51
|
Yang J, Pan C, Zhang J, Sui X, Zhu Y, Wen C, Zhang L. Exploring the Potential of Biocompatible Osmoprotectants as Highly Efficient Cryoprotectants. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42516-42524. [PMID: 29161015 DOI: 10.1021/acsami.7b12189] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cryoprotectants (CPAs) are critical to successful cryopreservation because they can protect cells from cryoinjuries. Because of the limitations of current CPAs, especially the toxicity, the search for new effective CPAs is attracting increasing attention. In this work, we reported that natural biocompatible osmoprotectants, which could protect cells from osmotic injury in various biological systems, might also be ideal candidates for CPAs. Three representative biocompatible osmoprotectants (proline, glycine, and taurine) were tested and compared. It was found that, aside from presenting a different ability to prevent osmotic injury, these biocompatible osmoprotectants also possessed a different ability to inhibit ice formation and thus mitigate intra-/extracellular ice injury. Because of the strongest ability to prevent the two types of injuries, we found that proline performed the best in cryopreserving five different types of cells. Moreover, the natural osmoprotectants are intrinsically biocompatible with the cells, superior to the current state-of-the-art CPA, dimethyl sulfoxide (DMSO), which is a toxic organic solvent. This work opens a new window of opportunity for DMSO-free cryopreservation, and sheds light on the applications of osmoprotectants in cryoprotection, which may revolutionize the current cryopreservation technologies.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Chao Pan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Xiaojie Sui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Chiyu Wen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
52
|
Postnatal Subacute Benzo(a)Pyrene Exposure Caused Neurobehavioral Impairment and Metabolomic Changes of Cerebellum in the Early Adulthood Period of Sprague-Dawley Rats. Neurotox Res 2017; 33:812-823. [DOI: 10.1007/s12640-017-9832-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/26/2022]
|
53
|
Pavone P, Praticò AD, Sorge G, Meli C, Ruggieri M, Rizzo R, Fiumara A. Hyperprolinemia Type IA. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017; 5:232640981770777. [DOI: 10.1177/2326409817707772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Affiliation(s)
- Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele,” Catania, Italy
| | - Andrea D. Praticò
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy
| | - Giovanni Sorge
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Concetta Meli
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Renata Rizzo
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agata Fiumara
- Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
54
|
Marques EP, Wyse ATS. Guanidinoacetate Methyltransferase Deficiency. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816669371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eduardo P. Marques
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela T. S. Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
55
|
Clelland CL, Drouet V, Rilett KC, Smeed JA, Nadrich RH, Rajparia A, Read LL, Clelland JD. Evidence that COMT genotype and proline interact on negative-symptom outcomes in schizophrenia and bipolar disorder. Transl Psychiatry 2016; 6:e891. [PMID: 27622935 PMCID: PMC5048199 DOI: 10.1038/tp.2016.157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/26/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Elevated peripheral proline is associated with psychiatric disorders, and there is evidence that proline is a neuromodulator. The proline dehydrogenase (PRODH) gene, which encodes the enzyme that catalyzes proline catabolism, maps to human chromosome 22q11.2, a region conferring risk of schizophrenia. In the Prodh-null mouse, an interaction between elevated peripheral proline and another 22q11.2 gene, catechol-O-methyltransferase (COMT), on neurotransmission and behavior has been reported. We explored the relationship between fasting plasma proline levels and COMT Val(158)Met genotype on symptoms (positive, negative and total) in schizophrenia patients. In an exploratory study we also examined symptom change in patients with bipolar disorder. There was a significant interaction between peripheral proline and COMT on negative symptoms in schizophrenia (P<0.0001, n=95). In COMT Val/Val patients, high proline was associated with low Scale for the Assessment of Negative Symptom (SANS) scores. In contrast, high proline was associated with high SANS scores in patients carrying a Met allele. The relationship between proline and COMT also appears to modify negative symptoms across psychiatric illness. In bipolar disorder, a significant interaction was also observed on negative-symptom change (P=0.007, n=43). Negative symptoms are intractable and largely unaddressed by current medications. These data indicate a significant interaction between peripheral proline and COMT genotype, influencing negative symptoms in schizophrenia and bipolar disorder. That high proline has converse effects on symptoms by COMT genotype, may have implications for therapeutic decisions.
Collapse
Affiliation(s)
- C L Clelland
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - V Drouet
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - K C Rilett
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - J A Smeed
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - R H Nadrich
- Bellevue Hospital Center, New York, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - A Rajparia
- Bellevue Hospital Center, New York, NY, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - L L Read
- Movement Disorders and Molecular Psychiatry, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - J D Clelland
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Movement Disorders and Molecular Psychiatry, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
56
|
Güneş M, Bulut M, Demir S, İbiloğlu AO, Kaya MC, Atlı A, Kaplan İ, Camkurt MA, Sir A. Diagnostic performance of increased prolidase activity in schizophrenia. Neurosci Lett 2016; 613:36-40. [DOI: 10.1016/j.neulet.2015.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/22/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022]
|
57
|
Kalafatakis K, Gkanti V, Mackenzie-Gray Scott CA, Zarros A, Baillie GS, Tsakiris S. Acetylcholinesterase activity as a neurotoxicity marker within the context of experimentally-simulated hyperprolinaemia: An in vitro approach. J Nat Sci Biol Med 2015; 6:S98-S101. [PMID: 26604630 PMCID: PMC4630774 DOI: 10.4103/0976-9668.166099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperprolinaemia is characterized by increased tissue accumulation of proline (Pro) and is known to exert serious cognitive and/or neuropsychiatric symptomatology as a direct result of Pro accumulation in the brain. The aim of this study was to explore a putative link between experimentally-simulated hyperprolinaemia and the activity of acetylcholinesterase (AChE); a crucial neurotoxicity marker. In vitro experiments were undertaken on purified eel-derived AChE, as well as on adult mouse brain homogenates, in order to examine the effect of a spectrum of Pro concentrations (3, 30, 500, and 1000 μM) on this marker. Our data showed that although Pro exerted a significant inhibitory effect on pure AChE activity, mouse brain-derived membrane-bound AChE activity was found either unaltered or significantly increased following incubation with Pro. The use of AChE activity as a neurotoxicity marker within the context of experimentally-simulated hyperprolinaemia should be considered with caution and in parallel with a number of other experimental parameters.
Collapse
Affiliation(s)
- Konstantinos Kalafatakis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece ; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - Vasiliki Gkanti
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece ; Gardiner Laboratory, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Connie A Mackenzie-Gray Scott
- Gardiner Laboratory, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Apostolos Zarros
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece ; Gardiner Laboratory, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - George S Baillie
- Gardiner Laboratory, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stylianos Tsakiris
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
58
|
Liu H, Lamm MS, Rutherford K, Black MA, Godwin JR, Gemmell NJ. Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol Sex Differ 2015; 6:26. [PMID: 26613014 PMCID: PMC4660848 DOI: 10.1186/s13293-015-0044-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Background Teleost fishes exhibit remarkably diverse and plastic sexual developmental patterns. One of the most astonishing is the rapid socially controlled female-to-male (protogynous) sex change observed in bluehead wrasses (Thalassoma bifasciatum). Such functional sex change is widespread in marine fishes, including species of commercial importance, yet its underlying molecular basis remains poorly explored. Methods RNA sequencing was performed to characterize the transcriptomic profiles and identify genes exhibiting sex-biased expression in the brain (forebrain and midbrain) and gonads of bluehead wrasses. Functional annotation and enrichment analysis were carried out for the sex-biased genes in the gonad to detect global differences in gene products and genetic pathways between males and females. Results Here we report the first transcriptomic analysis for a protogynous fish. Expression comparison between males and females reveals a large set of genes with sex-biased expression in the gonad, but relatively few such sex-biased genes in the brain. Functional annotation and enrichment analysis suggested that ovaries are mainly enriched for metabolic processes and testes for signal transduction, particularly receptors of neurotransmitters and steroid hormones. When compared to other species, many genes previously implicated in male sex determination and differentiation pathways showed conservation in their gonadal expression patterns in bluehead wrasses. However, some critical female-pathway genes (e.g., rspo1 and wnt4b) exhibited unanticipated expression patterns. In the brain, gene expression patterns suggest that local neurosteroid production and signaling likely contribute to the sex differences observed. Conclusions Expression patterns of key sex-related genes suggest that sex-changing fish predominantly use an evolutionarily conserved genetic toolkit, but that subtle variability in the standard sex-determination regulatory network likely contributes to sexual plasticity in these fish. This study not only provides the first molecular data on a system ideally suited to explore the molecular basis of sexual plasticity and tissue re-engineering, but also sheds some light on the evolution of diverse sex determination and differentiation systems. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
59
|
Pandhare J, Dash S, Jones B, Villalta F, Dash C. A Novel Role of Proline Oxidase in HIV-1 Envelope Glycoprotein-induced Neuronal Autophagy. J Biol Chem 2015; 290:25439-51. [PMID: 26330555 DOI: 10.1074/jbc.m115.652776] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 12/17/2022] Open
Abstract
Proline oxidase (POX) catalytically converts proline to pyrroline-5-carboxylate. This catabolic conversion generates reactive oxygen species (ROS) that triggers cellular signaling cascades including autophagy and apoptosis. This study for the first time demonstrates a role of POX in HIV-1 envelope glycoprotein (gp120)-induced neuronal autophagy. HIV-1 gp120 is a neurotoxic factor and is involved in HIV-1-associated neurological disorders. However, the mechanism of gp120-mediated neurotoxicity remains unclear. Using SH-SY5Y neuroblastoma cells as a model, this study demonstrates that gp120 treatment induced POX expression and catalytic activity. Concurrently, gp120 also increased intracellular ROS levels. However, increased ROS had a minimal effect on neuronal apoptosis. Further investigation indicated that the immediate cellular response to increased ROS paralleled with induction of autophagy markers, beclin-1 and LC3-II. These data lead to the hypothesis that neuronal autophagy is activated as a cellular protective response to the toxic effects of gp120. A direct and functional role of POX in gp120-mediated neuronal autophagy was examined by inhibition and overexpression studies. Inhibition of POX activity by a competitive inhibitor "dehydroproline" decreased ROS levels concomitant with reduced neuronal autophagy. Conversely, overexpression of POX in neuronal cells increased ROS levels and activated ROS-dependent autophagy. Mechanistic studies suggest that gp120 induces POX by targeting p53. Luciferase reporter assays confirm that p53 drives POX transcription. Furthermore, data demonstrate that gp120 induces p53 via binding to the CXCR4 co-receptor. Collectively, these results demonstrate a novel role of POX as a stress response metabolic regulator in HIV-1 gp120-associated neuronal autophagy.
Collapse
Affiliation(s)
- Jui Pandhare
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Microbiology and Immunology, and
| | - Sabyasachi Dash
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research
| | - Bobby Jones
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Microbiology and Immunology, and
| | - Fernando Villalta
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Microbiology and Immunology, and
| | - Chandravanu Dash
- From the Center for AIDS Health Disparities Research, School of Graduate Studies and Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
60
|
Crosstalk Among Disrupted Glutamatergic and Cholinergic Homeostasis and Inflammatory Response in Mechanisms Elicited by Proline in Astrocytes. Mol Neurobiol 2015; 53:1065-1079. [PMID: 25579384 DOI: 10.1007/s12035-014-9067-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
Hyperprolinemias are inherited disorder of proline (Pro) metabolism. Patients affected may present neurological manifestations, but the mechanisms of neural excitotoxicity elicited by hyperprolinemia are far from being understood. Considering that the astrocytes are important players in neurological disorders, the aim of the present work was to study the effects 1 mM Pro on glutamatergic and inflammatory parameters in cultured astrocytes from cerebral cortex of rats, exploring some molecular mechanisms underlying the disrupted homeostasis of astrocytes exposed to this toxic Pro concentration. We showed that cortical astrocytes of rats exposed to 1 mM Pro presented significantly elevated extracellular glutamate and glutamine levels, suggesting glutamate excitotoxicity. The excess of glutamate elicited by Pro together with increased glutamate uptake and upregulated glutamine synthetase (GS) activity supported misregulated glutamate homeostasis in astrocytic cells. High Pro levels also induced production/release of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. We also evidenced misregulation of cholinergic anti-inflammatory system with increased acetylcholinesterase (AChE) activity and decreased acetylcholine (ACh) levels, contributing to the inflammatory status in Pro-treated astrocytes. Our findings highlighted a crosstalk among disrupted glutamate homeostasis, cholinergic mechanisms, and inflammatory cytokines, since ionotropic (DL-AP5 and CNQX) and metabotropic (MCPG and MPEP) glutamate antagonists were able to restore the extracellular glutamate and glutamine levels; downregulate TNFα and IL6 production/release, modulate GS and AChE activities; and restore ACh levels. Otherwise, the non-steroidal anti-inflammatory drugs nimesulide, acetylsalicylic acid, ibuprofen, and diclofenac sodium decreased the extracellular glutamate and glutamine levels, downregulated GS and AChE activities, and restored ACh levels in Pro-treated astrocytes. Altogether, our results evidence that the vulnerability of metabolic homeostasis in cortical astrocytes might have important implications in the neurotoxicity of Pro.
Collapse
|
61
|
Mitsubuchi H, Nakamura K, Matsumoto S, Endo F. Biochemical and clinical features of hereditary hyperprolinemia. Pediatr Int 2014; 56:492-6. [PMID: 24931297 PMCID: PMC4282441 DOI: 10.1111/ped.12420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022]
Abstract
There are two classifications of hereditary hyperprolinemia: type I (HPI) and type II (HPII). Each type is caused by an autosomal recessive inborn error of the proline metabolic pathway. HPI is caused by an abnormality in the proline-oxidizing enzyme (POX). HPII is caused by a deficiency of Δ-1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDh). The clinical features of HPI are unclear. Nephropathy, uncontrolled seizures, mental retardation or schizophrenia have been reported in HPI, but a benign phenotype without neurological problems has also been reported. The clinical features of HPII are also unclear. In addition, the precise incidences of HPI and HPII are unknown. Only two cases of HPI and one case of HPII have been identified in Japan through a questionnaire survey and by a study of previous reports. This suggests that hyperprolinemia is a very rare disease in Japan, consistent with earlier reports in Western countries. The one case of HPII found in Japan was diagnosed in an individual with influenza-associated encephalopathy. This suggests that HPII might reduce the threshold for convulsions, thereby increasing the sensitivity of individuals with influenza-associated encephalopathy. The current study presents diagnostic criteria for HPI and HPII, based on plasma proline level, with or without measurements of urinary P5C. In the future, screening for HPI and HPII in healthy individuals, or patients with relatively common diseases such as developmental disabilities, epilepsy, schizophrenia or behavioral problems will be important.
Collapse
Affiliation(s)
- Hiroshi Mitsubuchi
- Department of Neonatology, Kumamoto University Hospital, Kumamoto, Japan
| | | | | | | |
Collapse
|
62
|
|
63
|
Ferreira AGK, Scherer EB, da Cunha AA, Manfredini V, Biancini GB, Vanzin CS, Vargas CR, Wyse ATS. Hyperprolinemia induces DNA, protein and lipid damage in blood of rats: antioxidant protection. Int J Biochem Cell Biol 2014; 54:20-5. [PMID: 24980685 DOI: 10.1016/j.biocel.2014.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/10/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
The present study investigated the effects of hyperprolinemia on oxidative damage to biomolecules (protein, lipids and DNA) and the antioxidant status in blood of rats. The influence of the antioxidants on the effects elicited by proline was also examined. Wistar rats received two daily injections of proline and/or vitamin E plus C (6th-28th day of life) and were killed 12h after the last injection. Results showed that hyperprolinemia induced a significant oxidative damage to proteins, lipids and DNA demonstrated by increased carbonyl content, malondialdehyde levels and a greater damage index in comet assay, respectively. The concomitant antioxidants administration to proline treatment completely prevented oxidative damage to proteins, but partially prevented lipids and DNA damage. We also observed that the non-enzymatic antioxidant potential was decreased by proline treatment and partially prevented by antioxidant supplementation. The plasma levels of vitamins E and C significantly increased in rats treated exogenously with these vitamins but, interestingly, when proline was administered concomitantly with vitamin E plus C, the levels of these vitamins were similar to those found in plasma of control and proline rats. Our findings suggest that hyperprolinemia promotes oxidative damage to the three major classes of macromolecules in blood of rats. These effects were accomplished by decrease in non-enzymatic antioxidant potential and decrease in vitamins administered exogenously, which significantly decreased oxidative damage to biomolecules studied. These data suggest that antioxidants may be an effective adjuvant therapeutic to limit oxidative damage caused by proline.
Collapse
Affiliation(s)
- Andréa G K Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| | - Emilene B Scherer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Aline A da Cunha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Vanusa Manfredini
- Universidade Federal do Pampa, BR 472, Km 585, Caixa Postal 118, 97500-970 Uruguaiana, RS, Brazil
| | | | - Camila Simioni Vanzin
- Serviço de Genética Médica, HCPA, Ramiro Barcelos 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Carmen R Vargas
- Serviço de Genética Médica, HCPA, Ramiro Barcelos 2350, Porto Alegre, RS, 90035-903, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
64
|
van de Ven S, Gardeitchik T, Kouwenberg D, Kluijtmans L, Wevers R, Morava E. Long-term clinical outcome, therapy and mild mitochondrial dysfunction in hyperprolinemia. J Inherit Metab Dis 2014; 37:383-90. [PMID: 24173411 DOI: 10.1007/s10545-013-9660-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 09/26/2013] [Accepted: 10/10/2013] [Indexed: 11/24/2022]
Abstract
Although hyperprolinemia type-II has a discriminative metabolic phenotype and is frequently associated with neurological system involvement, the casual relation between the metabolic abnormalities and the clinical features, except for those of the secondary B6 deficiency, has been frequently debated. In order to evaluate disease frequency and the neuro-metabolic outcome we searched our laboratory database between 1992 and 2010, including 20,991 urinary organic acid profiles. From these individuals 16,720 parallel blood samples were available, and were investigated by serum amino acid analysis. We also evaluated the clinical, neurological, psychological features, laboratory data and vitamin levels and therapeutic effect in metabolically confirmed hyperprolinemia. Due to the mitochondrial localization of both ALDH4A1 and PRODH mitochondrial enzyme complex activity was evaluated and oxygen consumption was measured to assess ATP production in patient-fibroblasts. The Mitochondrial Disease Score was used to evaluate clinical mitochondrial dysfunction. The child behavior checklist was used to screen for psychopathology. We found four patients with increased urinary P5C diagnosed with hyperprolinemia type II, and only one patient had hyperprolinemia type I. All children with hyperprolinemia type II had low normal B6 concentration, and three of the patients had biochemical markers suggesting mitochondrial dysfunction. Mitochondrial dysfunction was confirmed in a muscle biopsy in one case. Intellectual disability was found in two adolescent patients. All patients showed seizures and significant behavioral problems, including anxiety and hallucinations. The clinical course was non-progressive and independent from the B6 concentration and B6 therapy. Hyperprolinemia is a rare inborn error. Individuals with hyperprolinemia should be monitored closely due to their frequent behavioral problems.
Collapse
Affiliation(s)
- Steffi van de Ven
- Department of Pediatrics, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | | | | | | | | | | |
Collapse
|
65
|
Pinto MCX, de Paiva MJN, Oliveira-Lima OC, Menezes HC, Cardeal ZDL, Gomez MV, Resende RR, Gomez RS. Neurochemical study of amino acids in rodent brain structures using an improved gas chromatography-mass spectrometry method. J Chem Neuroanat 2013; 55:24-37. [PMID: 24321291 DOI: 10.1016/j.jchemneu.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 01/22/2023]
Abstract
The analysis of amino acid levels is crucial for neuroscience studies because of the roles of these molecules as neurotransmitters and their influence on behavior. The present study describes the distribution and levels of 16 amino acids (alanine, asparagine, aspartic acid, cysteine, glycine, glutamic acid, isoleucine, leucine, lysine, methionine, phenylalanine, proline, sarcosine, serine, valine, and threonine) in brain tissues (prefrontal cortex, striatum, hippocampus and cerebellum) and the serum. Neurochemical analysis was performed on Wistar rats and C57BL/6 mice using an efficient method for extraction, a fast microwave-assisted derivatization and gas chromatography-mass spectrometry analysis. The amino acid concentration varied across brain regions for 14 of the 16 analyzed molecules, with detection limits ranging from 0.02±0.005μmolL(-1) to 7.07±0.05μmolL(-1). In rats, the concentrations of alanine, glycine, methionine, serine and threonine were higher in prefrontal cortex than in other areas, whereas in mice, the concentrations of glutamic acid, leucine and proline were highest in the hippocampus. In conclusion, this study provides a cerebral profile of amino acids in brain regions and the serum of rats and mice.
Collapse
Affiliation(s)
- Mauro Cunha Xavier Pinto
- Laboratório de Neurociências, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena 190, 30130-100 Belo Horizonte, MG, Brazil; Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, 30130-100 Belo Horizonte, MG, Brazil
| | - Maria José Nunes de Paiva
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Onésia Cristina Oliveira-Lima
- Departamento de Fisiologia e Biofísica, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Helvécio Costa Menezes
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Zenilda de Lourdes Cardeal
- Departamento de Química, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcus Vinícius Gomez
- Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, R. Domingos Vieira, 590, Belo Horizonte, MG, Brazil
| | - Rodrigo Ribeiro Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, 30130-100 Belo Horizonte, MG, Brazil.
| |
Collapse
|
66
|
Savio LEB, Vuaden FC, Kist LW, Pereira TC, Rosemberg DB, Bogo MR, Bonan CD, Wyse ATS. Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs. Neuroscience 2013; 250:121-8. [PMID: 23867765 DOI: 10.1016/j.neuroscience.2013.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/10/2013] [Accepted: 07/06/2013] [Indexed: 11/28/2022]
Abstract
Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures, cognitive dysfunctions, and schizoaffective disorders. However, the mechanisms related to these symptoms are still unclear. In the present study, we evaluated the in vivo and in vitro effects of proline on acetylcholinesterase (AChE) activity and gene expression in the zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0mM) during 1h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 μM) were tested. Long-term proline exposures significantly increased AChE activity for both treated groups when compared to the control (34% and 39%). Moreover, the proline-induced increase on AChE activity was completely reverted by acute administration of antipsychotic drugs (haloperidol and sulpiride), as well as the changes induced in ache expression. When assessed in vitro, proline did not promote significant changes in AChE activity. Altogether, these data indicate that the enzyme responsible for the control of acetylcholine levels might be altered after proline exposure in the adult zebrafish. These findings contribute for better understanding of the pathophysiology of hyperprolinemia and might reinforce the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism.
Collapse
Affiliation(s)
- L E B Savio
- Laboratório de Neuroproteção e Doenças Metabólicas, Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Quast C, Cuboni S, Bader D, Altmann A, Weber P, Arloth J, Röh S, Brückl T, Ising M, Kopczak A, Erhardt A, Hausch F, Lucae S, Binder EB. Functional coding variants in SLC6A15, a possible risk gene for major depression. PLoS One 2013; 8:e68645. [PMID: 23874702 PMCID: PMC3712998 DOI: 10.1371/journal.pone.0068645] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
SLC6A15 is a neuron-specific neutral amino acid transporter that belongs to the solute carrier 6 gene family. This gene family is responsible for presynaptic re-uptake of the majority of neurotransmitters. Convergent data from human studies, animal models and pharmacological investigations suggest a possible role of SLC6A15 in major depressive disorder. In this work, we explored potential functional variants in this gene that could influence the activity of the amino acid transporter and thus downstream neuronal function and possibly the risk for stress-related psychiatric disorders. DNA from 400 depressed patients and 400 controls was screened for genetic variants using a pooled targeted re-sequencing approach. Results were verified by individual re-genotyping and validated non-synonymous coding variants were tested in an independent sample (N = 1934). Nine variants altering the amino acid sequence were then assessed for their functional effects by measuring SLC6A15 transporter activity in a cellular uptake assay. In total, we identified 405 genetic variants, including twelve non-synonymous variants. While none of the non-synonymous coding variants showed significant differences in case-control associations, two rare non-synonymous variants were associated with a significantly increased maximal (3)H proline uptake as compared to the wildtype sequence. Our data suggest that genetic variants in the SLC6A15 locus change the activity of the amino acid transporter and might thus influence its neuronal function and the risk for stress-related psychiatric disorders. As statistically significant association for rare variants might only be achieved in extremely large samples (N >70,000) functional exploration may shed light on putatively disease-relevant variants.
Collapse
Affiliation(s)
- Carina Quast
- Max Planck Institute of Psychiatry, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Pallotta ML. L-Proline uptake in Saccharomyces cerevisiae mitochondria can contribute to bioenergetics during nutrient stress as alternative mitochondrial fuel. World J Microbiol Biotechnol 2013; 30:19-31. [PMID: 23824663 DOI: 10.1007/s11274-013-1415-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/23/2013] [Indexed: 11/28/2022]
Abstract
L-Proline (pyrrolidine-2-carboxylic acid) is a distinctive metabolite both biochemically and biotechnologically and is currently recognized to have a cardinal role in gene expression and cellular signaling pathways in stress response. Proline-fueled mitochondrial metabolism involves the oxidative conversion of L-Proline to L-Glutamate in two enzymatic steps by means of Put1p and Put2p that help Saccharomyces cerevisiae to respond to changes in the nutritional environment by initiating the breakdown of L-Proline as a source for nitrogen, carbon, and energy. Compartmentalization of L-Proline catabolic pathway implies that extensive L-Proline transport must take place between the cytosol where its biogenesis via Pro1p, Pro2p, Pro3p occurs and mitochondria. L-Proline uptake in S. cerevisiae purified and active mitochondria was investigated by swelling experiments, oxygen uptake and fluorimetric measurement of a membrane potential generation (ΔΨ). Our results strongly suggest that L-Proline uptake occurs via a carried-mediated process as demonstrated by saturation kinetics and experiments with N-ethylmaleimide, a pharmacological compound that is a cysteine-modifying reagent in hydrophobic protein domains and that inhibited mitochondrial transport. Plasticity of S. cerevisiae cell biochemistry according to background fluctuations is an important factor of adaptation to stress. Thus L-Proline → Glutamate route feeds Krebs cycle providing energy and anaplerotic carbon for yeast survival.
Collapse
Affiliation(s)
- Maria Luigia Pallotta
- Department of Medicine and Health Sciences, University of Molise, 86100, Campobasso, Italy,
| |
Collapse
|
69
|
Luo M, Singh RK, Tanner JJ. Structural determinants of oligomerization of δ(1)-pyrroline-5-carboxylate dehydrogenase: identification of a hexamerization hot spot. J Mol Biol 2013; 425:3106-20. [PMID: 23747974 DOI: 10.1016/j.jmb.2013.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 11/17/2022]
Abstract
The aldehyde dehydrogenase (ALDH) superfamily member Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyzes the NAD(+)-dependent oxidation of glutamate semialdehyde to glutamate, which is the final step of proline catabolism. Defects in P5CDH activity lead to the metabolic disorder type II hyperprolinemia, P5CDH is essential for virulence of the fungal pathogen Cryptococcus neoformans, and bacterial P5CDHs have been targeted for vaccine development. Although the enzyme oligomeric state is known to be important for ALDH function, the oligomerization of P5CDH has remained relatively unstudied. Here we determine the oligomeric states and quaternary structures of four bacterial P5CDHs using a combination of small-angle X-ray scattering, X-ray crystallography, and dynamic light scattering. The P5CDHs from Thermus thermophilus and Deinococcus radiodurans form trimer-of-dimers hexamers in solution, which is the first observation of a hexameric ALDH in solution. In contrast, two Bacillus P5CDHs form dimers in solution but do not assemble into a higher-order oligomer. Site-directed mutagenesis was used to identify a hexamerization hot spot that is centered on an arginine residue in the NAD(+)-binding domain. Mutation of this critical Arg residue to Ala in either of the hexameric enzymes prevents hexamer formation in solution. Paradoxically, the dimeric Arg-to-Ala T. thermophilus mutant enzyme packs as a hexamer in the crystal state, which illustrates the challenges associated with predicting the biological assembly in solution from crystal structures. The observation of different oligomeric states among P5CDHs suggests potential differences in cooperativity and protein-protein interactions.
Collapse
Affiliation(s)
- Min Luo
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | |
Collapse
|
70
|
Loureiro SO, Heimfarth L, Scherer EB, da Cunha MJ, de Lima BO, Biasibetti H, Pessoa-Pureur R, Wyse AT. Cytoskeleton of cortical astrocytes as a target to proline through oxidative stress mechanisms. Exp Cell Res 2013; 319:89-104. [DOI: 10.1016/j.yexcr.2012.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 10/09/2012] [Accepted: 11/01/2012] [Indexed: 11/28/2022]
|
71
|
Savio LEB, Vuaden FC, Rosemberg DB, Bogo MR, Bonan CD, Wyse ATS. Long-term proline exposure alters nucleotide catabolism and ectonucleotidase gene expression in zebrafish brain. Metab Brain Dis 2012; 27:541-9. [PMID: 22669495 DOI: 10.1007/s11011-012-9321-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 05/22/2012] [Indexed: 12/20/2022]
Abstract
Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures cognitive dysfunctions, and psychotic disorders. However, the underlying mechanisms of these symptoms are still unclear. Since adenine nucleotides play crucial roles in neurotransmission and neuromodulation, we evaluated the in vivo and in vitro effects of proline on ectonucleotidase activities and gene expression in zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0 mM) during 1 h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 μM) were tested. Short-term proline exposure did not promote significant changes on the ectonucleotidase activities and gene expression. Long-term proline exposure significantly increased ATP catabolism in both concentrations tested (14 % and 22 %, respectively), whereas ADP and AMP hydrolysis were increased only at 3.0 mM proline (21 % and 17 %, respectively) when compared to control. Moreover, the relative gene expression of enpd3 increased in both treated groups after long-term proline, whereas enptd1 increased only at 3.0 mM proline. Proline in vitro did not promote significant changes on ectonucleotidase activities. Altogether, these data indicate that the enzymes responsible for the control of extracellular nucleotides levels might be altered after proline exposure in zebrafish, contributing to better understand the pathophysiology of this disease. Moreover, such findings might facilitate the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
72
|
Ferreira AGK, da Cunha AA, Machado FR, Pederzolli CD, Dalazen GR, de Assis AM, Lamers ML, dos Santos MF, Dutra-Filho CS, Wyse ATS. Experimental hyperprolinemia induces mild oxidative stress, metabolic changes, and tissue adaptation in rat liver. J Cell Biochem 2012; 113:174-83. [PMID: 21882227 DOI: 10.1002/jcb.23342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation.
Collapse
Affiliation(s)
- Andréa G K Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Srivastava D, Singh RK, Moxley MA, Henzl MT, Becker DF, Tanner JJ. The three-dimensional structural basis of type II hyperprolinemia. J Mol Biol 2012; 420:176-89. [PMID: 22516612 DOI: 10.1016/j.jmb.2012.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/02/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Type II hyperprolinemia is an autosomal recessive disorder caused by a deficiency in Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH; also known as ALDH4A1), the aldehyde dehydrogenase that catalyzes the oxidation of glutamate semialdehyde to glutamate. Here, we report the first structure of human P5CDH (HsP5CDH) and investigate the impact of the hyperprolinemia-associated mutation of Ser352 to Leu on the structure and catalytic properties of the enzyme. The 2. 5-Å-resolution crystal structure of HsP5CDH was determined using experimental phasing. Structures of the mutant enzymes S352A (2.4 Å) and S352L (2.85 Å) were determined to elucidate the structural consequences of altering Ser352. Structures of the 93% identical mouse P5CDH complexed with sulfate ion (1.3 Å resolution), glutamate (1.5 Å), and NAD(+) (1.5 Å) were determined to obtain high-resolution views of the active site. Together, the structures show that Ser352 occupies a hydrophilic pocket and is connected via water-mediated hydrogen bonds to catalytic Cys348. Mutation of Ser352 to Leu is shown to abolish catalytic activity and eliminate NAD(+) binding. Analysis of the S352A mutant shows that these functional defects are caused by the introduction of the nonpolar Leu352 side chain rather than the removal of the Ser352 hydroxyl. The S352L structure shows that the mutation induces a dramatic 8-Å rearrangement of the catalytic loop. Because of this conformational change, Ser349 is not positioned to interact with the aldehyde substrate, conserved Glu447 is no longer poised to bind NAD(+), and Cys348 faces the wrong direction for nucleophilic attack. These structural alterations render the enzyme inactive.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
74
|
Savio LEB, Vuaden FC, Piato AL, Bonan CD, Wyse ATS. Behavioral changes induced by long-term proline exposure are reversed by antipsychotics in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:258-63. [PMID: 22019856 DOI: 10.1016/j.pnpbp.2011.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/23/2011] [Accepted: 10/06/2011] [Indexed: 11/24/2022]
Abstract
Hyperprolinemia is an inherited disorder of proline metabolism and patients affected by this disease may present neurological manifestations, including seizures and cognitive dysfunctions. Moreover, an association between adulthood schizoaffective disorders and moderate hyperprolinemia has been reported. However, the mechanisms underlying these behavioral phenotypes still remain unclear. In the present study, we investigated the effect of proline treatments on behavioral parameters in zebrafish, such as locomotor activity, anxiety, and social interaction. Adult zebrafish (Danio rerio) were exposed to proline (1.5 and 3.0 mM) during 1h or 7 days (short- or long-term treatments, respectively). Short-term proline exposure did not promote significant changes on the behavioral parameters observed. Long-term exposure at 1.5 mM proline significantly increased the number of line crossing (47%), the total distance (29%), and the mean speed (33%) when compared to control group. A significant increase in the time spent in the upper portion of the test tank was also observed after this treatment (91%), which may be interpreted as an indicator of anxiolytic behavior. Proline at 1.5 mM also induced social interaction impairment (78%), when compared to the untreated group after long-term treatment. Moreover, these proline-induced behavioral changes in zebrafish were completely reversed by acute administration of an atypical antipsychotic drug (sulpiride), but not by a typical (haloperidol). These findings demonstrate that proline is able to induce schizophrenia-like symptoms in zebrafish, which reinforce the use of this species as a complementary vertebrate model for studying behavioral phenotypes associated with neurological dysfunctions characteristic of metabolic diseases.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
75
|
Ferreira AGK, da Cunha AA, Scherer EB, Machado FR, da Cunha MJ, Braga A, Mussulini BH, Moreira JD, Wofchuk S, Souza DO, Wyse ATS. Evidence that hyperprolinemia alters glutamatergic homeostasis in rat brain: neuroprotector effect of guanosine. Neurochem Res 2011; 37:205-13. [PMID: 21935728 DOI: 10.1007/s11064-011-0604-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
This study investigated the effects of acute and chronic hyperprolinemia on glutamate uptake, as well as some mechanisms underlying the proline effects on glutamatergic system in rat cerebral cortex. The protective role of guanosine on effects mediated by proline was also evaluated. Results showed that acute and chronic hyperprolinemia reduced glutamate uptake, Na(+), K(+)-ATPase activity, ATP levels and increased lipoperoxidation. GLAST and GLT-1 immunocontent were increased in acute, but not in chronic hyperprolinemic rats. Our data suggest that the effects of proline on glutamate uptake may be mediated by lipid peroxidation and disruption of Na(+), K(+)-ATPase activity, but not by decreasing in glutamate transporters. This probably induces excitotoxicity and subsequent energy deficit. Guanosine was effective to prevent most of the effects promoted by proline, reinforcing its modulator role in counteracting the glutamate toxicity. However, further studies are needed to assess the modulatory effects of guanosine on experimental hyperprolinemia.
Collapse
Affiliation(s)
- Andréa G K Ferreira
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|