51
|
Nham T, Poznanski SM, Fan IY, Shenouda MM, Chew MV, Lee AJ, Vahedi F, Karimi Y, Butcher M, Lee DA, Hirte H, Ashkar AA. Ex vivo-expanded NK cells from blood and ascites of ovarian cancer patients are cytotoxic against autologous primary ovarian cancer cells. Cancer Immunol Immunother 2018; 67:575-587. [PMID: 29299659 PMCID: PMC11028100 DOI: 10.1007/s00262-017-2112-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 12/25/2017] [Indexed: 12/20/2022]
Abstract
Ovarian cancer (OC) is the leading cause of gynecological cancer-related death in North America. Most ovarian cancer patients (OCPs) experience disease recurrence after first-line surgery and chemotherapy; thus, there is a need for novel second-line treatments to improve the prognosis of OC. Although peripheral blood-derived NK cells are known for their ability to spontaneously lyse tumour cells without prior sensitization, ascites-derived NK cells (ascites-NK cells) isolated from OCPs exhibit inhibitory phenotypes, impaired cytotoxicity and may play a pro-tumourigenic role in cancer progression. Therefore, it is of interest to improve the cytotoxic effector function of impaired OCP ascites-NK cells at the tumour environment. We investigated the efficacy of using an artificial APC-based ex vivo expansion technique to generate cytotoxic, expanded NK cells from previously impaired OCP ascites-NK cells, for use in an autologous model of NK cell immunotherapy. We are the first to obtain a log-scale expansion of OCP ascites-NK cells that upregulate the surface expression of activating receptors NKG2D, NKp30, NKp44, produce robust amounts of anti-tumour cytokines in the presence of OC cells and mediate direct tumour cytotoxicity against ascites-derived, primary OC cells obtained from autologous patients. Our findings demonstrate that it is possible to generate cytotoxic OCP ascites-NK cells from previously impaired OCP ascites-NK cells, which presents a promising immunotherapeutic target for the second-line treatment of OC. Future work should focus on evaluating the in vivo efficacy of autologous NK cell immunotherapy through the intraperitoneal delivery of NK cell expansion factors to a preclinical xenograft mouse model of human OC.
Collapse
Affiliation(s)
- Tina Nham
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Sophie M Poznanski
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Isabella Y Fan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Mira M Shenouda
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Marianne V Chew
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Amanda J Lee
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Fatemeh Vahedi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yalda Karimi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Martin Butcher
- Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Dean A Lee
- The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Hal Hirte
- Division of Medical Oncology, Department of Oncology, Juravinski Cancer Centre, Hamilton, ON, Canada
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Rm 4015 Michael DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
52
|
Natural Killer Cells from Malignant Pleural Effusion Are Endowed with a Decidual-Like Proangiogenic Polarization. J Immunol Res 2018; 2018:2438598. [PMID: 29713652 PMCID: PMC5896269 DOI: 10.1155/2018/2438598] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NK) cells are crucial in tumor recognition and eradication, but their activity is impaired in cancer patients, becoming poorly cytotoxic. A particular type of NK cells, from the decidua, has low cytotoxicity and shows proangiogenic functions. We investigated whether NK cells from peripheral blood (PB) and pleural effusions of patients develop decidual-like NK phenotype and whether exposure to IL-2 can restore their killing ability in the presence of pleural fluids. NK cells from pleural effusion of patients with inflammatory conditions (iPE, n = 18), primary tumor (ptPE, n = 18), and metastatic tumor (tmPE, n = 27) acquired the CD56brightCD16− phenotype. NK cells from both ptPE and tmPE showed increased expression for the CD49a and CD69 decidual-like (dNK) markers and decreased levels of the CD57 maturation marker. NK from all the PE analyzed showed impaired degranulation capability and reduced perforin release. PE-NK cells efficiently responded to IL-2 stimulation in vitro. Addition of TGFβ or cell-free pleural fluid to IL-2 in the culture medium abrogated NK cell CD107a and IFNγ expression even in healthy donors (n = 14) NK. We found that tmPE-NK cells produce VEGF and support the formation of capillary-like structures in endothelial cells. Our results suggest that the PE tumor microenvironment can shape NK cell polarization towards a low cytotoxic, decidual-like, highly proangiogenic phenotype and that IL-2 treatment is not sufficient to limit this process.
Collapse
|
53
|
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018. [PMID: 29507865 DOI: 10.1155/2018/8917804]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in "distant" pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.
Collapse
|
54
|
Huang Y, Miao Z, Hu Y, Yuan Y, Zhou Y, Wei L, Zhao K, Guo Q, Lu N. Baicalein reduces angiogenesis in the inflammatory microenvironment via inhibiting the expression of AP-1. Oncotarget 2018; 8:883-899. [PMID: 27903990 PMCID: PMC5352204 DOI: 10.18632/oncotarget.13669] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/12/2016] [Indexed: 01/20/2023] Open
Abstract
Increasing clinical and experimental studies have demonstrated that refractory chronic inflammation will result in malignant tumor and anti-angiogenic therapy may be an effective way to thwart the progression. Baicalein, one of the major active flavanoids found in Scutellaria baicalensis Georgi, has been exhibited potent anti-inflammation and anti-tumor effects by reducing angiogenesis. However, the exact mechanism of baicalein on endothelial cells in inflammatory microenvironment was not clear yet. Here, we investigated the anti-angiogenic effect of baicalein by incubating human umbilical vein endothelial cells (HUVECs) with THP-1 conditioned medium in vitro. The tube formation of HUVECs and microvessel outgrowth of rat aorta were attenuated, as well as the number of newly formed blood vessels in chicken chorioallantoic membrane (CAM) was reduced by baicalein. This anti-angiogenic effect was mainly on account of the inhibited motility, migration and invasion of HUVECs. In addition, mechanistic studies showed that baicalein could bind to AP-1 directly and the expression of c-Jun and c-Fos in HUVECs was reduced, accompanied by their increased proteasomal degradation. Besides, baicalein suppressed the nuclear translation, heterodimer formation and DNA binding affinity of c-Jun and c-Fos. What's more, the anti-angiogenic effect of baicalein was further confirmed by matrigel plug assay in vivo. Taken together, our study demonstrated that baicalein could exert its anti-angiogenic effect in the inflammation microenvironment via inhibiting the transcriptional activity of AP-1, which suggested that baicalein might be an alternative treatment against refractory chronic inflammation.
Collapse
Affiliation(s)
- Yujie Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhaorui Miao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yang Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yang Yuan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Kai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
55
|
Hao B, Chen Z, Bi B, Yu M, Yao S, Feng Y, Yu Y, Pan L, Di D, Luo G, Zhang X. Role of TLR4 as a prognostic factor for survival in various cancers: a meta-analysis. Oncotarget 2018; 9:13088-13099. [PMID: 29560134 PMCID: PMC5849198 DOI: 10.18632/oncotarget.24178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Accumulating evidence showed that high expression of toll like receptor 4 (TLR4) was significantly associated with the outcome of patients with solid cancers. However, other studies failed to draw a similar conclusion. Thus, a systematic meta-analysis was performed to assess the prognostic value of TLR4 in solid tumors. RESULTS Data from 15 studies and 1294 patients were enrolled. Among the 15 studies, 14 studies demonstrated the association between overall survival(OS) and TLR4 expression, and 7 studies described the relationship between disease-free survival(DFS) and TLR4 expression. High expression of TLR4 was significantly associated with poor OS (pooled hazard ratio (HR) = 2.05; 95% confidence interval (CI) (1.49, 2,49), P < 0.001). The results of meta regression analysis indicated that the subgroups of ethnic (PD = 0.924), tumor type (PD = 0.669), HR obtained method (PD = 0.945), analysis type (PD = 0.898), and cut-off value(PD = 0.835) were not the resource of heterogeneity. Moreover, patients with elevated TLR4 had a significantly worse DFS (pooled HR = 1.79; 95% CI (1.11, 2.88), P < 0.05). MATERIALS AND METHODS We searched PubMed, Embase and the Cochrane Library (last update by April 18, 2017) to identify literatures evaluating the value of TLR4 in cancer patients. Combined hazard ratios (HRs) for OS and DFS were assessed using fixed-effects models and random effects models respectively. CONCLUSIONS The meta-analysis suggests that elevated expression of TLR4 is associated with poor OS and shorter DFS of patients with solid tumors. The results indicate that TLR4, as a novel prognostic biomarker in solid tumors, could potentially help to improve treatment decision-making of solid tumors in clinical.
Collapse
Affiliation(s)
- Bo Hao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Baochen Bi
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Miaomei Yu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Shuang Yao
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Yuehua Feng
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Yang Yu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Lili Pan
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Dongmei Di
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| |
Collapse
|
56
|
Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res 2018; 2018:8917804. [PMID: 29507865 PMCID: PMC5821995 DOI: 10.1155/2018/8917804] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.
Collapse
|
57
|
Wang C, Mao C, Lou Y, Xu J, Wang Q, Zhang Z, Tang Q, Zhang X, Xu H, Feng Y. Monotropein promotes angiogenesis and inhibits oxidative stress-induced autophagy in endothelial progenitor cells to accelerate wound healing. J Cell Mol Med 2017; 22:1583-1600. [PMID: 29278309 PMCID: PMC5824424 DOI: 10.1111/jcmm.13434] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022] Open
Abstract
Attenuating oxidative stress‐induced damage and promoting endothelial progenitor cell (EPC) differentiation are critical for ischaemic injuries. We suggested monotropein (Mtp), a bioactive constituent used in traditional Chinese medicine, can inhibit oxidative stress‐induced mitochondrial dysfunction and stimulate bone marrow‐derived EPC (BM‐EPC) differentiation. Results showed Mtp significantly elevated migration and tube formation of BM‐EPCs and prevented tert‐butyl hydroperoxide (TBHP)‐induced programmed cell death through apoptosis and autophagy by reducing intracellular reactive oxygen species release and restoring mitochondrial membrane potential, which may be mediated viamTOR/p70S6K/4EBP1 and AMPK phosphorylation. Moreover, Mtp accelerated wound healing in rats, as indicated by reduced healing times, decreased macrophage infiltration and increased blood vessel formation. In summary, Mtp promoted mobilization and differentiation of BM‐EPCs and protected against apoptosis and autophagy by suppressing the AMPK/mTOR pathway, improving wound healing in vivo. This study revealed that Mtp is a potential therapeutic for endothelial injury‐related wounds.
Collapse
Affiliation(s)
- Chenggui Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cong Mao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiting Lou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianxiang Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingqing Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zengjie Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Tang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huazi Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongzeng Feng
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopedics of Zhejiang Province, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
58
|
Cancer chemoprevention revisited: Cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat Rev 2017; 63:1-18. [PMID: 29197745 DOI: 10.1016/j.ctrv.2017.10.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
Abstract
Cancer chemoprevention is the use of synthetic, natural or biological agents to prevent or delay the development or progression of malignancies. Intriguingly, many phytochemicals with anti-inflammatory and anti-angiogenic effects, recently proposed as chemoprevention strategies, are inhibitors of Cytochrome P450 family 1B1 (CYP1B1), an enzyme overexpressed in a wide variety of tumors and associated with angiogenesis. In turn, pro-inflammatory cytokines were reported to boost CYP1B1 expression, suggesting a key role of CYP1B1 in a positive loop of inflammatory angiogenesis. Other well-known pro-tumorigenic activities of CYP1B1 rely on metabolic bioactivation of xenobiotics and steroid hormones into their carcinogenic derivatives. In contrast to initial in vitro observations, in vivo studies demonstrated a protecting role against cancer for the other CYP1 family members (CYP1A1 and CYP1A2), suggesting that the specificity of CYP1 family inhibitors should be carefully taken into account for developing potential chemoprevention strategies. Recent studies also proposed a role of CYP1B1 in multiple cell types found within the tumor microenvironment, including fibroblasts, endothelial and immune cells. Overall, our review of the current literature suggests a positive loop between inflammatory cytokines and CYP1B1, which in turn may play a key role in cancer angiogenesis, acting on both cancer cells and the tumor microenvironment. Strategies aiming at specific CYP1B1 inhibition in multiple cell types may translate into clinical chemoprevention and angioprevention approaches.
Collapse
|
59
|
Anti-inflammatory and anti-angiogenic activities of a purified polysaccharide from flesh of Cipangopaludina chinensis. Carbohydr Polym 2017; 176:152-159. [DOI: 10.1016/j.carbpol.2017.08.073] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/04/2023]
|
60
|
Durymanov M, Kamaletdinova T, Lehmann SE, Reineke J. Exploiting passive nanomedicine accumulation at sites of enhanced vascular permeability for non-cancerous applications. J Control Release 2017. [DOI: 10.1016/j.jconrel.2017.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Leentjens J, Peters M, Esselink AC, Smulders Y, Kramers C. Initial anticoagulation in patients with pulmonary embolism: thrombolysis, unfractionated heparin, LMWH, fondaparinux, or DOACs? Br J Clin Pharmacol 2017; 83:2356-2366. [PMID: 28593681 DOI: 10.1111/bcp.13340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/13/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
The initial treatment of haemodynamically stable patients with pulmonary embolism (PE) has dramatically changed since the introduction of low molecular weight heparins (LMWHs). With the recent discovery of the direct oral anticoagulant drugs (DOACs), initial treatment of PE will be simplified even further. In several large clinical trials it has been demonstrated that DOACs are not inferior to standard therapy for the initial treatment of PE, and because of their practicability they are becoming the agents of first choice. However, many relative contraindications to DOACs were exclusion criteria in the clinical trials. Therefore, LMWHs will continue to play an important role in initial PE treatment and in some cases there still is a role for unfractionated heparin (UFH). In this review we will give an overview of the biophysical, pharmacokinetic and pharmacodynamic properties of anticoagulants currently available for the initial management of PE. In addition, we will provide a comprehensive overview of the indications for the use of UFH, LMWHs and DOACs in the initial management of PE from a pharmacokinetic/-dynamic point of view.
Collapse
Affiliation(s)
- Jenneke Leentjens
- Department of Internal Medicine and Pharmacology-Toxicology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Mike Peters
- VU University Medical Center, Amsterdam, The Netherlands
| | - Anne C Esselink
- Department of Internal Medicine and Pharmacology-Toxicology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Yvo Smulders
- VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis Kramers
- Department of Internal Medicine and Pharmacology-Toxicology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
62
|
Mortara L, Benest AV, Bates DO, Noonan DM. Can the co-dependence of the immune system and angiogenesis facilitate pharmacological targeting of tumours? Curr Opin Pharmacol 2017. [PMID: 28623714 DOI: 10.1016/j.coph.2017.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumours elicit a number of mechanisms to induce a reprogramming of innate and adaptive immune cells to their advantage, inducing a pro-angiogenic phenotype. Investigation of these events is now leading to the identification of specific myeloid and lymphoid cell-targeted therapies, as well as of unexplored off-target activities of clinically relevant chemotherapeutic and metabolic drugs. It is also leading to an enhanced understanding of the interplay between angiogenesis and the immune system, and the value of novel co-targeting approaches using both immunotherapy and anti-angiogenic therapy. Here, we review recently identified mechanisms and potential pharmacological approaches targeting the crosstalk between cancer cells and the host immune system, providing an overview on novel therapeutic opportunities linking immuno-oncology and anti-angiogenic therapy.
Collapse
Affiliation(s)
- Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andrew V Benest
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG2 7UH, UK
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham NG2 7UH, UK
| | - Douglas M Noonan
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
63
|
Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res 2017; 126:97-108. [PMID: 28501517 DOI: 10.1016/j.phrs.2017.05.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/01/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022]
Abstract
Tumor microenvironment (TME) plays a critical role in tumorigenesis, tumor invasion and metastasis. TME is composed of stroma, endothelial cells, pericytes, fibroblasts, smooth muscle cells, and immune cells, which is characterized by hypoxia, acidosis, and high interstitial fluid pressure. Due to the important role of TME, we firstly reviewed the composition of TME and discussed the impact of TME on tumor progression, drug and nanoparticle delivery. Next, we reviewed current strategies developed to modulate TME, including modulating tumor vasculature permeability, tumor associated macrophage phenotypes, tumor associated fibroblasts, tumor stroma components, tumor hypoxia, and multiple interventions simultaneously. Also, potential problems and future directions of TME modulation strategy have been discussed.
Collapse
|
64
|
Wu X, Newbold MA, Gao Z, Haynes CL. A versatile microfluidic platform for the study of cellular interactions between endothelial cells and neutrophils. Biochim Biophys Acta Gen Subj 2017; 1861:1122-1130. [DOI: 10.1016/j.bbagen.2017.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/11/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
|
65
|
Natural Killer Cells in the Orchestration of Chronic Inflammatory Diseases. J Immunol Res 2017; 2017:4218254. [PMID: 28428965 PMCID: PMC5385901 DOI: 10.1155/2017/4218254] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammation, altered immune cell phenotype, and functions are key features shared by diverse chronic diseases, including cardiovascular, neurodegenerative diseases, diabetes, metabolic syndrome, and cancer. Natural killer cells are innate lymphoid cells primarily involved in the immune system response to non-self-components but their plasticity is largely influenced by the pathological microenvironment. Altered NK phenotype and function have been reported in several pathological conditions, basically related to impaired or enhanced toxicity. Here we reviewed and discussed the role of NKs in selected, different, and “distant” chronic diseases, cancer, diabetes, periodontitis, and atherosclerosis, placing NK cells as crucial orchestrator of these pathologic conditions.
Collapse
|
66
|
Balza E, Zanellato S, Poggi A, Reverberi D, Rubartelli A, Mortara L. The therapeutic T-cell response induced by tumor delivery of TNF and melphalan is dependent on early triggering of natural killer and dendritic cells. Eur J Immunol 2017; 47:743-753. [PMID: 28198545 DOI: 10.1002/eji.201646544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 01/19/2017] [Accepted: 02/06/2017] [Indexed: 11/09/2022]
Abstract
The fusion protein L19mTNF (mouse TNF and human antibody fragment L19 directed to fibronectin extra domain B) selectively targets the tumor vasculature, and in combination with melphalan induces a long-lasting T-cell therapeutic response and immune memory in murine models. Increasing evidence suggests that natural killer (NK) cells act to promote effective T-cell-based antitumor responses. We have analyzed the role of NK cells and dendritic cells (DCs) on two different murine tumor models: WEHI-164 fibrosarcoma and C51 colon carcinoma, in which the combined treatment induces high and low rejection rates, respectively. In vivo NK-cell depletion strongly reduced the rejection of WEHI-164 fibrosarcoma and correlated with a decrease in mature DCs, CD4+ , and CD8+ T cells in the tumor-draining LNs and mature DCs and CD4+ T cells in the tumor 40 h after initiation of the therapy. NK-cell depletion also resulted in the impairment of the stimulatory capability of DCs derived from tumor-draining LNs of WEHI-164-treated mice. Moreover, a significant reduction of M2-type infiltrating macrophages was detected in both tumors undergoing therapy. These results suggest that the efficacy of L19mTNF/melphalan therapy is strongly related to the early activation of NK cells and DCs, which are necessary for an effective T-cell response.
Collapse
Affiliation(s)
- Enrica Balza
- Cell Biology Unit, Department of Integrated Oncological Therapies, IRCSS AOU San Martino Istituto Nazionale per la Ricerca sul Cancro (IST), Genoa, Italy
| | - Silvia Zanellato
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, Genoa, Italy
| | | | - Anna Rubartelli
- Cell Biology Unit, Department of Integrated Oncological Therapies, IRCSS AOU San Martino Istituto Nazionale per la Ricerca sul Cancro (IST), Genoa, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
67
|
Chen KL, Jung P, Kulkoyluoglu-Cotul E, Liguori C, Lumibao J, Mazewski C, Ranard K, Rowles JL, Wang Y, Xue L, Madak-Erdogan Z. Impact of Diet and Nutrition on Cancer Hallmarks. ACTA ACUST UNITED AC 2017; 7. [PMID: 30581989 DOI: 10.15406/jcpcr.2017.07.00240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diet and nutrition are undeniably two factors that have a major impact on the prevention, progression, and treatment of various cancers. In this review, we will discuss how bioactives from diet and nutritional status affect each of the hallmarks of cancer. We will present recent research and discuss using diet and nutrition as a means to prevent and treat cancer.
Collapse
Affiliation(s)
- Karen L Chen
- Division of Nutritional Sciences, University of Illinois, USA
| | - Paul Jung
- Department of Food Science and Human Nutrition, University of Illinois, USA
| | | | - Carli Liguori
- Department of Food Science and Human Nutrition, University of Illinois, USA
| | - Jan Lumibao
- Division of Nutritional Sciences, University of Illinois, USA
| | - Candice Mazewski
- Department of Food Science and Human Nutrition, University of Illinois, USA
| | | | - Joe L Rowles
- Division of Nutritional Sciences, University of Illinois, USA
| | - Yanling Wang
- Department of Food Science and Human Nutrition, University of Illinois, USA
| | - Louisa Xue
- Division of Nutritional Sciences, University of Illinois, USA
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, University of Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois, USA
| |
Collapse
|
68
|
Lian X, Gollasch M. A Clinical Perspective: Contribution of Dysfunctional Perivascular Adipose Tissue (PVAT) to Cardiovascular Risk. Curr Hypertens Rep 2016; 18:82. [DOI: 10.1007/s11906-016-0692-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
69
|
Bellamkonda K, Chandrashekar NK, Osman J, Selvanesan BC, Savari S, Sjölander A. The eicosanoids leukotriene D4 and prostaglandin E2 promote the tumorigenicity of colon cancer-initiating cells in a xenograft mouse model. BMC Cancer 2016; 16:425. [PMID: 27388564 PMCID: PMC4937611 DOI: 10.1186/s12885-016-2466-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer is one of the most common types of cancers worldwide. Recent studies have identified cancer-initiating cells (CICs) as a subgroup of replication-competent cells in the development of colorectal cancer. Although it is understood that an inflammation-rich tumor microenvironment presumably supports CIC functions, the contributory factors are not very well defined. The present study advances our understanding of the role of the eicosanoids leukotriene D4 (LTD4) and prostaglandin E2 (PGE2) in the tumorigenic ability of CICs and investigates the consequential changes occurring in the tumor environment that might support tumor growth. Methods In this study we used human HCT-116 colon cancer ALDH+ cells in a nude mouse xenograft model. Protein expression and immune cell was determined in tumor-dispersed cells by flow cytometry and in tumor sections by immunohistochemistry. mRNA expressions were quantified using RT-q-PCR and plasma cytokine levels by Multiplex ELISA. Results We observed that LTD4 and PGE2 treatment augmented CIC-induced tumor growth. LTD4-and PGE2-treated xenograft tumors revealed a robust increase in ALDH and Dclk1 protein expression, coupled with activated β-catenin signaling and COX-2 up-regulation. Furthermore, LTD4 or PGE2 accentuated the accumulation of CD45 expressing cells within xenograft tumors. Further analysis revealed that these infiltrating immune cells consisted of neutrophils (LY6G) and M2 type macrophages (CD206+). In addition, LTD4 and PGE2 treatment significantly elevated the plasma levels of cysteinyl leukotrienes and PGE2, as well as levels of IL-1β, IL-2, IL-6, TNF-α and CXCL1/KC/GRO. In addition, increased mRNA expression of IL-1β, IL-6 and IL-10 were detected in tumors from mice that had been treated with LTD4 or PGE2. Conclusion Our data suggest that both LTD4 and PGE2 promote CICs in initiating tumor growth by allowing modifications in the tumor environment. Our data indicate that new therapeutic strategies targeting eicosanoids, specifically LTD4 and PGE2, could be tested for better therapeutic management of colon cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2466-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kishan Bellamkonda
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Naveen Kumar Chandrashekar
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Janina Osman
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Benson Chellakkan Selvanesan
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Sayeh Savari
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| |
Collapse
|
70
|
Martorell S, Hueso L, Gonzalez-Navarro H, Collado A, Sanz MJ, Piqueras L. Vitamin D Receptor Activation Reduces Angiotensin-II-Induced Dissecting Abdominal Aortic Aneurysm in Apolipoprotein E-Knockout Mice. Arterioscler Thromb Vasc Biol 2016; 36:1587-97. [PMID: 27283745 DOI: 10.1161/atvbaha.116.307530] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/27/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a vascular disorder characterized by chronic inflammation of the aortic wall. Low concentrations of vitamin D3 are associated with AAA development; however, the potential direct effect of vitamin D3 on AAA remains unknown. This study evaluates the effect of oral treatment with the vitamin D3 receptor (VDR) ligand, calcitriol, on dissecting AAA induced by angiotensin-II (Ang-II) infusion in apoE(-/-) mice. APPROACH AND RESULTS Oral treatment with calcitriol reduced Ang-II-induced dissecting AAA formation in apoE(-/-) mice, which was unrelated to systolic blood pressure or plasma cholesterol concentrations. Immunohistochemistry and reverse-transcription polymerase chain reaction analysis demonstrated a significant increase in macrophage infiltration, neovessel formation, matrix metalloproteinase-2 and matrix metalloproteinase-9, chemokine (CCL2 [(C-C motif) ligand 2], CCL5 [(C-C motif) ligand 5], and CXCL1 [(C-X-C motif) ligand 1]) and vascular endothelial growth factor expression in suprarenal aortic walls of apoE(-/-) mice infused with Ang-II, and all were significantly reduced by cotreatment with calcitriol. Phosphorylation of extracellular signal-regulated kinases 1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB was also decreased in the suprarenal aortas of apoE(-/-) mice cotreated with calcitriol. These effects were accompanied by a marked increase in VDR-retinoid X receptor (RXR) interaction in the aortas of calcitriol-treated mice. In vitro, VDR activation by calcitriol in human endothelial cells inhibited Ang-II-induced leukocyte-endothelial cell interactions, morphogenesis, and production of endothelial proinflammatory and angiogenic chemokines through VDR-RXR interactions, and knockdown of VDR or RXR abolished the inhibitory effects of calcitriol. CONCLUSIONS VDR activation reduces dissecting AAA formation induced by Ang-II in apoE(-/-) mice and may constitute a novel therapeutic strategy to prevent AAA progression.
Collapse
Affiliation(s)
- Sara Martorell
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Luisa Hueso
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Herminia Gonzalez-Navarro
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Aida Collado
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Maria-Jesus Sanz
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.).
| | - Laura Piqueras
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.).
| |
Collapse
|
71
|
Wang XL, Zhao J, Qin L, Qiao M. Promoting inflammatory lymphangiogenesis by vascular endothelial growth factor-C (VEGF-C) aggravated intestinal inflammation in mice with experimental acute colitis. ACTA ACUST UNITED AC 2016; 49:e4738. [PMID: 27074165 PMCID: PMC4830025 DOI: 10.1590/1414-431x20154738] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/01/2015] [Indexed: 12/30/2022]
Abstract
Angiogenesis and lymphangiogenesis are thought to play a role in the pathogenesis of inflammatory bowel diseases (IBD). However, it is not understood if inflammatory lymphangiogenesis is a pathological consequence or a productive attempt to resolve the inflammation. This study investigated the effect of lymphangiogenesis on intestinal inflammation by overexpressing a lymphangiogenesis factor, vascular endothelial growth factor-C (VEGF-C), in a mouse model of acute colitis. Forty eight-week-old female C57BL/6 mice were treated with recombinant adenovirus overexpressing VEGF-C or with recombinant VEGF-C156S protein. Acute colitis was then established by exposing the mice to 5% dextran sodium sulfate (DSS) for 7 days. Mice were evaluated for disease activity index (DAI), colonic inflammatory changes, colon edema, microvessel density, lymphatic vessel density (LVD), and VEGFR-3mRNA expression in colon tissue. When acute colitis was induced in mice overexpressing VEGF-C, there was a significant increase in colonic epithelial damage, inflammatory edema, microvessel density, and neutrophil infiltration compared to control mice. These mice also exhibited increased lymphatic vessel density (73.0±3.9 vs 38.2±1.9, P<0.001) and lymphatic vessel size (1974.6±104.3 vs 1639.0±91.5, P<0.001) compared to control mice. Additionally, the expression of VEGFR-3 mRNA was significantly upregulated in VEGF-C156S mice compared to DSS-treated mice after induction of colitis (42.0±1.4 vs 3.5±0.4, P<0.001). Stimulation of lymphangiogenesis by VEGF-C during acute colitis promoted inflammatory lymphangiogenesis in the colon and aggravated intestinal inflammation. Inflammatory lymphangiogenesis may have pleiotropic effects at different stages of IBD.
Collapse
Affiliation(s)
- X L Wang
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, Shanghai, China
| | - J Zhao
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, Shanghai, China
| | - L Qin
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, Shanghai, China
| | - M Qiao
- Institute of Digestive Disease, Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, Shanghai, China
| |
Collapse
|
72
|
Di Caro G, Carvello M, Pesce S, Erreni M, Marchesi F, Todoric J, Sacchi M, Montorsi M, Allavena P, Spinelli A. Circulating Inflammatory Mediators as Potential Prognostic Markers of Human Colorectal Cancer. PLoS One 2016; 11:e0148186. [PMID: 26859579 PMCID: PMC4747470 DOI: 10.1371/journal.pone.0148186] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/14/2016] [Indexed: 12/15/2022] Open
Abstract
Background Cytokines and chemokines in the tumor microenvironment drive metastatic development and their serum levels might mirror the ongoing inflammatory reaction at the tumor site. Novel highly sensitive tools are needed to identify colorectal cancer patients at high risk of recurrence that should be more closely monitored during post-surgical follow up. Here we study whether circulating inflammatory markers might be used to predict recurrence in CRC patients. Methods Circulating levels of the inflammatory cytokines IL-1, IL-6, IL-10, TNFalpha, CCL2, CXCL8, VEGF and the acute phase protein Pentraxin-3 were measured by ELISA in preoperative serum samples prospectively collected from a cohort of sixty-nine patients undergoing surgical resection for stage 0–IV CRC and associated with post-operative disease recurrence. Results Cox multivariate analysis showed that combined high levels (≥ROC cut off-value) of CXCL8, VEGF and Pentraxin3 were associated with increased risk of disease recurrence [HR: 14.28; 95%CI: (3.13–65.1)] independently of TNM staging. Kaplan-Meier analysis showed that CXCL8, VEGF and Pentraxin3 levels were significantly associated with worse survival (P<0.001). Conclusions Circulating inflammatory mediators efficiently predicted postoperative recurrence after CRC surgery. Therefore, this study suggest that their validation in large-scale clinical trials may help in tailoring CRC post-surgical management.
Collapse
Affiliation(s)
- Giuseppe Di Caro
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Michele Carvello
- Department of Colon and Rectal Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Samantha Pesce
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Erreni
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Federica Marchesi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Jelena Todoric
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Matteo Sacchi
- Department of Colon and Rectal Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Montorsi
- Department of Colon and Rectal Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Antonino Spinelli
- Department of Colon and Rectal Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
73
|
Sinnathamby T, Yun J, Clavet-Lanthier MÉ, Cheong C, Sirois MG. VEGF and angiopoietins promote inflammatory cell recruitment and mature blood vessel formation in murine sponge/Matrigel model. J Cell Biochem 2016; 116:45-57. [PMID: 25145474 DOI: 10.1002/jcb.24941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/15/2014] [Indexed: 12/21/2022]
Abstract
A key feature in the induction of pathological angiogenesis is that inflammation precedes and accompanies the formation of neovessels as evidenced by increased vascular permeability and the recruitment of inflammatory cells. Previously, we and other groups have shown that selected growth factors, namely vascular endothelial growth factor (VEGF) and angiopoietins (Ang1 and Ang2) do not only promote angiogenesis, but can also induce inflammatory response. Herein, given a pro-inflammatory environment, we addressed the individual capacity of VEGF and angiopoietins to promote the formation of mature neovessels and to identify the different types of inflammatory cells accompanying the angiogenic process over time. Sterilized polyvinyl alcohol (PVA) sponges soaked in growth factor-depleted Matrigel mixed with PBS, VEGF, Ang1, or Ang2 (200 ng/200 µl) were subcutaneously inserted into anesthetized mice. Sponges were removed at day 4, 7, 14, or 21 post-procedure for histological, immunohistological (IHC), and flow cytometry analyses. As compared to PBS-treated sponges, the three growth factors promoted the recruitment of inflammatory cells, mainly neutrophils and macrophages, and to a lesser extent, T- and B-cells. In addition, they were more potent and more rapid in the recruitment of endothelial cells (ECs) and in the formation and maturation (ensheating of smooth muscle cells around ECs) of neovessels. Thus, the autocrine/paracrine interaction among the different inflammatory cells in combination with VEGF, Ang1, or Ang2 provides a suitable microenvironment for the formation and maturation of blood vessels.
Collapse
Affiliation(s)
- Tharsika Sinnathamby
- Research Center, Montreal Heart Institute, Montréal, Canada; Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | | | | | | | | |
Collapse
|
74
|
Carvalho MI, Pires I, Prada J, Raposo TP, Gregório H, Lobo L, Queiroga FL. High COX-2 expression is associated with increased angiogenesis, proliferation and tumoural inflammatory infiltrate in canine malignant mammary tumours: a multivariate survival study. Vet Comp Oncol 2016; 15:619-631. [PMID: 26792550 DOI: 10.1111/vco.12206] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/05/2015] [Accepted: 11/29/2015] [Indexed: 12/16/2022]
Abstract
COX-2 expression affects mammary tumourigenesis by promoting angiogenesis and cell proliferation, encouraging metastatic spread and tumour-associated inflammation. Samples of canine mammary tumours (n = 109) were submitted to immunohistochemistry to detect COX-2, CD31, VEGF, Ki-67, CD3 and MAC387 expression. Concurrent high expression of COX-2/CD31, COX-2/VEGF, COX-2/Ki-67, COX-2/CD3 and COX-2/MAC was associated with elevated grade of malignancy, presence of intravascular emboli and presence of lymph node metastasis. Tumours with high COX-2 (P < 0.001) and tumours with concurrent expression of high COX-2 and high CD31 (P = 0.008); high VEGF (P < 0.001); high Ki-67 (P < 0.001); high CD3+ T-lymphocytes (P = 0.002) and elevated MAC387 macrophages (P = 0.024) were associated with shorter overall survival (OS) time. Interestingly the groups with high COX-2/CD31 and high COX-2/VEGF retained their significance after multivariate analysis arising as independent predictors of OS. Present data highlight the importance of COX-2 in canine mammary tumourigenesis.
Collapse
Affiliation(s)
- M I Carvalho
- CECAV, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - I Pires
- CECAV, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - J Prada
- CECAV, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - T P Raposo
- CECAV, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Porto, Portugal
| | - H Gregório
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Centro Hospitalar Veterinário, Rua Manuel Pinto de Azevedo, 118, Porto, Portugal
| | - L Lobo
- Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Porto, Portugal.,Hospital Veterinário do Porto, Travessa de Silva Porto, 174, Porto, Portugal.,Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - F L Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Porto, Portugal.,Center for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
75
|
Sharma SH, Thulasingam S, Nagarajan S. Chemopreventive agents targeting tumor microenvironment. Life Sci 2016; 145:74-84. [DOI: 10.1016/j.lfs.2015.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/01/2015] [Accepted: 12/05/2015] [Indexed: 02/07/2023]
|
76
|
Albini A, Bertolini F, Bassani B, Bruno A, Gallo C, Caraffi SG, Maramotti S, Noonan DM. Biomarkers of cancer angioprevention for clinical studies. Ecancermedicalscience 2015; 9:600. [PMID: 26635904 PMCID: PMC4664506 DOI: 10.3332/ecancer.2015.600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 12/24/2022] Open
Abstract
With the great advances made in the treatment and prevention of infectious diseases over the last century, chronic degenerative diseases-cardiovascular, cerebrovascular, and cancer-represent the major causes of death in the developed world. Although massive efforts and investments have been made in cancer therapy, the progress made towards reducing mortality has been more successful for cardiovascular disease than for tumours. This can be attributable largely to an active prevention approach implemented for cardiovascular disease. Cardiologists treat their patients before the overt disease becomes life threatening, performing early interventions in phenotypically healthy patients, by using several markers that predict risk. If the concept of prevention could be applied to cancer in a more extensive way, a significant number of tumours could be avoided through preventive measures. Prevention approaches range from avoiding tobacco exposure to dietary strategies to active pharmacological approaches in higher risk groups. Host targets rather than the tumour cells themselves are attractive for chemoprevention, in particular endothelial and immune cells. Angioprevention i.e. preventing cancer angiogenesis is a key concept that we introduced; yet one of the major current challenges for anti-angiogenesis in therapy and prevention is finding the right biomarkers. Here we discuss the importance of angioprevention and the potential use of VEGF, PlGF, CD31, Ang and Tie, circulating vascular cell precursors, and microRNA as potential biomarkers.
Collapse
Affiliation(s)
- Adriana Albini
- Laboratory of Translational Oncology, Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia 42123, Italy ; These authors share equal contribution
| | - Francesco Bertolini
- Laboratory of Haematology-Oncology, European Institute of Oncology, Milan 20141, Italy ; These authors share equal contribution
| | - Barbara Bassani
- Scientific and Technology Park, IRCCS MultiMedica, Milan 20138, Italy
| | - Antonino Bruno
- Scientific and Technology Park, IRCCS MultiMedica, Milan 20138, Italy
| | - Cristina Gallo
- Laboratory of Translational Oncology, Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia 42123, Italy
| | - Stefano Giuseppe Caraffi
- Laboratory of Translational Oncology, Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia 42123, Italy
| | - Sally Maramotti
- Laboratory of Translational Oncology, Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia 42123, Italy
| | - Douglas M Noonan
- Scientific and Technology Park, IRCCS MultiMedica, Milan 20138, Italy ; Department of Biotechnology and Life Sciences, University of Insubria, Varese 21100, Italy
| |
Collapse
|
77
|
Tuncer S, Banerjee S. Eicosanoid pathway in colorectal cancer: Recent updates. World J Gastroenterol 2015; 21:11748-11766. [PMID: 26557000 PMCID: PMC4631974 DOI: 10.3748/wjg.v21.i41.11748] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/25/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Enzymatic metabolism of the 20C polyunsaturated fatty acid (PUFA) arachidonic acid (AA) occurs via the cyclooxygenase (COX) and lipoxygenase (LOX) pathways, and leads to the production of various bioactive lipids termed eicosanoids. These eicosanoids have a variety of functions, including stimulation of homeostatic responses in the cardiovascular system, induction and resolution of inflammation, and modulation of immune responses against diseases associated with chronic inflammation, such as cancer. Because chronic inflammation is essential for the development of colorectal cancer (CRC), it is not surprising that many eicosanoids are implicated in CRC. Oftentimes, these autacoids work in an antagonistic and highly temporal manner in inflammation; therefore, inhibition of the pro-inflammatory COX-2 or 5-LOX enzymes may subsequently inhibit the formation of their essential products, or shunt substrates from one pathway to another, leading to undesirable side-effects. A better understanding of these different enzymes and their products is essential not only for understanding the importance of eicosanoids, but also for designing more effective drugs that solely target the inflammatory molecules found in both chronic inflammation and cancer. In this review, we have evaluated the cancer promoting and anti-cancer roles of different eicosanoids in CRC, and highlighted the most recent literature which describes how those molecules affect not only tumor tissue, but also the tumor microenvironment. Additionally, we have attempted to delineate the roles that eicosanoids with opposing functions play in neoplastic transformation in CRC through their effects on proliferation, apoptosis, motility, metastasis, and angiogenesis.
Collapse
|
78
|
Browne S, Monaghan MG, Brauchle E, Berrio DC, Chantepie S, Papy-Garcia D, Schenke-Layland K, Pandit A. Modulation of inflammation and angiogenesis and changes in ECM GAG-activity via dual delivery of nucleic acids. Biomaterials 2015; 69:133-47. [DOI: 10.1016/j.biomaterials.2015.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/15/2022]
|
79
|
Wang D, DuBois RN. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis 2015; 36:1085-93. [PMID: 26354776 DOI: 10.1093/carcin/bgv123] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 08/16/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation contributes to cancer development via multiple mechanisms. One potential mechanism is that chronic inflammation can generate an immunosuppressive microenvironment that allows advantages for tumor formation and progression. The immunosuppressive environment in certain chronic inflammatory diseases and solid cancers is characterized by accumulation of proinflammatory mediators, infiltration of immune suppressor cells and activation of immune checkpoint pathways in effector T cells. In this review, we highlight recent advances in our understanding of how immunosuppression contributes to cancer and how proinflammatory mediators induce the immunosuppressive microenvironment via induction of immunosuppressive cells and activation of immune checkpoint pathways.
Collapse
Affiliation(s)
- Dingzhi Wang
- Laboratory for Inflammation and Cancer, The Biodesign Institute and
| | - Raymond N DuBois
- Laboratory for Inflammation and Cancer, The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, PO Box 875001, 1001 S. McAllister Ave., Tempe, AZ 85287, USA and Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ 85259, USA
| |
Collapse
|
80
|
Albini A, Bruno A, Gallo C, Pajardi G, Noonan DM, Dallaglio K. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity. Connect Tissue Res 2015; 56:414-25. [PMID: 26291921 PMCID: PMC4673538 DOI: 10.3109/03008207.2015.1066780] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a "proliferating" cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases.
Collapse
Affiliation(s)
- Adriana Albini
- Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova,
Reggio Emilia,
Italy,Correspondence: Adriana Albini, Director of the Department of Research and Statistics,
IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Viale Risorgimento 80, 42123,
Reggio Emilia,
Italy. E-mail:
| | - Antonino Bruno
- Scientific and Technology Park, IRCCS MultiMedica,
Milan,
Italy
| | - Cristina Gallo
- Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova,
Reggio Emilia,
Italy
| | - Giorgio Pajardi
- Department of Hand Surgery, San Giuseppe MultiMedica Hospital of Milan,
Milan,
Italy,Department of Clinical Sciences and Community, Plastic Surgery School, University of Milan,
Milan,
Italy
| | - Douglas M. Noonan
- Scientific and Technology Park, IRCCS MultiMedica,
Milan,
Italy,Department of Biotechnology and Life Sciences, University of Insubria,
Varese,
Italy
| | - Katiuscia Dallaglio
- Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova,
Reggio Emilia,
Italy
| |
Collapse
|
81
|
Albini A, Cavuto S, Apolone G, Noonan DM. Strategies to Prevent "Bad Luck" in Cancer. J Natl Cancer Inst 2015; 107:djv213. [PMID: 26242894 PMCID: PMC4605730 DOI: 10.1093/jnci/djv213] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/10/2015] [Indexed: 12/16/2022] Open
Abstract
It is impossible to predict exactly who will develop a cancer and who will not. We know that several “risk factors” may increase the chance of getting cancer and that risk increases with age. However, even with that in mind we seem to be able to explain only a certain number of cancers. Recently, Tomasetti and Vogelstein published a provocative article in Science stating that a large percentage of cancers may be due to “bad luck” (stochastic mutation events during DNA replication) and only a few to carcinogens, pathogens, or inherited genes and that this should impact public health policies. However, their intriguing analysis has numerous limitations, some of which have already been commented upon, including the likely biased subset of cancers and that finding a correlation does not signify a cause-effect mechanism. Here, we point out that there may also be an alternative explanation for the data, the cancer stem cell hypothesis, which postulates that cancers are derived from tissue stem cells and not from somatic differentiated cells. We also highlight the importance of the tissue microenvironment in the growth of transformed cells and outline a table of concurrent factors for several cancers. The message communicated to the public should not be one of helplessness in avoiding cancers, particularly given the now extensive knowledge of known risk factors and several agents/behaviors that can lower risk for specific cancers. While some tumors will still be due to chance, prevention should still be a primary goal for public health policies.
Collapse
Affiliation(s)
- Adriana Albini
- IRCCS-Arcispedale Santa Maria Nuova in Reggio Emilia, Italy (AA, SC, GA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN); Science and Technology Center, IRCCS MultiMedica, Milano, Italy (DMN).
| | - Silvio Cavuto
- IRCCS-Arcispedale Santa Maria Nuova in Reggio Emilia, Italy (AA, SC, GA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN); Science and Technology Center, IRCCS MultiMedica, Milano, Italy (DMN)
| | - Giovanni Apolone
- IRCCS-Arcispedale Santa Maria Nuova in Reggio Emilia, Italy (AA, SC, GA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN); Science and Technology Center, IRCCS MultiMedica, Milano, Italy (DMN)
| | - Douglas M Noonan
- IRCCS-Arcispedale Santa Maria Nuova in Reggio Emilia, Italy (AA, SC, GA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN); Science and Technology Center, IRCCS MultiMedica, Milano, Italy (DMN)
| |
Collapse
|
82
|
Shinya T, Yokota T, Nakayama S, Oki S, Mutoh J, Takahashi S, Sato K. Orally Administered Mucolytic Drug l-Carbocisteine Inhibits Angiogenesis and Tumor Growth in Mice. J Pharmacol Exp Ther 2015; 354:269-78. [DOI: 10.1124/jpet.115.224816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022] Open
|
83
|
Zhang S, Zhai Z, Yang Y, Zhu J, Gong J, Xie W, Kuang T, Wang C. Long-term treatment with low-molecular-weight heparin prolonged the survival time for acute pulmonary embolism patients concurrent with malignancy: An observational analysis from a long-term follow-up study. Thromb Res 2015; 135:582-7. [DOI: 10.1016/j.thromres.2014.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/11/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
|
84
|
Ebrahimian T, Le Gallic C, Stefani J, Dublineau I, Yentrapalli R, Harms-Ringdahl M, Haghdoost S. Chronic Gamma-Irradiation Induces a Dose-Rate-Dependent Pro-inflammatory Response and Associated Loss of Function in Human Umbilical Vein Endothelial Cells. Radiat Res 2015; 183:447-54. [PMID: 25807321 DOI: 10.1667/rr13732.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A central question in radiation protection research is dose and dose-rate relationship for radiation-induced cardiovascular diseases. The response of endothelial cells to different low dose rates may contribute to help estimate risks for cardiovascular diseases by providing mechanistic understanding. In this study we investigated whether chronic low-dose-rate radiation exposure had an effect on the inflammatory response of endothelial cells and their function. Human umbilical vein endothelial cells (HUVECs) were chronically exposed to radiation at a dose of 1.4 mGy/h or 4.1 mGy/h for 1, 3, 6 or 10 weeks. We determined the pro-inflammatory profile of HUVECs before and during radiation exposure, and investigated the functional consequences of this radiation exposure by measuring their capacity to form vascular networks in matrigel. Expression levels of adhesion molecules such as E-selectin, ICAM-1 and VCAM-1, and the release of pro-inflammatory cytokines such as MCP-1, IL-6 and TNF-α were analyzed. When a total dose of 2 Gy was given at a rate of 4.1 mGy/h, we observed an increase in IL-6 and MCP-1 release into the cell culture media, but this was not observed at 1.4 mGy/h. The increase in the inflammatory profile induced at the dose rate of 4.1 mGy/h was also correlated with a decrease in the capacity of the HUVECs to form a vascular network in matrigel. Our results suggest that dose rate is an important parameter in the alteration of HUVEC inflammatory profile and function.
Collapse
Affiliation(s)
- T Ebrahimian
- a IRSN: Institut de Radioprotection et de Sureté Nucléaire, Service de Radiobiologie et d'Épidémiologie, Laboratoire de RadioToxicologie Experimentale, 92262, Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
85
|
Ségaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, Amiaud J, Charrier C, Boisson-Vidal C, Heymann D. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int J Cancer 2014; 137:73-85. [DOI: 10.1002/ijc.29376] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Aude I. Ségaliny
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
| | - Amel Mohamadi
- Université Paris Descartes; Sorbonne Paris Cité Paris France
- INSERM, UMR 1140; Paris France
| | - Blandine Dizier
- Université Paris Descartes; Sorbonne Paris Cité Paris France
- INSERM, UMR 1140; Paris France
| | - Anna Lokajczyk
- Université Paris Descartes; Sorbonne Paris Cité Paris France
- INSERM, UMR 1140; Paris France
| | - Régis Brion
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
- CHU de Nantes; France
| | - Rachel Lanel
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
| | - Jérôme Amiaud
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
| | - Céline Charrier
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
| | | | - Dominique Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
- CHU de Nantes; France
| |
Collapse
|
86
|
Lengfeld J, Cutforth T, Agalliu D. The role of angiogenesis in the pathology of multiple sclerosis. Vasc Cell 2014; 6:23. [PMID: 25473485 PMCID: PMC4253611 DOI: 10.1186/s13221-014-0023-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis, or the growth of new blood vessels from existing vasculature, is critical for the proper development of many organs. This process is inhibited and tightly regulated in adults, once endothelial cells have acquired organ-specific properties. Within the central nervous system (CNS), angiogenesis and acquisition of blood-brain barrier (BBB) properties by endothelial cells is essential for CNS function. However, the role of angiogenesis in CNS pathologies associated with impaired barrier function remains unclear. Although vessel abnormalities characterized by abnormal barrier function are well documented in multiple sclerosis (MS), a demyelinating disease of the CNS resulting from an immune cell attack on oligodendrocytes, histological analysis of human MS samples has shown that angiogenesis is prevalent in and around the demyelinating plaques. Experiments using an animal model that mimics several features of human MS, Experimental Autoimmune Encephalomyelitis (EAE), have confirmed these human pathological findings and shed new light on the contribution of pre-symptomatic angiogenesis to disease progression. The CNS-infiltrating inflammatory cells that are a hallmark of both MS and EAE secrete several factors that not only contribute to exacerbating the inflammatory process but also promote and stimulate angiogenesis. Moreover, chemical or biological inhibitors that directly or indirectly block angiogenesis provide clinical benefits for disease progression. While the precise mechanism of action for these inhibitors is unknown, preventing pathological angiogenesis during EAE progression holds great promise for developing effective treatment strategies for human MS.
Collapse
Affiliation(s)
- Justin Lengfeld
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| | - Tyler Cutforth
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| | - Dritan Agalliu
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, CA 92697-2300 USA
| |
Collapse
|
87
|
Adini I, Adini A, Bazinet L, Watnick RS, Bielenberg DR, D'Amato RJ. Melanocyte pigmentation inversely correlates with MCP-1 production and angiogenesis-inducing potential. FASEB J 2014; 29:662-70. [PMID: 25406462 DOI: 10.1096/fj.14-255398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases.
Collapse
Affiliation(s)
- Irit Adini
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Avner Adini
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren Bazinet
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Randolph S Watnick
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J D'Amato
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
88
|
Gao Y, Zhao K, Huang Y, Zhou Y, Li Z, Guo R, Guo Q, Wu Y, Lu N. LL202 inhibits lipopolysaccharide-induced angiogenesis in vivo and in vitro. RSC Adv 2014. [DOI: 10.1039/c4ra08691k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
89
|
Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 2014; 76:2-20. [PMID: 25086372 DOI: 10.1016/j.addr.2014.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients.
Collapse
|
90
|
Soloviev DA, Hazen SL, Szpak D, Bledzka KM, Ballantyne CM, Plow EF, Pluskota E. Dual role of the leukocyte integrin αMβ2 in angiogenesis. THE JOURNAL OF IMMUNOLOGY 2014; 193:4712-21. [PMID: 25261488 DOI: 10.4049/jimmunol.1400202] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) and macrophages are crucial contributors to neovascularization, serving as a source of chemokines, growth factors, and proteases. α(M)β(2)(CD11b/CD18) and α(L)β(2)(CD11a/CD18) are expressed prominently and have been implicated in various responses of these cell types. Thus, we investigated the role of these β2 integrins in angiogenesis. Angiogenesis was analyzed in wild-type (WT), α(M)-knockout (α(M)(-/-)), and α(L)-deficient (α(L)(-/-)) mice using B16F10 melanoma, RM1 prostate cancer, and Matrigel implants. In all models, vascular area was decreased by 50-70% in α(M)(-/-) mice, resulting in stunted tumor growth as compared with WT mice. In contrast, α(L) deficiency did not impair angiogenesis and tumor growth. The neovessels in α(M)(-/-) mice were leaky and immature because they lacked smooth muscle cell and pericytes. Defective angiogenesis in the α(M)(-/-) mice was associated with attenuated PMN and macrophage recruitment into tumors. In contrast to WT or the α(L)(-/-) leukocytes, the α(M)(-/-) myeloid cells showed impaired plasmin (Plm)-dependent extracellular matrix invasion, resulting from 50-75% decrease in plasminogen (Plg) binding and pericellular Plm activity. Surface plasmon resonance verified direct interaction of the α(M)I-domain, the major ligand binding site in the β(2) integrins, with Plg. However, the α(L)I-domain failed to bind Plg. In addition, endothelial cells failed to form tubes in the presence of conditioned medium collected from TNF-α-stimulated PMNs derived from the α(M)(-/-) mice because of severely impaired degranulation and secretion of VEGF. Thus, α(M)β(2) plays a dual role in angiogenesis, supporting not only Plm-dependent recruitment of myeloid cells to angiogenic niches, but also secretion of VEGF by these cells.
Collapse
Affiliation(s)
- Dmitry A Soloviev
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Stanley L Hazen
- Department of Molecular and Cellular Medicine, Cleveland Clinic, Cleveland, OH 44195; and
| | - Dorota Szpak
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Kamila M Bledzka
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Christie M Ballantyne
- Baylor College of Medicine and Methodist DeBakey Heart and Vascular Center, Houston, TX 77030
| | - Edward F Plow
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
91
|
Bruno A, Ferlazzo G, Albini A, Noonan DM. A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J Natl Cancer Inst 2014; 106:dju200. [PMID: 25178695 PMCID: PMC4344546 DOI: 10.1093/jnci/dju200] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This “polarization” has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as “TINKs”) and tumor-associated NK (altered peripheral NK cells, which here we call “TANKs”) are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology.
Collapse
Affiliation(s)
- Antonino Bruno
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| | - Guido Ferlazzo
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| | - Adriana Albini
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| | - Douglas M Noonan
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| |
Collapse
|
92
|
Du Q, Pan Y, Zhang Y, Zhang H, Zheng Y, Lu L, Wang J, Duan T, Chen J. Placental gene-expression profiles of intrahepatic cholestasis of pregnancy reveal involvement of multiple molecular pathways in blood vessel formation and inflammation. BMC Med Genomics 2014; 7:42. [PMID: 25001852 PMCID: PMC4105836 DOI: 10.1186/1755-8794-7-42] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 07/03/2014] [Indexed: 02/08/2023] Open
Abstract
Background Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-associated liver disease with potentially deleterious consequences for the fetus, particularly when maternal serum bile-acid concentration >40 μM. However, the etiology and pathogenesis of ICP remain elusive. To reveal the underlying molecular mechanisms for the association of maternal serum bile-acid level and fetal outcome in ICP patients, DNA microarray was applied to characterize the whole-genome expression profiles of placentas from healthy women and women diagnosed with ICP. Methods Thirty pregnant women recruited in this study were categorized evenly into three groups: healthy group; mild ICP, with serum bile-acid concentration ranging from 10–40 μM; and severe ICP, with bile-acid concentration >40 μM. Gene Ontology analysis in combination with construction of gene-interaction and gene co-expression networks were applied to identify the core regulatory genes associated with ICP pathogenesis, which were further validated by quantitative real-time PCR and histological staining. Results The core regulatory genes were mainly involved in immune response, VEGF signaling pathway and G-protein-coupled receptor signaling, implying essential roles of immune response, vasculogenesis and angiogenesis in ICP pathogenesis. This implication was supported by the observed aggregated immune-cell infiltration and deficient blood vessel formation in ICP placentas. Conclusions Our study provides a system-level insight into the placental gene-expression profiles of women with mild or severe ICP, and reveals multiple molecular pathways in immune response and blood vessel formation that might contribute to ICP pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China.
| | | |
Collapse
|
93
|
Bruno A, Pagani A, Pulze L, Albini A, Dallaglio K, Noonan DM, Mortara L. Orchestration of angiogenesis by immune cells. Front Oncol 2014; 4:131. [PMID: 25072019 PMCID: PMC4078768 DOI: 10.3389/fonc.2014.00131] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/16/2014] [Indexed: 12/20/2022] Open
Abstract
It is widely accepted that the tumor microenvironment (TUMIC) plays a major role in cancer and is indispensable for tumor progression. The TUMIC involves many "players" going well beyond the malignant-transformed cells, including stromal, immune, and endothelial cells (ECs). The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can "orchestrate" the "symphony" of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy. Considerable attention within the context of tumor angiogenesis should focus not only on the ECs, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here, we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation, and angiogenesis to tumor progression. Here, we review the data in the literature and seek to identify the "conductors" of this "orchestra." We also suggest that interrupting the immune → inflammation → angiogenesis → tumor progression process can delay or prevent tumor insurgence and malignant disease.
Collapse
Affiliation(s)
- Antonino Bruno
- Scientific and Technology Pole, IRCCS MultiMedica , Milan , Italy
| | - Arianna Pagani
- Department of Biotechnology and Life Sciences, University of Insubria , Varese , Italy
| | - Laura Pulze
- Department of Biotechnology and Life Sciences, University of Insubria , Varese , Italy
| | - Adriana Albini
- Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova , Reggio Emilia , Italy
| | - Katiuscia Dallaglio
- Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova , Reggio Emilia , Italy
| | - Douglas M Noonan
- Scientific and Technology Pole, IRCCS MultiMedica , Milan , Italy ; Department of Biotechnology and Life Sciences, University of Insubria , Varese , Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria , Varese , Italy
| |
Collapse
|
94
|
Weiss FU. Pancreatic cancer risk in hereditary pancreatitis. Front Physiol 2014; 5:70. [PMID: 24600409 PMCID: PMC3929831 DOI: 10.3389/fphys.2014.00070] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/04/2014] [Indexed: 12/15/2022] Open
Abstract
Inflammation is part of the body's immune response in order to remove harmful stimuli—like pathogens, irritants or damaged cells—and start the healing process. Recurrent or chronic inflammation on the other side seems a predisposing factor for carcinogenesis and has been found associated with cancer development. In chronic pancreatitis mutations of the cationic trypsinogen (PRSS1) gene have been identified as risk factors of the disease. Hereditary pancreatitis (HP) is a rare cause of chronic pancreatic inflammation with an early onset, mostly during childhood. HP often starts with recurrent episodes of acute pancreatitis and the clinical phenotype is not very much different from other etiologies of the disease. The long-lasting inflammation however generates a tumor promoting environment and represents a major risk factor for tumor development This review will reflect our knowledge concerning the specific risk of HP patients to develop pancreatic cancer.
Collapse
Affiliation(s)
- Frank U Weiss
- Department of Internal Medicine A, University Medicine Greifswald Greifswald, Germany
| |
Collapse
|
95
|
Kronski E, Fiori ME, Barbieri O, Astigiano S, Mirisola V, Killian PH, Bruno A, Pagani A, Rovera F, Pfeffer U, Sommerhoff CP, Noonan DM, Nerlich AG, Fontana L, Bachmeier BE. miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and -2. Mol Oncol 2014; 8:581-95. [PMID: 24484937 DOI: 10.1016/j.molonc.2014.01.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 12/23/2022] Open
Abstract
Chronic inflammation is a major risk factor for the development and metastatic progression of cancer. We have previously reported that the chemopreventive polyphenol Curcumin inhibits the expression of the proinflammatory cytokines CXCL1 and -2 leading to diminished formation of breast and prostate cancer metastases. In the present study, we have analyzed the effects of Curcumin on miRNA expression and its correlation to the anti-tumorigenic properties of this natural occurring polyphenol. Using microarray miRNA expression analyses, we show here that Curcumin modulates the expression of a series of miRNAs, including miR181b, in metastatic breast cancer cells. Interestingly, we found that miR181b down-modulates CXCL1 and -2 through a direct binding to their 3'-UTR. Overexpression or inhibition of miR181b in metastatic breast cancer cells has a significant impact on CXCL1 and -2 and is required for the effect of Curcumin on these two cytokines. miR181b also mediates the effects of Curcumin on inhibition of proliferation and invasion as well as induction of apoptosis. Importantly, over-expression of miR181b in metastatic breast cancer cells inhibits metastasis formation in vivo in immunodeficient mice. Finally, we demonstrated that Curcumin up-regulates miR181b and down-regulates CXCL1 and -2 in cells isolated from several primary human breast cancers. Taken together, these data show that Curcumin provides a simple bridge to bring metastamir modulation into the clinic, placing it in a primary and tertiary preventive, as well as a therapeutic, setting.
Collapse
Affiliation(s)
- Emanuel Kronski
- Institute of Laboratory Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Micol E Fiori
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ottavia Barbieri
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Embryogenesis and Tumorigenesis in Animal Models, IRCCS AOU San Martino-IST National Cancer Research Institute, Genoa, Italy
| | | | - Valentina Mirisola
- Integrated Molecular Pathology, IRCCS AOU San Martino-IST National Cancer Research Institute, Genoa, Italy
| | - Peter H Killian
- Institute of Laboratory Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Antonino Bruno
- Scientific and Technologic Pole, Fondazione Onlus MultiMedica, Milan, Italy
| | - Arianna Pagani
- Scientific and Technologic Pole, Fondazione Onlus MultiMedica, Milan, Italy
| | - Francesca Rovera
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Ulrich Pfeffer
- Integrated Molecular Pathology, IRCCS AOU San Martino-IST National Cancer Research Institute, Genoa, Italy
| | | | - Douglas M Noonan
- Scientific and Technologic Pole, Fondazione Onlus MultiMedica, Milan, Italy; Department of Biotechnologies and Life Sciences, University of Insubria, Varese, Italy
| | - Andreas G Nerlich
- Institute of Pathology, Academic Hospital Munich-Bogenhausen, Munich, Germany
| | - Laura Fontana
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice E Bachmeier
- Institute of Laboratory Medicine, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
96
|
Bruno A, Pagani A, Magnani E, Rossi T, Noonan DM, Cantelmo AR, Albini A. Inflammatory angiogenesis and the tumor microenvironment as targets for cancer therapy and prevention. Cancer Treat Res 2014; 159:401-426. [PMID: 24114493 DOI: 10.1007/978-3-642-38007-5_23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In addition to aberrant transformed cells, tumors are tissues that contain host components, including stromal cells, vascular cells (ECs) and their precursors, and immune cells. All these constituents interact with each other at the cellular and molecular levels, resulting in the production of an intricate and heterogeneous complex of cells and matrix defined as the tumor microenvironment. Several pathways involved in these interactions have been investigated both in pathological and physiological scenarios, and diverse molecules are currently targets of chemotherapeutic and preventive drugs. Many phytochemicals and their derivatives show the ability to inhibit tumor progression, angiogenesis, and metastasis, exerting effects on the tumor microenvironment. In this review, we will outline the principal players and mechanisms involved in the tumor microenvironment network and we will discuss some interesting compounds aimed at interrupting these interactions and blocking tumor insurgence and progression. The considerations provided will be crucial for the design of new preventive approaches to the reduction in cancer risk that need to be applied to large populations composed of apparently healthy individuals.
Collapse
Affiliation(s)
- Antonino Bruno
- Polo Scientifico e Tecnologico, MultiMedica Onlus, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Despite the damaging effect on tissues at a high concentration, it has been gradually established that oxidative stress plays a positive role during angiogenesis. In adults, physiological or pathological angiogenesis is initiated by tissue demands for oxygen and nutrients, resulting in a hypoxia/reoxygenation cycle, which, in turn promotes the formation of reactive oxygen species (ROS). The ROS can be generated either endogenously, through mitochondrial electron transport chain reactions and nicotinamide adenine dinucleotide phosphate oxidase, or exogenously, resulting from exposure to environmental agents, such as ultraviolet or ionizing radiation. In many conditions, ROS promotes angiogenesis, either directly or via the generation of active oxidation products, including peroxidized lipids. The latter lipid metabolites are generated in excess during atherosclerosis, thereby linking atherogenic processes and pathological angiogenesis. Although the main mechanism of oxidative stress-induced angiogenesis involves hypoxia-inducible factor/vascular endothelial growth factor (VEGF) signaling, recent studies have identified several pathways that are VEGF-independent. This review aims to provide a summary of the past and present views on the role of oxidative stress as a mediator and modulator of angiogenesis, and to highlight newly identified mechanisms.
Collapse
|
98
|
Antitumor effects of recombinant antivascular protein ABRaA-VEGF121 combined with IL-12 gene therapy. Arch Immunol Ther Exp (Warsz) 2013; 62:161-8. [PMID: 24220932 PMCID: PMC3950566 DOI: 10.1007/s00005-013-0259-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Development and neoplastic progression strongly rely on tumor microenvironment cells. Various kinds of cells that form such tumor milieu play substantial roles in angiogenesis and immunosuppression. Attempts to inhibit tumor vascularization alter tumor milieu and enhance immune response against the tumor. Anticancer therapeutic strategy bringing together antiangiogenic and immunostimulating agents has emerged as a promising approach. We here investigated whether therapy directed against preexisting vessels, combined with an immunomodulatory factor would be equally effective in arresting tumor growth. To this goal, we investigated the effectiveness of ABRaA-vascular endothelial growth factor isoform 121 (VEGF121), an antivascular drug constructed by us. It is a fusion protein composed of VEGF121, and abrin A chain (translation-inhibiting toxin). We used it in combination with interleukin (IL-12) gene therapy and tried to inhibit B16-F10 melanoma tumor growth. ABRaA-VEGF121 is a chimeric recombinant protein capable of destroying tumor vasculature and triggering necrosis in the vicinity of damaged vessels. IL-12 cytokine, in turn, activates both specific and non-specific immune responses. Our results demonstrate that combination of ABRaA-VEGF121 antivascular agent with immunostimulatory cytokine IL-12 indeed inhibits tumor growth more effectively than either agent alone, leading to complete cure of ca. 20 % mice. Post-therapeutic analysis of tumors excised from mice treated with combination therapy showed decreased numbers of blood microvessels in the tumor microenvironment, lowered numbers of regulatory T lymphocytes, as well as showed higher levels of CD4+ and CD8+ as compared to control mice. It seems that bringing together antivascular strategy and the action of immunostimulating agents indeed inhibits growth of tumors.
Collapse
|
99
|
Schietinger A, Arina A, Liu RB, Wells S, Huang J, Engels B, Bindokas V, Bartkowiak T, Lee D, Herrmann A, Piston DW, Pittet MJ, Lin PC, Zal T, Schreiber H. Longitudinal confocal microscopy imaging of solid tumor destruction following adoptive T cell transfer. Oncoimmunology 2013; 2:e26677. [PMID: 24482750 PMCID: PMC3895414 DOI: 10.4161/onci.26677] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/02/2013] [Indexed: 01/07/2023] Open
Abstract
A fluorescence-based, high-resolution imaging approach was used to visualize longitudinally the cellular events unfolding during T cell-mediated tumor destruction. The dynamic interplay of T cells, cancer cells, cancer antigen loss variants, and stromal cells-all color-coded in vivo-was analyzed in established, solid tumors that had developed behind windows implanted on the backs of mice. Events could be followed repeatedly within precisely the same tumor region-before, during and after adoptive T cell therapy-thereby enabling for the first time a longitudinal in vivo evaluation of protracted events, an analysis not possible with terminal imaging of surgically exposed tumors. T cell infiltration, stromal interactions, and vessel destruction, as well as the functional consequences thereof, including the elimination of cancer cells and cancer cell variants were studied. Minimal perivascular T cell infiltrates initiated vascular destruction inside the tumor mass eventually leading to macroscopic central tumor necrosis. Prolonged engagement of T cells with tumor antigen-crosspresenting stromal cells correlated with high IFNγ cytokine release and bystander elimination of antigen-negative cancer cells. The high-resolution, longitudinal, in vivo imaging approach described here will help to further a better mechanistic understanding of tumor eradication by T cells and other anti-cancer therapies.
Collapse
Affiliation(s)
| | - Ainhoa Arina
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Rebecca B Liu
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Sam Wells
- Department of Physiology and Biophysics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Jianhua Huang
- Department of Radiation Oncology and The Vanderbilt-Ingram Cancer Center; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Boris Engels
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Vytas Bindokas
- Integrated Microscopy Core; The University of Chicago; Chicago, IL USA
| | - Todd Bartkowiak
- Department of Immunology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - David Lee
- School of Medicine; The University of Chicago; Chicago, IL USA
| | - Andreas Herrmann
- Departments of Cancer Immunotherapeutics & Tumor Immunology; City of Hope; Duarte, CA USA
| | - David W Piston
- Department of Physiology and Biophysics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Mikael J Pittet
- Center for Systems Biology; Massachusetts General Hospital and Harvard Medical School; Boston, MA USA
| | - P Charles Lin
- Department of Radiation Oncology and The Vanderbilt-Ingram Cancer Center; Vanderbilt University School of Medicine; Nashville, TN USA ; Center for Cancer Research; National Cancer Institute, NIH; Frederick, MD USA
| | - Tomasz Zal
- Department of Immunology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Hans Schreiber
- Department of Pathology; The University of Chicago; Chicago, IL USA
| |
Collapse
|
100
|
The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 2013; 15:133-42. [PMID: 23441128 DOI: 10.1593/neo.121758] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/05/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment can polarize innate immune cells to a proangiogenic phenotype. Decidual natural killer (dNK) cells show an angiogenic phenotype, yet the role for NK innate lymphoid cells in tumor angiogenesis remains to be defined. We investigated NK cells from patients with surgically resected non-small cell lung cancer (NSCLC) and controls using flow cytometric and functional analyses. The CD56(+)CD16(-) NK subset in NSCLC patients, which represents the predominant NK subset in tumors and a minor subset in adjacent lung and peripheral blood, was associated with vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and interleukin-8 (IL-8)/CXCL8 production. Peripheral blood CD56(+)CD16(-) NK cells from patients with the squamous cell carcinoma (SCC) subtype showed higher VEGF and PlGF production compared to those from patients with adenocarcinoma (AdC) and controls. Higher IL-8 production was found for both SCC and AdC compared to controls. Supernatants derived from NSCLC CD56(+)CD16(-) NK cells induced endothelial cell chemotaxis and formation of capillary-like structures in vitro, particularly evident in SCC patients and absent from controls. Finally, exposure to transforming growth factor-β(1) (TGFβ(1)), a cytokine associated with dNK polarization, upregulated VEGF and PlGF in peripheral blood CD56(+)CD16(-) NK cells from healthy subjects. Our data suggest that NK cells in NSCLC act as proangiogenic cells, particularly evident for SCC and in part mediated by TGFβ(1).
Collapse
|