51
|
Liu Z, Han Y, Zhao F, Zhao Z, Tian J, Jia K. Nobiletin suppresses high-glucose-induced inflammation and ECM accumulation in human mesangial cells through STAT3/NF-κB pathway. J Cell Biochem 2018; 120:3467-3473. [PMID: 30499124 DOI: 10.1002/jcb.27621] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is a complication of chronic diabetes and the main cause of end-stage renal disease all over the world. Inflammation and extracellular matrix (ECM) accumulation play important roles in the pathogenesis of DN. Evidence suggested that nobiletin acts anti-inflammatory role and plays a critical role in diabetes; however, its role in DN remains unclear. In the current study, we promulgated the nobiletin involved in high-glucose-induced glomerular mesangial cell inflammation and ECM accumulation. Nobiletin treatment significantly abrogated high-glucose-induced glomerular mesangial cell proliferation. Nobiletin treatment markedly suppressed inflammation cytokine secretion, including interleukin (IL)-1β, IL-6, tumor necrosis factor α, and monocyte chemoattractant protein 1 in high-glucose-induced glomerular mesangial cell. Also, exposed nobiletin to high-glucose-induced glomerular mesangial cell considerably reduced ECM accumulation through inhibited ECM-associated protein type 4 collagen and fibronectin expression. Furthermore, nobiletin treatment abolished nuclear factor κB (NF-κB) pathway activation through signal transducer and activator of transcription 3 (STAT3) inhibition. Overexpression STAT3 reversed the effects of nobiletin on high-glucose-induced glomerular mesangial cell proliferation, inflammation, ECM accumulation, and NF-κB pathway activation. Hence, our results suggest that nobiletin play roles in high-glucose-induced glomerular mesangial cells through inhibiting inflammation and ECM accumulation, and the STAT3/NF-κB pathway was involved in the function of nobiletin.
Collapse
Affiliation(s)
- Zhenzhou Liu
- Department of Integrated Chinese and Western Medicine II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yanru Han
- Department of Integrated Chinese and Western Medicine II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Fucheng Zhao
- Department of Integrated Chinese and Western Medicine II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Zhenxia Zhao
- Department of Integrated Chinese and Western Medicine II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Junlei Tian
- Department of Neurology IV, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Kui Jia
- Department of Integrated Chinese and Western Medicine II, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
52
|
Peng Z, Li X, Xing D, Du X, Wang Z, Liu G, Li X. Nobiletin alleviates palmitic acid‑induced NLRP3 inflammasome activation in a sirtuin 1‑dependent manner in AML‑12 cells. Mol Med Rep 2018; 18:5815-5822. [DOI: 10.3892/mmr.2018.9615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/11/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhicheng Peng
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Xiaobing Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Dongmei Xing
- Department of Basic Veterinary Medicine, Animal Medicine College, Hunan�Agriculture University, Changsha, Hunan 410128, P.R. China
| | - Xiliang Du
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Zhe Wang
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Guowen Liu
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Xinwei Li
- Key Laboratory of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, P.R. China
| |
Collapse
|
53
|
Zuo G, Ren X, Qian X, Ye P, Luo J, Gao X, Zhang J, Chen S. Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy. J Cell Physiol 2018; 234:1925-1936. [PMID: 30067872 DOI: 10.1002/jcp.27070] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/25/2018] [Indexed: 01/01/2023]
Abstract
Inflammation plays a critical role in the development of diabetic cardiomyopathy (DCM), which has been identified as a major predisposing factor for heart failure in diabetic patients. Previous studies indicated that ivabradine (a specific agent for heart rate [HR] reduction) has anti-inflammatory properties, but its role in DCM remains unknown. This study investigated whether ivabradine exerts a therapeutic effect in DCM. C57BL/6J mice were injected intraperitoneally with streptozotocin (STZ) to induce diabetes; then administered with ivabradine or saline (control). After 12 weeks, the surviving mice were analyzed to determine the cardioprotective effect of ivabradine against DCM. Although treatment with ivabradine did not affect blood glucose levels, it attenuated tumor necrosis factor-α, interleukin-1β, and interleukin-6 messenger RNA (mRNA) expression, inhibited c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) activation, reduced histological abnormalities, myocardial apoptosis and collagen deposition, and improved cardiac function in the diabetic mice. Interestingly, the anti-inflammatory and antiapoptotic properties of ivabradine, but not its inhibitory effect on JNK and p38 MAPK, were observed in high-glucose-cultured neonatal rat ventricular cardiomyocytes. Attenuating inflammation and apoptosis via intramyocardial injection of lentiviruses carrying short hairpin RNA targeting JNK and p38 MAPK validated that the anti-inflammatory and antiapoptotic effects of ivabradine were partly attributed to JNK and p38 MAPK inactivation in diabetic mice. In summary, these data indicate that ivabradine-mediated improvement of cardiac function in STZ-induced diabetic mice may be partly attributed to inhibition of JNK/p38 MAPK-mediated inflammation and apoptosis, which is dependent on the reduction in HR.
Collapse
Affiliation(s)
- Guangfeng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Ren
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xuesong Qian
- Department of Cardiology, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of General Clinical Research Center, Nanjing First Hospital, Nanjing, China
| | - Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Basic Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of General Clinical Research Center, Nanjing First Hospital, Nanjing, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
54
|
Li ZR, Yang L, Zhen J, Zhao Y, Lu ZN. Nobiletin protects PC12 cells from ERS-induced apoptosis in OGD/R injury via activation of the PI3K/AKT pathway. Exp Ther Med 2018; 16:1470-1476. [PMID: 30116396 DOI: 10.3892/etm.2018.6330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Nobiletin (NOB) possesses multiple pharmacological effects, but its anti-apoptotic property has acquired a great deal of attention. Endoplasmic reticulum (ER) stress (ERS)-induced apoptosis acts as the pivotal aetiology in neuronal oxygen-glucose deprivation and reoxygenation (OGD/R) injury. The aim of this study focused on whether NOB exerts neuro-protective effects on OGD/R injury by repressing ERS-induced apoptosis. The PC12 neuronal cell line was subjected to 4 h OGD and 24 h reoxygenation following NOB treatment. A PI3K/AKT inhibitor (LY294002) was added during the mechanistic experiments. Cell viability, lactate dehydrogenase (LDH) release and apoptosis were determined. Western blotting was used to measure protein expression levels. The results showed that OGD/R caused neuronal damageas exhibited by the increase in LDH release and the reduction of cellular viability. Moreover, ERS-induced apoptosis was markedly stimulated by OGD/R in PC12 cells, as evidenced by the elevation in the apoptotic rate and protein levels of C/EBP homologous protein/glucose-regulated protein-78. However, NOB administration significantly reversed neuronal damage and the ERS-induced apoptosis in response to OGD/R injury. Mechanistic detections showed that the neuron-favorable and ERS-repressing contributions of NOB were, in part, a result of the activation of the PI3K/AKT pathway, which was validated by a specific PI3K/AKT inhibitor (LY294002). Therefore, NOB protects PC12 cells from ERS-induced apoptosis in OGD/R injury mainly through enhancement of the PI3K/AKT pathway, which may provide a novel therapeutic avenue for the prevention of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zi-Ru Li
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Yang
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin Zhen
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Zhao
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zu-Neng Lu
- Department of Internal Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
55
|
Shakeri H, Lemmens K, Gevaert AB, De Meyer GRY, Segers VFM. Cellular senescence links aging and diabetes in cardiovascular disease. Am J Physiol Heart Circ Physiol 2018; 315:H448-H462. [PMID: 29750567 DOI: 10.1152/ajpheart.00287.2018] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is a powerful independent risk factor for cardiovascular diseases such as atherosclerosis and heart failure. Concomitant diabetes mellitus strongly reinforces this effect of aging on cardiovascular disease. Cellular senescence is a fundamental mechanism of aging and appears to play a crucial role in the onset and prognosis of cardiovascular disease in the context of both aging and diabetes. Senescent cells are in a state of cell cycle arrest but remain metabolically active by secreting inflammatory factors. This senescence-associated secretory phenotype is a trigger of chronic inflammation, oxidative stress, and decreased nitric oxide bioavailability. A complex interplay between these three mechanisms results in age- and diabetes-associated cardiovascular damage. In this review, we summarize current knowledge on cellular senescence and its secretory phenotype, which might be the missing link between aging and diabetes contributing to cardiovascular disease.
Collapse
Affiliation(s)
- Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium
| | - Katrien Lemmens
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium
| | - Andreas B Gevaert
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium.,Laboratory for Cellular and Molecular Cardiology, Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
56
|
Abstract
PURPOSE Inflammatory bowel disease (IBD) shows increasing prevalence over the last years. We propose that anti-inflammatory plant substances could be used as additional or alternative agents with good compliance in prevention and/or therapy of IBD and its complication intestinal fibrosis. We could recently show that the citrus flavonoid nobiletin acts anti-inflammatory on activation of intestinal mast cells. Here, we analysed the effects of nobiletin on inflammation and fibrosis in IL-10-/- colitis. METHODS IL-10-/- and wild-type (WT) mice were orally treated with/without vehicle or nobiletin. Clinical symptoms of colitis and disease activity index (DAI) were assessed, and colon tissue was analysed for tissue damage, cellular infiltration, bowel wall thickness, mast cell number and degranulation, as well as collagen deposition as marker for fibrosis. Human intestinal fibroblasts (hiFB) were treated with nobiletin and the expression of collagen and pro-inflammatory cytokines was measured. RESULTS Nobiletin treatment of IL-10-/- mice resulted in a reduction of clinical colitis symptoms and a longer survival time. In addition, histological scores of colitis were reduced compared to control groups. Mast cell number and degranulation was lower in nobiletin treated IL-10-/- mice, and correlated positively with DAI. As well, fibrotic marker of collagen deposition was reduced by nobiletin. In hiFB, the expression of collagen as well as of pro-inflammatory cytokines IL-6, TNF and CCL2 was down-regulated by nobiletin treatment. CONCLUSIONS Nobiletin decreases inflammatory symptoms and markers in murine colitis as well as fibrotic collagen deposition and expression. Thus, nobiletin could be a potential new agent in therapy of chronic colitis.
Collapse
|
57
|
Zhang N, Wei WY, Li LL, Hu C, Tang QZ. Therapeutic Potential of Polyphenols in Cardiac Fibrosis. Front Pharmacol 2018; 9:122. [PMID: 29497382 PMCID: PMC5818417 DOI: 10.3389/fphar.2018.00122] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 01/02/2023] Open
Abstract
Cardiac fibrosis, in response to injury and stress, is central to a broad constellation of cardiovascular diseases. Fibrosis decreases myocardial wall compliance due to extracellular matrix (ECM) accumulation, leading to impaired systolic and diastolic function and causing arrhythmogenesis. Although some conventional drugs, such as β-blockers and renin-angiotensin-aldosterone system (RAAS) inhibitors, have been shown to alleviate cardiac fibrosis in clinical trials, these traditional therapies do not tend to target all the fibrosis-associated mechanisms, and do not hamper the progression of cardiac fibrosis in patients with heart failure. Polyphenols are present in vegetables, fruits, and beverages and had been proposed as attenuators of cardiac fibrosis in different models of cardiovascular diseases. Together with results found in the literature, we can show that some polyphenols exert anti-fibrotic and myocardial protective effects by mediating inflammation, oxidative stress, and fibrotic molecular signals. This review considers an overview of the mechanisms of cardiac fibrosis, illustrates their involvement in different animal models of cardiac fibrosis treated with some polyphenols and projects the future direction and therapeutic potential of polyphenols on cardiac fibrosis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ling-Li Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
58
|
Roles and Mechanisms of Herbal Medicine for Diabetic Cardiomyopathy: Current Status and Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8214541. [PMID: 29204251 PMCID: PMC5674516 DOI: 10.1155/2017/8214541] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Diabetic cardiomyopathy is one of the major complications among patients with diabetes mellitus. Diabetic cardiomyopathy (DCM) is featured by left ventricular hypertrophy, myocardial fibrosis, and damaged left ventricular systolic and diastolic functions. The pathophysiological mechanisms include metabolic-altered substrate metabolism, dysfunction of microvascular, renin-angiotensin-aldosterone system (RAAS) activation, oxidative stress, cardiomyocyte apoptosis, mitochondrial dysfunction, and impaired Ca2+ handling. An array of molecules and signaling pathways such as p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), and extracellular-regulated protein kinases (ERK) take roles in the pathogenesis of DCM. Currently, there was no remarkable effect in the treatment of DCM with application of single Western medicine. The myocardial protection actions of herbs have been gearing much attention. We present a review of the progress research of herbal medicine as a potential therapy for diabetic cardiomyopathy and the underlying mechanisms.
Collapse
|
59
|
Namkoong S, Sung J, Yang J, Choi Y, Jeong HS, Lee J. Nobiletin Attenuates the Inflammatory Response Through Heme Oxygenase-1 Induction in the Crosstalk Between Adipocytes and Macrophages. J Med Food 2017; 20:873-881. [DOI: 10.1089/jmf.2017.3921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Seulgi Namkoong
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeehye Sung
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jinwoo Yang
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Youngmin Choi
- Department of Agrofood Resources, National Institute of Agricultural Science, Wanju, Korea
| | - Heon Sang Jeong
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
60
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
61
|
Wu X, Zheng D, Qin Y, Liu Z, Zhang G, Zhu X, Zeng L, Liang Z. Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux. Biochem Biophys Res Commun 2017; 492:262-268. [PMID: 28830813 DOI: 10.1016/j.bbrc.2017.08.064] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Our previous study showed that autophagy flux was impaired with sustained heart ischemia, which exacerbated adverse cardiac remodeling after acute myocardial infarction (AMI). Here we investigated whether Nobiletin, a citrus polymethoxylated flavonoids, could restore the autophagy flux and improve cardiac prognosis after AMI. AMI was induced by ligating left anterior descending (LAD) coronary artery in rats. Nobiletin improved the post-infarct cardiac dysfunction significantly and attenuated adverse cardiac remodeling. Meanwhile, Nobiletin protected H9C2 cells against oxygen glucose deprivation (OGD) in vitro. The impaired autophagy flux due to ischemia was ameliorated after Nobiletin treatment by testing the autophagy substrate, LC3BⅡ and P62 protein level both in vivo and in vitro. GFP-mRFP-LC3 adenovirus transfection also supported that Nobiletin restored the impaired autophagy flux. Specifically, the autophagy flux inhibitor, chloroquine, but not 3 MA, alleviated Nobiletin-mediated protection against OGD. Notably, Nobiletin does not affect the activation of classical upstream autophagy signaling pathways. However, Nobiletin increased the lysosome acidation which also supported that Nobiletin accelerated autophagy flux. Taken together, our findings suggested that Nobiletin restored impaired autophagy flux and protected against acute myocardial infarction, suggesting a potential role of autophagy flux in Nobiletin-mediated myocardial protection.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Dechong Zheng
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Yuyan Qin
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Zumei Liu
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, PR China
| | - Guiping Zhang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Xiaoyan Zhu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Lihuan Zeng
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Zhenye Liang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| |
Collapse
|
62
|
Prevention of Streptozotocin-Induced Diabetic Nephropathy by MG132: Possible Roles of Nrf2 and I κB. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3671751. [PMID: 28373900 PMCID: PMC5360973 DOI: 10.1155/2017/3671751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
Abstract
Our previous study showed that proteasomal inhibitor MG132 can prevent diabetic nephropathy (DN) along with upregulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The present study was to investigate whether MG132 can prevent DN in wild-type and Nrf2-KO mice. Type 1 diabetes was induced in wild-type and Nrf2-KO mice by multiple low doses of streptozotocin. Two weeks after streptozotocin injection, both wild-type and Nrf2-KO mice were randomly divided into four groups: control, MG132, DM, and DM/MG132. MG132 (10 μg/kg/day) or vehicle was administered intraperitoneally for 4 months. Renal function, morphology, and biochemical changes were measured after 4-month treatment with MG132. MG132 treatment suppressed proteasomal activity in the two genotypes. In wild-type mice, MG132 attenuated diabetes-induced renal dysfunction, fibrosis, inflammation, and oxidative damage along with increased Nrf2 and IκB expression. Deletion of Nrf2 gene resulted in a partial, but significant attenuation of MG132 renal protection in Nrf2-KO mice compared with wild-type mice. MG132-increased IκB expression was not different between wild-type and Nrf2-KO mice. This work indicates that MG132 inhibits diabetes-increased proteasomal activity, resulting in Nrf2 and IκB upregulation and renal protection, which could be used as a strategy to prevent diabetic nephropathy.
Collapse
|
63
|
Shinozaki A, Misawa K, Ikeda Y, Haraguchi A, Kamagata M, Tahara Y, Shibata S. Potent Effects of Flavonoid Nobiletin on Amplitude, Period, and Phase of the Circadian Clock Rhythm in PER2::LUCIFERASE Mouse Embryonic Fibroblasts. PLoS One 2017; 12:e0170904. [PMID: 28152057 PMCID: PMC5289493 DOI: 10.1371/journal.pone.0170904] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are natural polyphenols that are widely found in plants. The effects of flavonoids on obesity and numerous diseases such as cancer, diabetes, and Alzheimer’s have been well studied. However, little is known about the relationships between flavonoids and the circadian clock. In this study, we show that continuous or transient application of flavonoids to the culture medium of embryonic fibroblasts from PER2::LUCIFERASE (PER2::LUC) mice induced various modifications in the circadian clock amplitude, period, and phase. Transient application of some of the tested flavonoids to cultured cells induced a phase delay of the PER2::LUC rhythm at the down slope phase. In addition, continuous application of the polymethoxy flavonoids nobiletin and tangeretin increased the amplitude and lengthened the period of the PER2::LUC rhythm. The nobiletin-induced phase delay was blocked by co-treatment with U0126, an ERK inhibitor. In summary, among the tested flavonoids, polymethoxy flavones increased the amplitude, lengthened the period, and delayed the phase of the PER2::LUC circadian rhythm. Therefore, foods that contain polymethoxy flavones may have beneficial effects on circadian rhythm disorders and jet lag.
Collapse
Affiliation(s)
- Ayako Shinozaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Kenichiro Misawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
64
|
Abstract
Macrovascular complications of diabetes, including diabetic cardiovascular disease (CVD), occur through a number of hyperglycaemia-induced mechanisms that include generation of oxidative stress, accumulation of advanced glycation end-products (AGE) and activation of protein kinase C (PKC). Cardiac oxidative stress is associated with increased cardiac fibrosis and hypertrophy, and reduced cardiac performance and contractility, leading to severe cardiac dysfunction and potentially fatal cardiac events. It occurs under conditions of excessive synthesis of reactive oxygen species (ROS). The ensuing activation of transcription factors such as nuclear factor-κB produces inflammation, fibrosis, hypertrophy and further oxidative stress, which itself causes DNA and membrane damage. This review summarises the mechanisms that generate ROS in the diabetic heart: mitochondrial electron leakage, activity of ROS-generating enzymes such as NADPH oxidase, xanthine oxidase and 12/15 lipoxygenase, uncoupling of nitric oxide synthase, accumulation of AGEs and activation of PKC. There is interaction between many of these ROS-generating pathways, with data from a range of published studies indicating that a common upstream pathway is the interaction of AGEs with their receptor (RAGE), which further promotes ROS synthesis. Therefore, agents targeted at decreasing ROS production have been investigated for prevention or treatment of diabetic CVD through reducing oxidative stress, and this review considers some of the studies carried out with anti-oxidant therapies and the feasibility of this approach for protecting against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Alyssa Faria
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Shanta J Persaud
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
65
|
Tsai MY, Hu WL, Lin CC, Lee YC, Chen SY, Hung YC, Chen YH. Prescription pattern of Chinese herbal products for heart failure in Taiwan: A population-based study. Int J Cardiol 2016; 228:90-96. [PMID: 27863367 DOI: 10.1016/j.ijcard.2016.11.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/06/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Certain Chinese herbal products (CHPs) may protect against the progression of heart failure (HF). However, there is a lack of research regarding the use of CHPs in patients with HF. The aims of this study were to analyze CHPs usage patterns in patients with HF and to identify the frequency and combination of CHPs most commonly used for HF. METHODS This retrospective, nationwide, population-based cohort study was conducted using a randomly sampled cohort of one million patients selected from the National Health Insurance Research Database (NHIRD) for the years 2000-2010 in Taiwan. CHP use and the top ten most frequently prescribed formulae and single herbs for treating HF were assessed, including total formulae number and average and frequency of prescriptions. Demographic characteristics, including sex and age at diagnosis of HF, were examined, together with existing comorbidities. RESULTS The cohort included 19,988 newly diagnosed AD patients, who were given CHP treatment for HF between 2000 and 2010. Among them, female patients (53.3%) and those over 65years old (63.9%) were more likely to use CM. After adjusting for demographic factors, HF patients suffering from coronary artery disease (CAD) were more likely to seek traditional Chinese medicine (TCM) treatment than those with non-TCM users (57.6% vs. 52.6%). Zhi-Gan-Cao-Tang (4.07%) and Danshen (5.13%) were the most frequent formula CHP and single CHP prescribed by TCM practitioners for treating HF, respectively. CONCLUSION Most people with HF who consumed CHPs used CHPs to supplement Yang-Qi, nourish the Ying-blood, and strengthen the heart spirit as complementary medicines to relieve HF-related symptoms, in addition to using standard anti-HF treatments. Further large-scale, randomized clinical trials are warranted in order to determine the effectiveness and safety of these herbal medicines.
Collapse
Affiliation(s)
- Ming-Yen Tsai
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Long Hu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Che-Chen Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan; Healthcare Service Research Center (HSRC), Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Chiao Lee
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Yu Chen
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Chiang Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan.
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan; Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
66
|
The Multifunctional Effects of Nobiletin and Its Metabolites In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2918796. [PMID: 27761146 PMCID: PMC5059563 DOI: 10.1155/2016/2918796] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022]
Abstract
Nobiletin (NOB) chemically known as 5,6,7,8,3′,4′-hexamethoxyflavone is a dietary polymethoxylated flavonoid found in Citrus fruits. Recent evidences show that NOB is a multifunctional pharmaceutical agent. The various pharmacological activities of NOB include neuroprotection, cardiovascular protection, antimetabolic disorder, anticancer, anti-inflammation, and antioxidation. These events may be underpinned by modulation of signaling cascades, including PKA/ERK/MEK/CREB, NF-κB, MAPK, Ca2+/CaMKII, PI3K/Akt1/2, HIF-1α, and TGFβ signaling pathways. The metabolites may exhibit stronger beneficial effects than NOB on diseases pathogenesis. The biological activities of NOB have been clarified on many systems. This review aims to discuss the pharmacological effects of NOB with specific mechanisms of actions. NOB may become a promising candidate for potential drug development. However, further investigations of NOB on specific intracellular targets and clinical trials are still needed, especially for in vivo medical applications.
Collapse
|