51
|
|
52
|
Reiter RJ, Tan DX, Erren TC, Fuentes-Broto L, Paredes SD. Light-mediated perturbations of circadian timing and cancer risk: a mechanistic analysis. Integr Cancer Ther 2010; 8:354-60. [PMID: 20042411 DOI: 10.1177/1534735409352026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In industrialized countries, certain types of cancer, most notably, breast and prostate, are more frequent than in poorly developed nations. This high cancer frequency is not explained by any of the conventional causes. Within the past decade, numerous reports have appeared that link light at night with an elevated cancer risk. The three major consequences of light at night are sleep deprivation, chronodisruption, and melatonin suppression. Each of these individually or in combination may contribute to the reported rise in certain types of cancer. In this article, the potential mechanisms underlying the basis of the elevated cancer risk are briefly discussed. Finally, if cancer is a consequence of excessive nighttime light, it is likely that other diseases/conditions may also be exaggerated by the widespread use of light after darkness onset.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
53
|
Mistraletti G, Sabbatini G, Taverna M, Figini MA, Umbrello M, Magni P, Ruscica M, Dozio E, Esposti R, DeMartini G, Fraschini F, Rezzani R, Reiter RJ, Iapichino G. Pharmacokinetics of orally administered melatonin in critically ill patients. J Pineal Res 2010; 48:142-7. [PMID: 20070489 DOI: 10.1111/j.1600-079x.2009.00737.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critically ill patients exhibit reduced melatonin secretion, both in nocturnal peaks and basal daytime levels. Oral melatonin supplementation may be useful for known sedative and antioxidant properties. Its early enteral absorption and daily pharmacokinetics were determined in two cohorts of six high-risk patients in this prospective trial. During their third and fourth Intensive Care Unit (ICU) day, they underwent two different sets of repeated blood samples to detect serum melatonin levels through radio-immuno-assay. Cohort 1: samples taken at 20:00, 20:45, 21:30, 24:00, 03:00, 06:00, 14:00, 20:00 to describe the daily pharmacokinetics. Cohort 2: 20:00, 20:05, 20:10, 20:20, 20:30, 20:45 to study the early absorption. On ICU day 3, endogenous levels were measured, while the absorption of exogenous melatonin was determined on ICU day 4 after administration, at 20:00, of 3 mg melatonin. All basal levels were below the expected values. Following enteral administration, pharmacological levels were already reached in 5 min, with a serum peak after 16 min (half-absorption time: 3 min 17 s). The maximum serum level observed was 11040 pg/mL and the disappearance rate indicated a half-elimination time of 1 hr 34 min. Serum melatonin levels decreased significantly after midnight; pharmacological levels were maintained up to 10 hr following administration. No excessive sleepiness was reported in this patient group. Critically ill patients exhibited reduced melatonin secretion, as reported in the literature. Despite the critical illness, the oral bioavailability was satisfactory: serum levels after oral administration showed basically unchanged intestinal absorption, while disappearance rate was slower than reported elsewhere in healthy volunteers.
Collapse
Affiliation(s)
- Giovanni Mistraletti
- Dipartimento di Anestesiologia, Terapia Intensiva e Scienze Dermatologiche, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) has revealed itself as an ubiquitously distributed and functionally diverse molecule. The mechanisms that control its synthesis within the pineal gland have been well characterized and the retinal and biological clock processes that modulate the circadian production of melatonin in the pineal gland are rapidly being unravelled. A feature that characterizes melatonin is the variety of mechanisms it employs to modulate the physiology and molecular biology of cells. While many of these actions are mediated by well-characterized, G-protein coupled melatonin receptors in cellular membranes, other actions of the indole seem to involve its interaction with orphan nuclear receptors and with molecules, for example calmodulin, in the cytosol. Additionally, by virtue of its ability to detoxify free radicals and related oxygen derivatives, melatonin influences the molecular physiology of cells via receptor-independent means. These uncommonly complex processes often make it difficult to determine specifically how melatonin functions to exert its obvious actions. What is apparent, however, is that the actions of melatonin contribute to improved cellular and organismal physiology. In view of this and its virtual absence of toxicity, melatonin may well find applications in both human and veterinary medicine.
Collapse
|
55
|
Abstract
Histone deacetylases (HDAC) have been under intense scientific investigation for a number of years. However, only recently the unique class III HDAC, sirtuins, have gained increasing investigational momentum. Originally linked to longevity in yeast, sirtuins and more specifically, SIRT1 have been implicated in numerous biological processes having both protective and/or detrimental effects. SIRT1 appears to play a critical role in the process of carcinogenesis, especially in age-related neoplasms. Similarly, alterations in circadian rhythms as well as production of the pineal hormone melatonin have been linked to aging and cancer risk. Melatonin has been found act as a differentiating agent in some cancer cells and to lower their invasive and metastatic status. In addition, melatonin synthesis and release occurs in a circadian rhythm fashion and it has been linked to the core circadian machinery genes (Clock, Bmal1, Periods, and Cryptochromes). Melatonin has also been associated with chronotherapy, the timely administration of chemotherapy agents to optimize trends in biological cycles. Interestingly, a recent set of studies have linked SIRT1 to the circadian rhythm machinery through direct deacetylation activity as well as through the nicotinamide adenine dinucleotide (NAD(+)) salvage pathway. In this review, we provide evidence for a possible connection between sirtuins, melatonin, and the circadian rhythm circuitry and their implications in aging, chronomodulation, and cancer.
Collapse
Affiliation(s)
- Brittney Jung-Hynes
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin
| | - Russel J. Reiter
- Department of Cellular & Structural Biology, The University of Texas Health Science Center, San Antonio, Texas
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin
- The University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Address correspondence to: Nihal Ahmad, Ph.D., Department of Dermatology, University of Wisconsin, 1300 University Avenue, MSC 423, Madison, Wisconsin, 53706; Phone: (608) 263-5359; Fax: (608) 263-5223;
| |
Collapse
|
56
|
Chang TKH, Chen J, Yang G, Yeung EYH. Inhibition of procarcinogen-bioactivating human CYP1A1, CYP1A2 and CYP1B1 enzymes by melatonin. J Pineal Res 2010; 48:55-64. [PMID: 19919601 DOI: 10.1111/j.1600-079x.2009.00724.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Administration of melatonin to rodents decreases the incidence of tumorigenesis initiated by benzo[a]pyrene or 7,12-dimethylbenz[a]anthracene, which requires bioactivation by cytochrome P450 enzymes, such as CYP1A1, CYP1A2 and CYP1B1, to produce carcinogenic metabolites. The present study tested the hypothesis that melatonin is a modulator of human CYP1 catalytic activity and gene expression. As a comparison, we also investigated the effect of melatonin on the catalytic activity of CYP2A6, which is also a procarcinogen-bioactivating enzyme. Melatonin (3-300 microm) decreased 7-ethoxyresorufin O-dealkylation catalyzed by human hepatic microsomes and recombinant CYP1A1, CYP1A2 and CYP1B1, whereas it did not affect coumarin 7-hydroxylation catalyzed by hepatic microsomes or recombinant CYP2A6. Melatonin inhibited CYP1 enzymes by mixed inhibition, with apparent K(i) values (mean +/- S.E.M.) of 59 +/- 1 (CYP1A1), 12 +/- 1 (CYP1A2), 14 +/- 2 (CYP1B1) and 46 +/- 8 microm (hepatic microsomes). Additional experiments indicated that melatonin decreased benzo[a]pyrene hydroxylation catalyzed by hepatic microsomes and CYP1A2 but not by CYP1A1 or CYP1B1. Treatment of MCF-10A human mammary epithelial cells with melatonin (up to 300 microm) did not affect basal or benzo[a]pyrene-inducible CYP1A1 or CYP1B1 gene expression. Consistent with this finding, melatonin did not influence reporter activity in aryl hydrocarbon receptor-dependent pGudluc6.1-transfected MCF-10A cells treated with or without benzo[a]pyrene, as assessed in an in vitro cell-based luciferase reporter gene assay. Overall, melatonin is an in vitro inhibitor of human CYP1 catalytic activity, and it may be useful to develop potent analogues of melatonin as potential cancer chemopreventive agents that block CYP1-mediated chemical carcinogenesis.
Collapse
Affiliation(s)
- Thomas K H Chang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
57
|
Abstract
Although the human genome has remained unchanged over the last 10,000 years, our lifestyle has become progressively more divergent from those of our ancient ancestors. This maladaptive change became apparent with the Industrial Revolution and has been accelerating in recent decades. Socially, we are people of the 21st century, but genetically we remain similar to our early ancestors. In conjunction with this discordance between our ancient, genetically-determined biology and the nutritional, cultural and activity patterns in contemporary Western populations, many diseases have emerged. Only a century ago infectious disease was a major cause of mortality, whereas today non-infectious chronic diseases are the greatest cause of death in the world. Epidemics of metabolic diseases (e.g., cardiovascular diseases, type 2 diabetes, obesity, metabolic syndrome and certain cancers) have become major contributors to the burden of poor health and they are presently emerging or accelerating, in most developing countries. One major lifestyle consequence is light at night and subsequent disrupted circadian rhythms commonly referred to as circadian disruption or chronodisruption. Mounting evidence reveals that particularly melatonin rhythmicity has crucial roles in a variety of metabolic functions as an anti-oxidant, anti-inflammatory chronobiotic and possibly as an epigenetic regulator. This paper provides a brief outline about metabolic dysregulation in conjunction with a disrupted melatonin rhythm.
Collapse
Affiliation(s)
- Ahmet Korkmaz
- Department of Physiology, School of Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | | | | | | |
Collapse
|
58
|
Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009; 44:175-200. [PMID: 19635037 DOI: 10.1080/10409230903044914] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of melatonin and its derivatives as antioxidants has stimulated a very large number of studies which have, virtually uniformly, documented the ability of these molecules to detoxify harmful reactants and reduce molecular damage. These observations have clear clinical implications given that numerous age-related diseases in humans have an important free radical component. Moreover, a major theory to explain the processes of aging invokes radicals and their derivatives as causative agents. These conditions, coupled with the loss of melatonin as organisms age, suggest that some diseases and some aspects of aging may be aggravated by the diminished melatonin levels in advanced age. Another corollary of this is that the administration of melatonin, which has an uncommonly low toxicity profile, could theoretically defer the progression of some diseases and possibly forestall signs of aging. Certainly, research in the next decade will help to define the role of melatonin in age-related diseases and in determining successful aging. While increasing life span will not necessarily be a goal of these investigative efforts, improving health and the quality of life in the aged should be an aim of this research.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | |
Collapse
|
59
|
Bushell WC, Theise ND. Toward a Unified Field of Study: Longevity, Regeneration, and Protection of Health through Meditation and Related Practices. Ann N Y Acad Sci 2009; 1172:5-19. [DOI: 10.1111/j.1749-6632.2009.04959.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
60
|
Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX. Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 2008; 15:43-50. [PMID: 19011689 DOI: 10.2119/molmed.2008.00117] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays a key role in the pathogenesis of aging and many metabolic diseases; therefore, an effective antioxidant therapy would be of great importance in these circumstances. Nutritional, environmental, and chemical factors can induce the overproduction of the superoxide anion radical in both the cytosol and mitochondria. This is the first and key event that leads to the activation of pathways involved in the development of several metabolic diseases that are related to oxidative stress. As oxidation of essential molecules continues, it turns to nitrooxidative stress because of the involvement of nitric oxide in pathogenic processes. Once peroxynitrite forms, it damages via two distinctive mechanisms. First, it has direct toxic effects leading to lipid peroxidation, protein oxidation, and DNA damage. This mechanism involves the induction of several transcription factors leading to cytokine-induced chronic inflammation. Classic antioxidants, including vitamins A, C, and E, have often failed to exhibit beneficial effects in metabolic diseases and aging. Melatonin is a multifunctional indolamine that counteracts virtually all pathophysiologic steps and displays significant beneficial actions against peroxynitrite-induced cellular toxicity. This protection is related to melatonin's antioxidative and antiinflammatory properties. Melatonin has the capability of scavenging both oxygen- and nitrogen-based reactants, including those formed from peroxynitrite, and blocking transcriptional factors, which induce proinflammatory cytokines. Accumulating evidence suggests that this nontoxic indolamine may be useful either as a sole treatment or in conjunction with other treatments for inhibiting the biohazardous actions of nitrooxidative stress.
Collapse
Affiliation(s)
- Ahmet Korkmaz
- Department of Physiology, School of Medicine, Gulhane Military Medical Academy, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|