51
|
Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization. Gene Ther 2018; 25:454-472. [PMID: 30190607 PMCID: PMC6478381 DOI: 10.1038/s41434-018-0039-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Abstract
Lentiviral vector mobilization following HIV-1 infection of vector-transduced cells poses biosafety risks to vector-treated patients and their communities. The self-inactivating (SIN) vector design has reduced, however, not abolished mobilization of integrated vector genomes. Furthermore, an earlier study demonstrated the ability of the major product of reverse transcription, a circular SIN HIV-1 vector comprising a single- long terminal repeat (LTR) to support production of high vector titers. Here, we demonstrate that configuring the internal vector expression cassette in opposite orientation to the LTRs abolishes mobilization of SIN vectors. This additional SIN mechanism is in part premised on induction of host PKR response to double-stranded RNAs comprised of mRNAs transcribed from cryptic transcription initiation sites around 3'SIN-LTR's and the vector internal promoter. As anticipated, PKR response following transfection of opposite orientation vectors, negatively affects their titers. Importantly, shRNA-mediated knockdown of PKR rendered titers of SIN HIV-1 vectors comprising opposite orientation expression cassettes comparable to titers of conventional SIN vectors. High-titer vectors carrying an expression cassette in opposite orientation to the LTRs efficiently delivered and maintained high levels of transgene expression in mouse livers. This study establishes opposite orientation expression cassettes as an additional PKR-dependent SIN mechanism that abolishes vector mobilization from integrated and episomal SIN lentiviral vectors.
Collapse
|
52
|
Sirrs S, Hannah-Shmouni F, Nantel S, Neuberger J, Yoshida EM. Transplantation as disease modifying therapy in adults with inherited metabolic disorders. J Inherit Metab Dis 2018; 41:885-896. [PMID: 29392586 DOI: 10.1007/s10545-018-0141-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
Transplantation is an established disease modifying therapy in selected children with certain inherited metabolic diseases (IMDs). Transplantation of hematopoietic stem cells or solid organs can be used to partially correct the underlying metabolic defect, address life threatening disease manifestations (such as neutropenia) or correct organ failure caused by the disease process. Much less information is available on the use of transplantation in adults with IMDs. Transplantation is indicated for the same IMDs in adults as in children. Despite similar disease specific indications, the actual spectrum of diseases for which transplantation is used differs between these age groups and this is partly related to the natural history of disease. There are diseases (such as urea cycle defects and X-linked adrenoleukodystrophy) for which transplantation is recommended for selected symptomatic patients as a treatment strategy in both adults and children. In those diseases, the frequency with which transplantation is used in adults is lower than in children and this may be related in part to a reduced awareness of transplantation as a treatment strategy amongst adult clinicians as well as limited donor availability and allocation policies which may disadvantage adult patients with IMDs. Risks of transplantation and disease-specific prognostic factors influencing outcomes also differ with age. We review the use of transplantation as a disease modifying strategy in adults focusing on how this differs from use in children to highlight areas for future research.
Collapse
Affiliation(s)
- Sandra Sirrs
- Divisions of Endocrinology, University of British Columbia, Vancouver, BC, Canada.
- , Vancouver, Canada.
| | - Fady Hannah-Shmouni
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stephen Nantel
- Divisions of Hematology, University of British Columbia, Vancouver, BC, Canada
- Leukemia and Bone Marrow Transplant Program, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Eric M Yoshida
- Divisions of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
54
|
Hou ZS, Ulloa-Aguirre A, Tao YX. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev Clin Pharmacol 2018; 11:611-624. [DOI: 10.1080/17512433.2018.1480367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
55
|
Labusca L, Herea DD, Mashayekhi K. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J Stem Cells 2018. [PMID: 29849930 DOI: : 10.4252/wjsc.v10.i5.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities (modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in equipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications.
Collapse
Affiliation(s)
- Luminita Labusca
- Orthopedics and Traumatology Clinic, Emergency County Hospital Saint Spiridon Iasi Romania, Iasi 700000, Romania
| | - Dumitru Daniel Herea
- Stem Cell Laboratory, National Institute of Research and Development for Technical Physics (NIRDTP), Iasi 700349, Romania
| | - Kaveh Mashayekhi
- Systems Bioinformatics and Modelling SBIM, Frankfurt 45367, Germany
| |
Collapse
|
56
|
Labusca L, Herea DD, Mashayekhi K. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World J Stem Cells 2018; 10:43-56. [PMID: 29849930 PMCID: PMC5973910 DOI: 10.4252/wjsc.v10.i5.43] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities (modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in equipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications.
Collapse
Affiliation(s)
- Luminita Labusca
- Orthopedics and Traumatology Clinic, Emergency County Hospital Saint Spiridon Iasi Romania, Iasi 700000, Romania
| | - Dumitru Daniel Herea
- Stem Cell Laboratory, National Institute of Research and Development for Technical Physics (NIRDTP), Iasi 700349, Romania
| | - Kaveh Mashayekhi
- Systems Bioinformatics and Modelling SBIM, Frankfurt 45367, Germany
| |
Collapse
|
57
|
Stirnadel-Farrant H, Kudari M, Garman N, Imrie J, Chopra B, Giannelli S, Gabaldo M, Corti A, Zancan S, Aiuti A, Cicalese MP, Batta R, Appleby J, Davinelli M, Ng P. Gene therapy in rare diseases: the benefits and challenges of developing a patient-centric registry for Strimvelis in ADA-SCID. Orphanet J Rare Dis 2018; 13:49. [PMID: 29625577 PMCID: PMC5889583 DOI: 10.1186/s13023-018-0791-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Strimvelis (autologous CD34+ cells transduced to express adenosine deaminase [ADA]) is the first ex vivo stem cell gene therapy approved by the European Medicines Agency (EMA), indicated as a single treatment for patients with ADA-severe combined immunodeficiency (ADA-SCID) who lack a suitable matched related bone marrow donor. Existing primary immunodeficiency registries are tailored to transplantation outcomes and do not capture the breadth of safety and efficacy endpoints required by the EMA for the long-term monitoring of gene therapies. Furthermore, for extended monitoring of Strimvelis, the young age of children treated, small patient numbers, and broad geographic distribution of patients all increase the risk of loss to follow-up before sufficient data have been collected. Establishing individual investigator sites would be impractical and uneconomical owing to the small number of patients from each location receiving Strimvelis. Results An observational registry has been established to monitor the safety and effectiveness of Strimvelis in up to 50 patients over a minimum of 15 years. To address the potential challenges highlighted above, data will be collected by a single investigator site at Ospedale San Raffaele (OSR), Milan, Italy, and entered into the registry via a central electronic platform. Patients/families and the patient’s local physician will also be able to submit healthcare information directly to the registry using a uniquely designed electronic platform. Data entry will be monitored by a Gene Therapy Registry Centre (funded by GlaxoSmithKline) who will ensure that necessary information is collected and flows between OSR, the patient/family and the patient’s local healthcare provider. Conclusion The Strimvelis registry sets a precedent for the safety monitoring of future gene therapies. A unique, patient-focused design has been implemented to address the challenges of long-term follow-up of patients treated with gene therapy for a rare disease. Strategies to ensure data completeness and patient retention in the registry will help fulfil pharmacovigilance requirements. Collaboration with partners is being sought to expand from a treatment registry into a disease registry. Using practical and cost-efficient approaches, the Strimvelis registry is hoped to encourage further innovation in registry design within orphan drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Michela Gabaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Ambra Corti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Zancan
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Pauline Ng
- GlaxoSmithKline, Brentford, Middlesex, UK
| |
Collapse
|
58
|
Hurdles Associated with the Translational Use of Genetically Modified Cells. CURRENT STEM CELL REPORTS 2018; 4:39-45. [PMID: 33381387 DOI: 10.1007/s40778-018-0115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose of Review Recent advancements in the use of genetically modified hematopoietic stem cells (HSCs) and the emergent use of chimeric antigen receptor (CAR) T-cell immunotherapy has highlighted issues associated with the use of genetically engineered cellular products. This review explores some of the challenges linked with translating the use of genetically modified cells. Recent Findings The use of genetically modified HSCs for ADA-SCID now has European approval and the U.S. Food and Drug Administration recently approved the use of CAR-T cells for relapsed/refractory B-cell acute lymphoblastic leukemia. Current good manufacturing processes have now been developed for the collection, expansion, storage, modification, and administration of genetically modified cells. Summary Genetically engineered cells can be used for several therapeutic purposes. However, significant challenges remain in making these cellular therapeutics readily available. A better understanding of this technology along with improvements in the manufacturing process is allowing the translation process to become more standardized.
Collapse
|