51
|
Wajant H. The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol 2014; 170:748-64. [PMID: 23957828 DOI: 10.1111/bph.12337] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumour necrosis factor (TNF) receptor family that is induced in a variety of cell types in situations of tissue injury. Fn14 becomes activated by TNF-like weak inducer of apoptosis (TWEAK), a typical member of the TNF ligand family. TWEAK is constitutively expressed by monocytes and some tumour cell lines and also shows cytokine inducible expression in various other cell types. Fn14 activation results in stimulation of signalling pathways culminating in the activation of NFκB transcription factors and various MAPKs but might also trigger the PI3K/Akt pathway and GTPases of the Rho family. In accordance with its tissue damage-associated expression pattern and its pleiotropic proinflammatory signalling capabilities, the TWEAK-Fn14 system has been implicated in a huge number of pathologies. The use of TWEAK- and Fn14-knockout mice identified the TWEAK-Fn14 system as a crucial player in muscle atrophy, cerebral ischaemia, kidney injury, atherosclerosis and infarction as well as in various autoimmune scenarios including experimental autoimmune encephalitis, rheumatoid arthritis and inflammatory bowel disease. Moreover, there is increasing preclinical evidence that Fn14 targeting is a useful option in tumour therapy. Based on a discussion of the signalling capabilities of TWEAK and Fn14, this review is focused on two major issues. On the one hand, on the molecular and cellular basis of the TWEAK/Fn14-related pathological outcomes in the aforementioned diseases and on the other hand, on the preclinical experience that have been made so far with TWEAK and Fn14 targeting drugs.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) cytokine has been linked to kidney injury by functional studies in experimental animals, and has biomarker potential in kidney disease. RECENT FINDINGS TWEAK was known to promote tubular cell injury and kidney inflammation. Recent studies have expanded these observations, identifying additional targets of TWEAK relevant to kidney injury. Thus, TWEAK upregulates the chemokine and cholesterol scavenger receptor CXCL16 and downregulates the antiaging and antifibrotic molecule Klotho in tubular cells. Furthermore, fibrogenic TWEAK actions on renal fibroblasts were described. TWEAK or factor-inducible molecule 14 targeting decreased the kidney fibrosis resulting from immune and nonimmune kidney injury induced by transient tubular or glomerular insults or by persistent urinary tract obstruction. TWEAK might also contribute to the link between chronic kidney disease and kidney cancer, as suggested by its role in other genitourinary cancers. Progress has also been made in TWEAK targeting. A phase I clinical trial showed that TWEAK targeting is well tolerated in humans, and an ongoing trial is exploring efficacy in lupus nephritis. Nanomolecules and inhibitors of epidermal growth factor receptor pathway may also protect from the adverse effects of TWEAK in the kidney. SUMMARY These findings suggest that TWEAK targeting has clinical potential in kidney injury of immune and nonimmune origin.
Collapse
|
53
|
The osteoprotegerin/tumor necrosis factor related apoptosis-inducing ligand axis in the kidney. Curr Opin Nephrol Hypertens 2014; 23:69-74. [PMID: 24247823 DOI: 10.1097/01.mnh.0000437611.42417.7a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a cytokine belonging to the TNF superfamily. TRAIL may modulate cell survival and proliferation through interaction with two different receptors, TRAIL-R1 and TRAIL-R2. The actions of TRAIL are regulated by three decoy receptors, TRAIL-R3, TRAIL-R4 and osteoprotegerin (OPG). There is evidence that both TRAIL and OPG are expressed by renal cells. The OPG/TRAIL axis has been recently linked to the pathogenesis of renal damage and, in particular, diabetic nephropathy. RECENT FINDINGS In patients with kidney diseases, serum TRAIL and OPG levels are increased in parallel and are significantly associated with each other. In diabetic nephropathy, the renal expression of TRAIL and OPG is elevated, and in tubular cells proinflammatory cytokines enhance TRAIL expression. Additionally, a high-glucose microenvironment sensitizes tubular cells to apoptosis induced by TRAIL, whereas OPG counteracts the actions of TRAIL in cultured cells. SUMMARY It seems that the expression and levels of TRAIL and OPG at serum and kidney levels are crucial for the pathogenesis of kidney diseases, and in particular diabetic nephropathy. Although further studies are necessary to clarify the exact role of the OPG/TRAIL axis in the kidney, this system seems to hold promise to provide therapeutic approaches for the management of renal damage. VIDEO ABSTRACT AVAILABLE See the Video Supplementary Digital Content 1 (http://links.lww.com/CONH/A5).
Collapse
|
54
|
Abstract
Experimental and human studies have shown that proteinuria contributes to the progression of renal disease. Overexposure to filtered proteins promotes the expression and release of chemokines by tubular epithelial cells, thus leading to inflammatory cell recruitment and renal impairment. This review focuses on recent progress in cellular and molecular understanding of the role of chemokines in the pathogenesis of proteinuria-induced renal injury, as well as their clinical implications and therapeutic potential.
Collapse
|
55
|
Bertin D, Stephan D, Khrestchatisky M, Desplat-Jégo S. Is TWEAK a Biomarker for Autoimmune/Chronic Inflammatory Diseases? Front Immunol 2013; 4:489. [PMID: 24409182 PMCID: PMC3873518 DOI: 10.3389/fimmu.2013.00489] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/13/2013] [Indexed: 01/31/2023] Open
Abstract
The TWEAK/Fn14 pathway is now well-known for its involvement in the modulation of inflammation in various human autoimmune/chronic inflammatory diseases (AICID) including lupus, rheumatoid arthritis, and multiple sclerosis. A panel of data is now available concerning TWEAK expression in tissues or biological fluids of patients suffering from AICID, suggesting that it could be a promising biological marker in these diseases. Evidences from several teams support the hypothesis that blocking TWEAK/Fn14 pathway is an attractive new therapeutic lead in such diseases and clinical trials with anti-TWEAK-blocking antibodies are in progress. In this mini-review we discuss the potential use of TWEAK quantification in AICD management in routine practice and highlight the challenge of standardizing data collection to better estimate the clinical utility of such a biological parameter.
Collapse
Affiliation(s)
- Daniel Bertin
- Aix-Marseille Université, NICN, CNRS, UMR7259 , Marseille , France ; Service d'Immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille , Marseille , France
| | - Delphine Stephan
- Aix-Marseille Université, NICN, CNRS, UMR7259 , Marseille , France
| | | | - Sophie Desplat-Jégo
- Aix-Marseille Université, NICN, CNRS, UMR7259 , Marseille , France ; Service d'Immunologie, Pôle de Biologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille , Marseille , France
| |
Collapse
|
56
|
Cheng E, Armstrong CL, Galisteo R, Winkles JA. TWEAK/Fn14 Axis-Targeted Therapeutics: Moving Basic Science Discoveries to the Clinic. Front Immunol 2013; 4:473. [PMID: 24391646 PMCID: PMC3870272 DOI: 10.3389/fimmu.2013.00473] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/06/2013] [Indexed: 01/25/2023] Open
Abstract
The TNF superfamily member TWEAK (TNFSF12) is a multifunctional cytokine implicated in physiological tissue regeneration and wound repair. TWEAK is initially synthesized as a membrane-anchored protein, but furin cleavage within the stalk region can generate a secreted TWEAK isoform. Both TWEAK isoforms bind to a small cell surface receptor named Fn14 (TNFRSF12A) and this interaction stimulates various cellular responses, including proliferation and migration. Fn14, like other members of the TNF receptor superfamily, is not a ligand-activated protein kinase. Instead, TWEAK:Fn14 engagement promotes Fn14 association with members of the TNFR associated factor family of adapter proteins, which triggers activation of various signaling pathways, including the classical and alternative NF-κB pathways. Numerous studies have revealed that Fn14 gene expression is significantly elevated in injured tissues and in most solid tumor types. Also, sustained Fn14 signaling has been implicated in the pathogenesis of cerebral ischemia, chronic inflammatory diseases, and cancer. Accordingly, several groups are developing TWEAK- or Fn14-targeted agents for possible therapeutic use in patients. These agents include monoclonal antibodies, fusion proteins, and immunotoxins. In this article, we provide an overview of some of the TWEAK/Fn14 axis-targeted agents currently in pre-clinical animal studies or in human clinical trials and discuss two other potential approaches to target this intriguing signaling node.
Collapse
Affiliation(s)
- Emily Cheng
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cheryl L. Armstrong
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebeca Galisteo
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey A. Winkles
- Department of Surgery, Center for Vascular and Inflammatory Diseases and Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
57
|
Poveda J, Tabara LC, Fernandez-Fernandez B, Martin-Cleary C, Sanz AB, Selgas R, Ortiz A, Sanchez-Niño MD. TWEAK/Fn14 and Non-Canonical NF-kappaB Signaling in Kidney Disease. Front Immunol 2013; 4:447. [PMID: 24339827 PMCID: PMC3857575 DOI: 10.3389/fimmu.2013.00447] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/26/2013] [Indexed: 12/27/2022] Open
Abstract
The incidence of acute kidney injury (AKI) and chronic kidney disease (CKD) is increasing. However, there is no effective therapy for AKI and current approaches only slow down, but do not prevent progression of CKD. TWEAK is a TNF superfamily cytokine. A solid base of preclinical data suggests a role of therapies targeting the TWEAK or its receptor Fn14 in AKI and CKD. In particular TWEAK/Fn14 targeting may preserve renal function and decrease cell death, inflammation, proteinuria, and fibrosis in mouse animal models. Furthermore there is clinical evidence for a role of TWEAK in human kidney injury including increased tissue and/or urinary levels of TWEAK and parenchymal renal cell expression of the receptor Fn14. In this regard, clinical trials of TWEAK targeting are ongoing in lupus nephritis. Nuclear factor-kappa B (NF-κB) activation plays a key role in TWEAK-elicited inflammatory responses. Activation of the non-canonical NF-κB pathway is a critical difference between TWEAK and TNF. TWEAK activation of the non-canonical NF-κB pathways promotes inflammatory responses in tubular cells. However, there is an incomplete understanding of the role of non-canonical NF-κB activation in kidney disease and on its contribution to TWEAK actions in vivo.
Collapse
Affiliation(s)
- Jonay Poveda
- Department of Nephrology, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid and IRSIN , Madrid , Spain
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Jung JY, Bae CB, Suh CH. Promising biomarkers for systemic lupus erythematosus. ACTA ACUST UNITED AC 2013; 7:601-13. [DOI: 10.1517/17530059.2013.846323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
59
|
Abujam B, Cheekatla SS, Aggarwal A. Urinary CXCL-10/IP-10 and MCP-1 as markers to assess activity of lupus nephritis. Lupus 2013; 22:614-23. [DOI: 10.1177/0961203313484977] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Objective IP-10 and MCP-1 are pro-inflammatory chemokines which are involved in the immunopathogenesis of lupus nephritis and may thus be useful biomarkers. Methods SLE patients fulfilling ACR 1997 criteria were included. SLEDAI was calculated and blood and urine samples collected. Active lupus was defined as SLEDAI ≥4. Active patients were divided into active renal (proteinuria ≥ 500 mg/day or active sediment in urine) and active non-renal lupus. Patients with active renal lupus were followed until the nephritis became inactive, when a second sample was collected. Serum and urinary levels of MCP-1 and IP-10 (pg/ml) were measured by ELISA. Urinary values were normalized for urinary spot creatinine (in mg/dL. Thus the values were expressed as pg/mg creatinine × 100 creatinine). Results A total of 136 patients with SLE including 78 active (46 active renal and 32 active non-renal) were included. Median age was 25 (10–55) years and SLE duration was 23 (six to 48) months. Both serum (data not shown) and urinary levels of MCP-1 (35.2 (12.7–71.7), 9.4 (4.4–17), p < 0.001) and IP-10 (9.5 (4.4–17.9), 3.9 (1.9–9.3), p < 0.001) were higher in active compared to inactive SLE. However, in active renal compared to active non-renal SLE, there was no difference in serum levels; only urinary levels of MCP-1 (46.2 (19.9–125), 12.7 (5.8–43.9), p < 0.001) and IP-10 (12.5 (5.6–22.7), 5.2 (2.3–12.2), p < 0.05) were higher. On longitudinal follow-up of active renal patients ( n = 24), there was a decrease in urinary levels of MCP-1 and IP-10 ( p = 0.005). On ROC analysis, urinary MCP-1 outperformed C4 and urinary IP-10, but was similar to dsDNA and C3 in differentiating active renal from non-renal SLE. Conclusions Urinary and serum IP-10 and MCP-1 are potentially useful markers of lupus activity; however, only the urinary levels are indicative of renal activity. However, on ROC analysis, they are not better than conventional markers.
Collapse
Affiliation(s)
- B Abujam
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, India
| | - SS Cheekatla
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, India
| | - A Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, India
| |
Collapse
|
60
|
Wen J, Xia Y, Stock A, Michaelson JS, Burkly LC, Gulinello M, Putterman C. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J Autoimmun 2013; 43:44-54. [PMID: 23578591 DOI: 10.1016/j.jaut.2013.03.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/05/2013] [Accepted: 03/05/2013] [Indexed: 01/11/2023]
Abstract
Given the early onset of neuropsychiatric disease and the potential response to immunosuppressive therapy, neuropsychiatric disease is considered a primary disease manifestation in systemic lupus erythematosus (SLE). However, the pathogenesis is not fully understood and optimal treatment has yet to be determined. TWEAK is a TNF family ligand that mediates pleotropic effects through its receptor Fn14, including the stimulation of inflammatory cytokine production by astrocytes, endothelial cells, and other non-hematopeotic cell types, and induction of neuronal death. Furthermore, TWEAK-inducible mediators are implicated in neuropsychiatric lupus. Thus, we hypothesized that the TWEAK/Fn14 pathway may be involved in the pathogenesis of neuropsychiatric SLE. We generated MRL-lpr/lpr (MRL/lpr) mice deficient for Fn14, the sole known signaling receptor for TWEAK. Neuropsychiatric disease was compared in age- and gender-matched MRL/lpr Fn14 wild type (WT) and knockout (KO) mice, using a comprehensive battery of neurobehavioral tests. We found that MRL/lpr Fn14WT mice displayed profound depression-like behavior as seen by increased immobility in a forced swim test and loss of preference for sweetened fluids, which were significantly ameliorated in Fn14KO mice. Similarly, MRL/lpr Fn14WT mice had impaired cognition, and this was significantly improved in Fn14KO mice. To determine the mechanism by which Fn14 deficiency ameliorates neuropsychiatric disease, we assessed the serum levels of autoantibodies and local expression of cytokines in the cortex and hippocampus of lupus mice. No significant differences were found in the serum levels of antibodies to nuclear antigens, or autoantibodies specifically associated with neuropsychiatric disease, between MRL/lpr Fn14WT and KO mice. However, MRL/lpr Fn14KO mice had significantly decreased brain expression of RANTES, C3, and other proinflammatory mediators. Furthermore, MRL/lpr Fn14KO mice displayed improved blood brain barrier integrity. In conclusion, several central manifestations of neuropsychiatric lupus, including depression-like behavior and altered cognition, are normalized in MRL/lpr mice lacking Fn14. Our results are the first to indicate a role for the TWEAK/Fn14 pathway in the pathogenesis of neuropsychiatric lupus, and suggest this ligand-receptor pair as a potential therapeutic target for a common and dangerous disease manifestation.
Collapse
Affiliation(s)
- Jing Wen
- The Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Watson L, Beresford MW. Urine biomarkers in juvenile-onset SLE nephritis. Pediatr Nephrol 2013; 28:363-74. [PMID: 22588674 DOI: 10.1007/s00467-012-2184-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 01/18/2023]
Abstract
Over 80 % of patients with juvenile-onset systemic lupus erythematosus will have renal involvement compared to 40 % with adult-onset disease. Up to 44 % of children who do have lupus nephritis (LN) progress to renal failure in early adulthood. Improved methods of detecting onset of LN would allow earlier treatment, which may prevent irreversible renal scarring and a decline in renal function. Current conventional markers of disease activity fail to adequately predict renal lupus flares and include proteinuria, complement levels, anti-double-stranded DNA antibodies and serum creatinine concentrations. Standardized histological classification is currently the gold standard for diagnosing and classifying LN, but its invasive nature limits routine use for monitoring, especially in a childhood population. Novel biomarkers need to be sensitive and specific-and preferably non-invasive and cost-effective. The most promising biomarkers in juvenile-onset LN include urinary neutrophil gelatinase associated lipocalin, monocyte chemoattractant protein 1 and transforming growth factor-beta, although many others have been identified and are under investigation. No one biomarker yet discovered is unique to LN, indicating an overlap in disease pathophysiology. It is likely that a combination of biomarkers will be required for assessing disease flare detection, response to treatment and prognostic information. Potential biomarkers require longitudinal validation in large paediatric, prospective cohorts to assess their ability to act as clinically useful adjuncts.
Collapse
Affiliation(s)
- Louise Watson
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Eaton Road, Liverpool L12 2AP, UK.
| | | |
Collapse
|
62
|
Moreno JA, Moreno S, Rubio-Navarro A, Sastre C, Blanco-Colio LM, Gómez-Guerrero C, Ortiz A, Egido J. Targeting chemokines in proteinuria-induced renal disease. Expert Opin Ther Targets 2012; 16:833-45. [PMID: 22793382 DOI: 10.1517/14728222.2012.703657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Proteinuria is a common finding in glomerular diseases that contributes to the progression of chronic kidney injury. Tubular cells reabsorb the excess of albumin and other plasma proteins from the tubular lumen, triggering several pathophysiologic responses, such as overexpression of fibrogenic mediators and inflammatory chemokines. Chemokines are implicated both in the recruitment of inflammatory infiltrate and in a number of physiological and pathological processes related to protein overload. AREAS COVERED In recent years, the specific chemokines and their receptors and the intracellular signaling pathways involved in proteinuria-induced renal damage have been identified. This review provides an overview of the role of chemokines and their receptors in proteinuria-related renal disease and summarizes novel therapeutic approaches to restrain the progression of renal damage. EXPERT OPINION Inhibition of chemokine-induced biological activities is a promising therapeutic strategy in proteinuric disorders. Neutralizing antibodies and small organic molecules targeting chemokines and chemokine receptors have been proven to prevent inflammation and renal damage in experimental models of protein overload. Some of these compounds are currently being tested in human clinical trials.
Collapse
Affiliation(s)
- Juan Antonio Moreno
- Department of Nephrology, IIS-Fundación Jiménez Díaz, Autonoma University, Avda. Reyes Católicos 2, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
The complexity of the BAFF TNF-family members: Implications for autoimmunity. J Autoimmun 2012; 39:189-98. [DOI: 10.1016/j.jaut.2012.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/20/2012] [Indexed: 11/30/2022]
|
64
|
Abstract
In recent years, biomarkers have shown significant promise in helping decision-making in drug development. Systemic lupus erythematosus (SLE) is a complicated and highly heterogeneous disease that involves all organs. Only one drug, belimumab, has been approved by the US Food and Drug Administration to treat SLE during the last 50 years and there remains a high unmet medical need to develop new and effective therapies to benefit different patient populations in SLE. Due to the extreme heterogeneity of the disease and the complex and rigorous process to validate individual biomarkers, there is currently a very limited number of consensus biomarkers to aid the treatment decision-making in SLE. This review provides a snapshot of some biomarkers in the field that have the potential to make a big impact on drug development and/or treatment decisions by physicians. These include: type I interferon (IFN) gene signature as a pharmacodynamic marker and potential predictive marker for anti-type I IFN therapy; anti-double stranded DNA as a disease marker and potential predictive marker for flares; the complements and neutrophil signatures as disease marker of SLE; and TWEAK (a tumor necrosis factor family member produced by macrophages) and MCP-1 as potential markers to predict renal flares. Most of these markers need carefully planned and prospective studies with high statistical power to confirm their respective utilities. With the development and application of powerful new technologies, more successful biomarkers will emerge in SLE. This could improve the management of patients in the clinic and facilitate the development of novel and more effective therapeutics for this difficult-to-treat disease.
Collapse
|
65
|
Michaelson JS, Wisniacki N, Burkly LC, Putterman C. Role of TWEAK in lupus nephritis: a bench-to-bedside review. J Autoimmun 2012; 39:130-42. [PMID: 22727560 DOI: 10.1016/j.jaut.2012.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 01/17/2023]
Abstract
There is significant unmet need in the treatment of lupus nephritis (LN) patients. In this review, we highlight the role of the TWEAK/Fn14 pathway in mediating key pathologic processes underlying LN involving both glomerular and tubular injury, and thus the potential for renal protection via blockade of this pathway. The specific pathological mechanisms of TWEAK - namely promoting inflammation, renal cell proliferation and apoptosis, vascular activation and fibrosis - are described, with supporting data from animal models and in vitro systems. Furthermore, we detail the translational relevance of these mechanisms to clinical readouts in human LN. We present the opportunity for an anti-TWEAK therapeutic as a renal protective agent to improve efficacy relative to current standard of care treatments hopefully without increased safety risk, and highlight a phase II trial with BIIB023, an anti-TWEAK neutralizing antibody, designed to assess efficacy in LN patients. Taken together, targeting the TWEAK/Fn14 axis represents a potential new therapeutic paradigm for achieving renal protection in LN patients.
Collapse
|
66
|
Activity of Childhood Lupus Nephritis is Linked to Altered T Cell and Cytokine Homeostasis. J Clin Immunol 2012; 32:477-87. [DOI: 10.1007/s10875-011-9637-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
67
|
Carmona-Fernandes D, Santos MJ, Perpétuo IP, Fonseca JE, Canhão H. Soluble receptor activator of nuclear factor κB ligand/osteoprotegerin ratio is increased in systemic lupus erythematosus patients. Arthritis Res Ther 2011; 13:R175. [PMID: 22027240 PMCID: PMC3308110 DOI: 10.1186/ar3500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/03/2011] [Accepted: 10/25/2011] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) patients have lower bone mineral density and increased fracture risk when compared with healthy individuals, due to distinct factors and mechanisms. Bone remodeling is a tightly orchestrated process dependent on several factors, including the balance between receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG). Our aim was to assess serum OPG and soluble RANKL (sRANKL) levels as well as sRANKL/OPG ratio in female SLE patients and compare it with female controls. METHODS We have evaluated 103 SLE patients and 114 healthy controls, all Caucasian females. All participants underwent a clinical and laboratory evaluation. sRANKL and OPG were quantified in serum by ELISA based methods. sRANKL, OPG and sRANKL/OPG ratio levels were compared between SLE patients and age, sex and race matched healthy controls. For SLE patients, a multivariate analysis was performed, to find the possible predictors of the changes in sRANKL, OPG and sRANKL/OPG ratio levels. RESULTS Although sRANKL levels did not differ between the two groups, serum OPG was lower in SLE patients (P < 0.001). This led to an increased sRANKL/OPG ratio (P = 0.010) in the patients' group.The multivariate analysis was performed considering age and other clinical and laboratorial potential confounders for these variations in the SLE patients group. We have showed that age (P = 0.001) and levels of anti-Sm antibodies (P = 0.016) were independent predictors of sRANKL/OPG ratio variations in SLE patients. No relationship with therapy or disease activity measured by SLEDAI2K was found. CONCLUSIONS These results are suggestive of increased osteoclastic stimuli driven by the SLE disease mechanisms.
Collapse
Affiliation(s)
- Diana Carmona-Fernandes
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av, Prof, Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | | | | | |
Collapse
|