeast Longevity gene. In contrast, neither deletion of the gene nor overexpression resulted in life extension. There was no evidence that hyl-1 interacts with the insulin/IGF-1 like signaling pathway to specify longevity or dauer formation, nor were effects on stress resistance detected. Gene expression of hyl-1 homologs was altered in the deletion mutant and by RNAi, showing distinct evidence for compensation at the transcript level. These regulatory changes may explain the subtle phenotypic effects found under the conditions studied here.
Collapse
Affiliation(s)
- Patricia Tedesco
- Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
81
|
Perez FP, Zhou X, Morisaki J, Jurivich D. Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response. Exp Gerontol 2008; 43:307-16. [PMID: 18325704 DOI: 10.1016/j.exger.2008.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 01/04/2008] [Accepted: 01/15/2008] [Indexed: 12/28/2022]
Abstract
Hormesis may result when mild repetitive stress increases cellular defense against diverse injuries. This process may also extend in vitro cellular proliferative life span as well as delay and reverse some of the age-dependent changes in both replicative and non-replicative cells. This study evaluated the potential hormetic effect of non-thermal repetitive electromagnetic field shock (REMFS) and its impact on cellular aging and mortality in primary human T lymphocytes and fibroblast cell lines. Unlike previous reports employing electromagnetic radiation, this study used a long wave length, low energy, and non-thermal REMFS (50MHz/0.5W) for various therapeutic regimens. The primary outcomes examined were age-dependent morphological changes in cells over time, cellular death prevention, and stimulation of the heat shock response. REMFS achieved several biological effects that modified the aging process. REMFS extended the total number of population doublings of mouse fibroblasts and contributed to youthful morphology of cells near their replicative lifespan. REMFS also enhanced cellular defenses of human T cells as reflected in lower cell mortality when compared to non-treated T cells. To determine the mechanism of REMFS-induced effects, analysis of the cellular heat shock response revealed Hsp90 release from the heat shock transcription factor (HSF1). Furthermore, REMFS increased HSF1 phosphorylation, enhanced HSF1-DNA binding, and improved Hsp70 expression relative to non-REMFS-treated cells. These results show that non-thermal REMFS activates an anti-aging hormetic effect as well as reduces cell mortality during lethal stress. Because the REMFS configuration employed in this study can potentially be applied to whole body therapy, prospects for translating these data into clinical interventions for Alzheimer's disease and other degenerative conditions with aging are discussed.
Collapse
Affiliation(s)
- Felipe P Perez
- Department of Medicine and Section of Geriatric Medicine, University of Illinois Mail Code 717, College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
82
|
Abstract
Hormesis in aging is represented by mild stress-induced stimulation of protective mechanisms in cells and organisms resulting in biologically beneficial effects. Single or multiple exposure to low doses of otherwise harmful agents, such as irradiation, food limitation, heat stress, hypergravity, reactive oxygen species and other free radicals have a variety of anti-aging and longevity-extending hormetic effects. Detailed molecular mechanisms that bring about the hormetic effects are being increasingly understood, and comprise a cascade of stress response and other pathways of maintenance and repair. Although the extent of immediate hormetic effects after exposure to a particular stress may only be moderate, the chain of events following initial hormesis leads to biologically amplified effects that are much larger, synergistic and pleiotropic. A consequence of hormetic amplification is an increase in the homeodynamic space of a living system in terms of increased defence capacity and reduced load of damaged macromolecules. Hormetic strengthening of the homeodynamic space provides wider margins for metabolic fluctuation, stress tolerance, adaptation and survival. Hormesis thus counter-balances the progressive shrinkage of the homeodynamic space, which is the ultimate cause of aging, diseases and death. Healthy aging may be achieved by hormesis through mild and periodic, but not severe or chronic, physical and mental challenges, and by the use of nutritional hormesis incorporating mild stress-inducing molecules called hormetins. The established scientific foundations of hormesis are ready to pave the way for new and effective approaches in aging research and intervention.
Collapse
Affiliation(s)
- Suresh I S Rattan
- Laboratory of Cellular Ageing, Department of Molecular Biology, University of Aarhus, Aarhus-C, Denmark.
| |
Collapse
|
83
|
Iser WB, Wolkow CA. DAF-2/insulin-like signaling in C. elegans modifies effects of dietary restriction and nutrient stress on aging, stress and growth. PLoS One 2007; 2:e1240. [PMID: 18043747 PMCID: PMC2080776 DOI: 10.1371/journal.pone.0001240] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 11/07/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dietary restriction (DR) and reduced insulin/IGF-I-like signaling (IIS) are two regimens that promote longevity in a variety of organisms. Genetic analysis in C. elegans nematodes has shown that DR and IIS couple to distinct cellular signaling pathways. However, it is not known whether these pathways ultimately converge on overlapping or distinct targets to extend lifespan. PRINCIPAL FINDINGS We investigated this question by examining additional effects of DR in wildtype animals and in daf-2 mutants with either moderate or severe IIS deficits. Surprisingly, DR and IIS had opposing effects on these physiological processes. First, DR induced a stress-related change in intestinal vesicle trafficking, termed the FIRE response, which was suppressed in daf-2 mutants. Second, DR did not strongly affect expression of a daf-2- and stress-responsive transcriptional reporter. Finally, DR-related growth impairment was suppressed in daf-2 mutants. CONCLUSIONS These findings reveal that an important biological function of DAF-2/IIS is to enhance growth and survival under nutrient-limited conditions. However, we also discovered that levels of DAF-2 pathway activity modified the effects of DR on longevity. Thus, while DR and IIS clearly affect lifespan through independent targets, there may also be some prolongevity targets that are convergently regulated by these pathways.
Collapse
Affiliation(s)
- Wendy B. Iser
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Catherine A. Wolkow
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
84
|
Spindler SR, Dhahbi JM. Conserved and tissue-specific genic and physiologic responses to caloric restriction and altered IGFI signaling in mitotic and postmitotic tissues. Annu Rev Nutr 2007; 27:193-217. [PMID: 17428180 DOI: 10.1146/annurev.nutr.27.061406.093743] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caloric restriction (CR), the consumption of fewer calories without malnutrition, and reduced insulin and/or IGFI receptor signaling delay many age-related physiological changes and extend the lifespan of many model organisms. Here, we present and review microarray and biochemical studies indicating that the potent anticancer effects of CR and disrupted insulin/IGFI receptor signaling evolved as a byproduct of the role of many mitotic tissues as reservoirs of metabolic energy. We argue that the longevity effects of CR are derived from repeated cycles of apoptosis and autophagic cell death in mitotically competent tissues and protein turnover and cellular repair in postmitotic tissues. We review studies showing that CR initiated late in life can rapidly induce many of the benefits of lifelong CR, including its anticancer effects. We also discuss evidence from liver and heart indicating that many benefits of lifelong CR are recapitulated in mitotic and postmitotic tissues when CR is initiated late in life.
Collapse
Affiliation(s)
- Stephen R Spindler
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
85
|
Zahn JM, Kim SK. Systems biology of aging in four species. Curr Opin Biotechnol 2007; 18:355-9. [PMID: 17681777 PMCID: PMC3224768 DOI: 10.1016/j.copbio.2007.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/12/2007] [Indexed: 11/20/2022]
Abstract
Using DNA microarrays to generate transcriptional profiles of the aging process is a powerful tool for identifying biomarkers of aging. In Caenorhabditis elegans, a number of whole-genome profiling studies identified genes that change expression levels with age. High-throughput RNAi screens in worms determined a number of genes that modulate lifespan when silenced. Transcriptional profiling of the fly head identified a molecular pathway, the 'response to light' gene set, that increases expression with age and could be directly related to the tendency for a reduction in light levels to extend fly's lifespan. In mouse, comparing the gene expression profiles of several drugs to the gene expression profile of caloric restriction identified metformin as a drug whose action could potentially mimic caloric restriction in vivo. Finally, genes in the mitochondrial electron transport chain group decrease expression with age in the human, mouse, fly, and worm.
Collapse
Affiliation(s)
- Jacob M. Zahn
- Department of Developmental Biology, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, CA 94305, USA
- Department of Genetics, Stanford University Medical Center, Stanford, CA 94305, USA
- Corresponding author ()
| |
Collapse
|
86
|
Parsons PA. The ecological stress theory of aging and hormesis: an energetic evolutionary model. Biogerontology 2007; 8:233-42. [PMID: 17473992 DOI: 10.1007/s10522-007-9080-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 12/30/2006] [Indexed: 10/23/2022]
Abstract
Free-living organisms normally struggle to exist in harsh environments that are nutritionally and energetically inadequate, where evolutionary adaptation is challenged by internal stresses within organisms and external stresses from the environment. The incorporation of environmental variables into aging theories such as the free-radical and metabolic rate/oxidative stress theories, is the basis of the ecological stress theory of aging and hormesis. Environmental variation from optimum to lethal extremes gives a fitness-stress continuum, where energetic efficiency, or fitness, is inversely related to stress level; in the evolutionary context survival is a more direct measure of fitness for assessing aging than is lifespan. On this continuum, the hormetic zone is in the optimum region, while aging emphasizes survival towards lethal extremes. At the limits of survival, a convergence of physiological and genetical processes is expected under accumulating stress from Reactive Oxygen Species, ROS. Limited ecologically-oriented studies imply that major genes are important towards limits of survival compared with the hormetic zone. Future investigations could usefully explore outlier populations physiologically and genetically, since there is the likelihood that genetic variability may be lower in those cohorts managing to survive to extremely advanced ages as found in highly stressed ecological outlier populations. If so, an evolutionary explanation of the mortality-rate decline typical of cohorts of the extremely old emerges. In summary, an energetic evolutionary approach produces a general aging theory which automatically incorporates hormesis, since the theory is based on a fitness-stress continuum covering the whole range of possible abiotic environments of natural populations.
Collapse
|
87
|
Scannapieco AC, Sørensen JG, Loeschcke V, Norry FM. Heat-induced hormesis in longevity of two sibling Drosophila species. Biogerontology 2006; 8:315-25. [PMID: 17160437 DOI: 10.1007/s10522-006-9075-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 12/24/2022]
Abstract
Previous work showed that mild-heat stress induces longevity hormesis in a model organism, D. melanogaster. Here we compared the possible heat-induced hormesis in longevity of other species of Drosophila, D. buzzatii and its sibling species D. koepferae, in a single-sex environment. Possible correlations between longevity and heat-stress resistance were also tested by measuring longevity, heat-knockdown resistance and the heat-induced Hsp70 expression for each species in a common environment. D. buzzatii was longer lived than D. koepferae at benign temperature. Knockdown resistance to heat stress was positively correlated to longevity within species. However, the shorter-lived species was more resistant to knockdown by heat stress than the longer-lived species. The heat-induced Hsp70 expression was similar between species. A heat-shock treatment (37 degrees C for 1 h at 4 days of age) extended mean longevity in the longer lived species but not in the shorter lived species. In D. koepferae, the demographic rate of senescence decreased but the baseline mortality rate increased by heat-shock, resulting in no extension of mean longevity. Sympatric populations of closely related species can be differentially sensitive to temperature and exhibit different patterns of 37 degrees C-induced hormesis in demographic senescence and longevity. The results also show that positive correlations between stress resistance and life span within species can shift in sign across closely related species. Finally, this study shows that heat-induced hormesis in longevity can be found across different Drosophila species, as hormetic effects are not limited to the previously studied D. melanogaster.
Collapse
Affiliation(s)
- Alejandra C Scannapieco
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | | | | | | |
Collapse
|
88
|
Harris J, Lowden M, Clejan I, Tzoneva M, Thomas JH, Hodgkin J, Ahmed S. Mutator phenotype of Caenorhabditis elegans DNA damage checkpoint mutants. Genetics 2006; 174:601-16. [PMID: 16951081 PMCID: PMC1602097 DOI: 10.1534/genetics.106.058701] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA damage response proteins identify sites of DNA damage and signal to downstream effectors that orchestrate either apoptosis or arrest of the cell cycle and DNA repair. The C. elegans DNA damage response mutants mrt-2, hus-1, and clk-2(mn159) displayed 8- to 15-fold increases in the frequency of spontaneous mutation in their germlines. Many of these mutations were small- to medium-sized deletions, some of which had unusual sequences at their breakpoints such as purine-rich tracts or direct or inverted repeats. Although DNA-damage-induced apoptosis is abrogated in the mrt-2, hus-1, and clk-2 mutant backgrounds, lack of the apoptotic branch of the DNA damage response pathway in cep-1/p53, ced-3, and ced-4 mutants did not result in a Mutator phenotype. Thus, DNA damage checkpoint proteins suppress the frequency of mutation by ensuring that spontaneous DNA damage is accurately repaired in C. elegans germ cells. Although DNA damage response defects that predispose humans to cancer are known to result in large-scale chromosome aberrations, our results suggest that small- to medium-sized deletions may also play roles in the development of cancer.
Collapse
Affiliation(s)
- Jasper Harris
- Department of Biology, University of North Carolina, NC 27599-3280, USA
| | | | | | | | | | | | | |
Collapse
|