51
|
de Menezes FD, Dos Reis SRR, Pinto SR, Portilho FL, do Vale Chaves E Mello F, Helal-Neto E, da Silva de Barros AO, Alencar LMR, de Menezes AS, Dos Santos CC, Saraiva-Souza A, Perini JA, Machado DE, Felzenswalb I, Araujo-Lima CF, Sukhanova A, Nabiev I, Santos-Oliveira R. Graphene quantum dots unraveling: Green synthesis, characterization, radiolabeling with 99mTc, in vivo behavior and mutagenicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:405-414. [PMID: 31147011 DOI: 10.1016/j.msec.2019.04.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/20/2019] [Indexed: 01/18/2023]
Abstract
Graphene is one of the crystalline forms of carbon, along with diamond, graphite, carbon nanotubes, and fullerenes, and is considered as a revolutionary and innovating product. The use of a graphene-based nanolabels is one of the latest and most prominent application of graphene, especially in the field of diagnosis and, recently, in loco radiotherapy when coupled with radioisotopes. However, its biological behavior and mutagenicity in different cell or animal models, as well as the in vivo functional activities, are still unrevealed. In this study we have developed by a green route of synthesizing graphene quantum dots (GQDs) and characterized them. We have also developed a methodology for direct radiolabeling of GQDs with radioisotopes.Finally; we have evaluated in vivo biological behavior of GQDs using two different mice models and tested in vitro mutagenicity of GQDs. The results have shown that GQDs were formed with a size range of 160-280 nm, which was confirmed by DRX and Raman spectroscopy analysis, corroborating that the green synthesis is an alternative, environmentally friendly way to produce graphene. The radiolabeling test has shown that stable radiolabeled GQDs can be produced with a high yield (>90%). The in vivo test has demonstrated a ubiquitous behavior when administered to healthy animals, with a high uptake by liver (>26%) and small intestine (>25%). Otherwise, in an inflammation/VEGF hyperexpression animal model (endometriosis), a very peculiar behavior of GQDs was observed, with a high uptake by kidneys (over 85%). The mutagenicity test has demonstrated A:T to G:C substitutions suggesting that GQDs exhibits mutagenic activity.
Collapse
Affiliation(s)
| | - Sara Rhaissa Rezende Dos Reis
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil
| | - Suyene Rocha Pinto
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil
| | - Filipe Leal Portilho
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil
| | - Francisco do Vale Chaves E Mello
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil
| | - Edward Helal-Neto
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil
| | - Aline Oliveira da Silva de Barros
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil
| | - Luciana Magalhães Rebêlo Alencar
- Federal University of Maranhão, Department of Physics, Avenida dos Portugueses 500, Vila Bacanga, CEP 65080-805 São Luís, Maranhão, Brazil
| | - Alan Silva de Menezes
- Federal University of Maranhão, Department of Physics, Avenida dos Portugueses 500, Vila Bacanga, CEP 65080-805 São Luís, Maranhão, Brazil
| | - Clenilton Costa Dos Santos
- Federal University of Maranhão, Department of Physics, Avenida dos Portugueses 500, Vila Bacanga, CEP 65080-805 São Luís, Maranhão, Brazil
| | - Aldilene Saraiva-Souza
- Federal University of Piaui, Department of Physics, Bairro Ininga, CEP: 64.049-550 Teresina, Piaui, Brazil
| | - Jamila Alessandra Perini
- Research Laboratory of Pharmaceutical Sciences, Zona Oeste State University, Avenida Manuel Caldeira de Alvarenga 1.203, CEP 23070-200 Campo Grande, Rio de Janeiro, Brazil
| | - Daniel Escorsim Machado
- Research Laboratory of Pharmaceutical Sciences, Zona Oeste State University, Avenida Manuel Caldeira de Alvarenga 1.203, CEP 23070-200 Campo Grande, Rio de Janeiro, Brazil
| | - Israel Felzenswalb
- Department of Biophysics and Biometry, Rio de Janeiro State University, Boulevard 28 de Setembro, 87 Fundos, 4 ° Andar, CEP 20551-030 Rio de Janeiro, RJ, Brazil
| | - Carlos Fernando Araujo-Lima
- Department of Biophysics and Biometry, Rio de Janeiro State University, Boulevard 28 de Setembro, 87 Fundos, 4 ° Andar, CEP 20551-030 Rio de Janeiro, RJ, Brazil
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences (LRN-EA4682), Université de Reims Champagne-Ardenne, 51, rue Cognacq Jay, 51096 Reims, France; Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), KashirskoyeShosse 31, 115409 Moscow, Russian Federation
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences (LRN-EA4682), Université de Reims Champagne-Ardenne, 51, rue Cognacq Jay, 51096 Reims, France; Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), KashirskoyeShosse 31, 115409 Moscow, Russian Federation
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil; Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Campo Grande, Rio de Janeiro, Brazil.
| |
Collapse
|
52
|
Wu C, Guan X, Xu J, Zhang Y, Liu Q, Tian Y, Li S, Qin X, Yang H, Liu Y. Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials 2019; 205:106-119. [PMID: 30913486 DOI: 10.1016/j.biomaterials.2019.03.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022]
Abstract
Currently, photoimmunotherapy based on a theranostic nanoplatform emerges as a promising modality in advanced cancer therapy. In this study, a new type of versatile nanoassemblies (denoted as PC@GCpD(Gd)) was rationally designed by integrating the polydopamine stabilized graphene quantum dots (GQD)-photosensitizer nanocomposites (denoted as GCpD), immunostimulatory polycationic polymer/CpG oligodeoxynucleotide (CpG ODN) nanoparticles (denoted as PC) and Gd3+/Cy3 imaging probes for dual magnetic resonance/fluorescence imaging-guided photoimmunotherapy. PC@GCpD(Gd) effectively killed the tumor cells through the amplified photothermal and photodynamic effects mediated by GCpD, and contemporaneously delivered CpG ODN to the targeted endosomal Toll-like receptor 9 (TLR9) to continuously stimulate the secretion of proinflammatory cytokines and the maturation of dendritic cells, thereby resulting in the activation and infiltration of T lymphocytes. As a result, PC@GCpD(Gd) achieved robust inhibition efficiency to almost completely suppress the EMT6 murine mammary cancer model under laser irradiation, implying the superior synergy of combined photoimmunotherapy. Moreover, the in vivo delivery and biodistribution of PC@GCpD(Gd) could be tracked using the high-quality bimodal magnetic resonance imaging/fluorescence imaging. This study highlighted the potent prospect of hybrid PC@GCpD(Gd) nanoassemblies for precise cancer photoimmunotherapy with a cascading effect.
Collapse
Affiliation(s)
- Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Xiaotian Guan
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Jiming Xu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yingxue Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Qiuyue Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yuan Tian
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
53
|
Graphene Quantum Dots Modified Screen‐printed Electrodes as Electroanalytical Sensing Platform for Diethylstilbestrol. ELECTROANAL 2019. [DOI: 10.1002/elan.201800838] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
54
|
Wang Y, Song H, Wang G, Yang X, Wang J, Wei H. 131I-labeled PEG and folic acid co-functionalized graphene quantum dots for tumor-targeted imaging. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06434-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
55
|
Bansal S, Singh J, Kumari U, Kaur IP, Barnwal RP, Kumar R, Singh S, Singh G, Chatterjee M. Development of biosurfactant-based graphene quantum dot conjugate as a novel and fluorescent theranostic tool for cancer. Int J Nanomedicine 2019; 14:809-818. [PMID: 30774335 PMCID: PMC6354693 DOI: 10.2147/ijn.s188552] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Biosurfactants are amphipathic molecules of microbial origin that reduce surface and interfacial tension at gas-liquid-solid interfaces. Earlier, the biosurfactant was isolated and characterized in our laboratory from Candida parapsilosis. The property of the biosurfactant is further explored in this study by using quantum dots (QDs) as nanocarrier. MATERIALS AND METHODS Graphene quantum dots (GQDs) were synthesized by bottom-up approach through pyrolysis of citric acid. GQDs were conjugated with both biosurfactant and folic acid (FA) using carbodiimide chemistry. The prepared GQD bioconjugate was studied for diagnostic and therapeutic effects against cancer cells. RESULTS AND DISCUSSION Photoluminescence quantum yield (QY) of plain GQDs was measured as 12.8%. QY for biosurfactant conjugated GQDs and FA-biosurfactant conjugated GQDs was measured as 10.4% and 9.02%, respectively, and it was sufficient for targeting cancer cells. MTT assay showed that more than 90% of cells remained viable at concentration of 1 mg/mL, hence GQDs seemed to be non-toxic to cells. Biosurfactant conjugated GQDs caused 50% reduction in cellular viability within 24 hours. FA conjugation further increased the specificity of bioconjugated GQDs toward tumor cells, which is clearly evident from the drug internalization studies using confocal laser scanning microscopy. A higher amount of drug uptake was observed when bioconjugated GQDs were decorated with FA. CONCLUSION The ability of GQD bioconjugate could be used as a theranostic tool for cancer. It is foreseen that in near future cancer can be detected and/or treated at an early stage by utilizing biosurfactant conjugated GQDs. Therefore, the proposed study would provide a stepping stone to improve the life of cancer patients.
Collapse
Affiliation(s)
- Smriti Bansal
- Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India,
| | - Joga Singh
- Department of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India,
| | - Uma Kumari
- Department of Zoology, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- Department of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India,
| | | | - Ravinder Kumar
- Department of Zoology, Panjab University, Chandigarh, India
| | - Suman Singh
- Department of Agronomics, Central Scientific Instruments Organisation, Chandigarh, India
| | - Gurpal Singh
- Department of Pharmaceutical Sciences, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India,
| | - Mary Chatterjee
- Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India,
| |
Collapse
|
56
|
Translational Nanodiagnostics for In Vivo Cancer Detection. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
57
|
Kim J, Lee B, Kim YJ, Hwang SW. Enhancement of Dye-sensitized Solar Cells Efficiency Using Graphene Quantum Dots as Photoanode. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11664] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jinmo Kim
- Micro LED Research Center; Korea Photonics Technology Institute; Gwangju 500-779 South Korea
| | - Bongsoo Lee
- Department of Energy Systems Engineering; Chung Ang University; Seoul 06974 South Korea
| | - Young Jun Kim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Nanotechnology Research Center; Konkuk University; Chungju-si 27478 Republic of Korea
| | - Sung Won Hwang
- Department of Nano Science & Mechatronics Engineering, Nanotechnology Research Center; Konkuk University; Chungju-si 27478 Republic of Korea
| |
Collapse
|
58
|
Tosic J, Stanojevic Z, Vidicevic S, Isakovic A, Ciric D, Martinovic T, Kravic-Stevovic T, Bumbasirevic V, Paunovic V, Jovanovic S, Todorovic-Markovic B, Markovic Z, Danko M, Micusik M, Spitalsky Z, Trajkovic V. Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats. Neuropharmacology 2018; 146:95-108. [PMID: 30471296 DOI: 10.1016/j.neuropharm.2018.11.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
We investigated the therapeutic capacity of nano-sized graphene sheets, called graphene quantum dots (GQD), in experimental autoimmune encephalomyelitis (EAE), an animal model of immune-mediated central nervous system (CNS) damage. Intraperitoneally administered GQD (10 mg/kg/day) accumulated in the lymph node and CNS cells of Dark Agouti rats in which EAE was induced by immunization with spinal cord homogenate in complete Freund's adjuvant. GQD significantly reduced clinical signs of EAE when applied throughout the course of the disease (day 0-32), while the protection was less pronounced if the treatment was limited to the induction (day 0-7 post-immunization) or effector (from day 8 onwards) phase of the disease. GQD treatment diminished immune infiltration, demyelination, axonal damage, and apoptotic death in the CNS of EAE animals. GQD also reduced the numbers of interferon-γ-expressing T helper (Th)1 cells, as well as the expression of Th1 transcription factor T-bet and proinflammatory cytokines tumor necrosis factor, interleukin-1, and granulocyte-macrophage colony-stimulating factor in the lymph nodes and CNS immune infitrates. The protective effect of GQD in EAE was associated with the activation of p38 and p42/44 mitogen-activated protein kinases (MAPK) and Akt in the lymph nodes and/or CNS. Finally, GQD protected oligodendrocytes and neurons from T cell-mediated damage in the in vitro conditions. Collectively, these data demonstrate the ability of GQD to gain access to both immune and CNS cells during neuroinflammation, and to alleviate immune-mediated CNS damage by modulating MAPK/Akt signaling and encephalitogenic Th1 immune response.
Collapse
Affiliation(s)
- Jelena Tosic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000, Belgrade, Serbia
| | - Zeljka Stanojevic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000, Belgrade, Serbia
| | - Sasenka Vidicevic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Pasterova 2, 11000, Belgrade, Serbia
| | - Darko Ciric
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Visegradska 26, 11000, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia
| | - Svetlana Jovanovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11000, Belgrade, Serbia
| | | | - Zoran Markovic
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 84541, Bratislava, Slovakia
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 84541, Bratislava, Slovakia
| | - Matej Micusik
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 84541, Bratislava, Slovakia
| | - Zdenko Spitalsky
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 84541, Bratislava, Slovakia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia.
| |
Collapse
|
59
|
Flak D, Przysiecka Ł, Nowaczyk G, Scheibe B, Kościński M, Jesionowski T, Jurga S. GQDs-MSNs nanocomposite nanoparticles for simultaneous intracellular drug delivery and fluorescent imaging. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2018; 20:306. [PMID: 30524192 PMCID: PMC6244793 DOI: 10.1007/s11051-018-4416-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/02/2018] [Indexed: 05/02/2023]
Abstract
Although number of stimuli-responsive drug delivery systems based on mesoporous silica nanoparticles (MSNs) have been developed, the simultaneous real-time monitoring of carrier in order to guarantee proper drug targeting still remains as a challenge. GQDs-MSNs nanocomposite nanoparticles composed of graphene quantum dots (GQDs) and MSNs are proposed as efficient doxorubicin delivery and fluorescent imaging agent, allowing to monitor intracellular localization of a carrier and drug diffusion route from the carrier. Graphene quantum dots (average diameter 3.65 ± 0.81 nm) as a fluorescent agent were chemically immobilized onto mesoporous silica nanoparticles (average diameter 44.08 ± 7.18 nm) and loaded with doxorubicin. The structure, morphology, chemical composition, and optical properties as well as drug release behavior of doxorubicin (DOX)-loaded GQDs-MSNs were investigated. Then, the in vitro cytotoxicity, cellular uptake, and intracellular localization studies were carried out. Prepared GQDs-MSNs form stable suspensions exhibiting excitation-dependent photoluminescence (PL) behavior. These nanocomposite nanoparticles can be easily DOX-loaded and show pH- and temperature-dependent release behavior. Cytotoxicity studies proved that GQDs-MSNs nanocomposite nanoparticles are nontoxic; however, when loaded with drug, they enable the therapeutic activity of DOX via its active delivery and release. GQDs-MSNs owing to their fluorescent properties and efficient in vitro cellular internalization via caveolae/lipid raft-dependent endocytosis show a high potential for the optical imaging, including the simultaneous real-time optical tracking of the loaded drug during its delivery and release. Graphical abstractᅟ.
Collapse
Affiliation(s)
- Dorota Flak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
| | - Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
| | - Błażej Scheibe
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
| | - Mikołaj Kościński
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
- Department of Physics and Biophysics, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
| |
Collapse
|
60
|
Li N, Than A, Chen J, Xi F, Liu J, Chen P. Graphene quantum dots based fluorescence turn-on nanoprobe for highly sensitive and selective imaging of hydrogen sulfide in living cells. Biomater Sci 2018; 6:779-784. [PMID: 29134987 DOI: 10.1039/c7bm00818j] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S), being an important gaseous signaling molecule, has been gaining increasing attention for its involvement in a wide range of physiological processes. Herein, we developed a novel fluorescence turn-on nanoprobe for selective and sensitive detection of H2S based on graphene quantum dots (GQDs) conjugated with (2,4-dinitrophenoxy)tyrosine (DNPTYR). Taking advantage of its high fluorescence quantum yield, biocompatibility, photostability, and ease to be uptaken by cells, the GQD-based fluorescence probe was further employed for real-time monitoring of the triggered dynamic change of the intracellular H2S level in live cells.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | |
Collapse
|
61
|
Hong GL, Zhao HL, Deng HH, Yang HJ, Peng HP, Liu YH, Chen W. Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging. Int J Nanomedicine 2018; 13:4807-4815. [PMID: 30197516 PMCID: PMC6113908 DOI: 10.2147/ijn.s168570] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background The preparation and biological applications of ultra-small graphene quantum dots (GQDs) with accurate-controlled size are of great significance. Methods Here in, we report a novel procedure involving pyrolysis of trisodium citrate and subsequent ultrafiltration for fabricating monolayer GQDs with ultra-small lateral size (1.3±0.5 nm). Results The GQDs exhibit blue photoluminescence with peak position independent of excitation wavelength. The quantum yield of GQDs is measured to be 3.6%, and the average fluorescence lifetime is 2.78 ns. Conclusion Because of high stability and low toxicity, GQDs are demonstrated to be excellent bioimaging agents. The ultra-small GQDs can not only distribute in the cytoplasm but also penetrate into the nuclei. We ensure that this work will add a new dimension to the application of graphene materials for nanomedicine.
Collapse
Affiliation(s)
- Guo-Lin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Hai-Ling Zhao
- School of Public Health, Xiamen University, Xiamen 361102, People's Republic of China.,Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, People's Republic of China,
| | - Hao-Hua Deng
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, People's Republic of China,
| | - Hui-Jing Yang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, People's Republic of China
| | - Hua-Ping Peng
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, People's Republic of China,
| | - Yin-Huan Liu
- Department of Laboratory Medicine, The Affiliated Fuzhou Second Hospital of Xiamen University, Fuzhou 350007, People's Republic of China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350004, People's Republic of China,
| |
Collapse
|
62
|
Santos CIM, Mariz IFA, Pinto SN, Gonçalves G, Bdikin I, Marques PAAP, Neves MGPMS, Martinho JMG, Maçôas EMS. Selective two-photon absorption in carbon dots: a piece of the photoluminescence emission puzzle. NANOSCALE 2018; 10:12505-12514. [PMID: 29931025 DOI: 10.1039/c8nr03365j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon nanodots (Cdots) are now emerging as promising nonlinear fluorophores for applications in biological environments. A thorough and systematic approach to the two-photon induced emission of Cdots that could provide design guidelines to control their nonlinear emission properties is still missing. In this work, we address the nonlinear optical spectroscopy of Cdots prepared by controlled chemical cutting of graphene oxide (GO). The two-photon absorption in the 700-1000 nm region and the corresponding emission spectrum are carefully investigated. The highest two-photon absorption cross-section estimated was 130 GM at 720 nm. This value is comparable with the one reported for graphene nanoribbons with push-pull architecture. The emission spectrum depends on the excitation mode. At the same excitation energy, nonlinear excitation results in excitation-wavelength independent emission, while upon linear excitation the emission is excitation-wavelength dependent. The biphotonic interaction seems to be selective towards sp2 clusters bearing electron donor and acceptor groups found in push-pull architectures. Both linear and nonlinear emission can be understood based on the existence of isolated sp2 clusters involved in π-π stacking interactions with clusters in adjacent layers.
Collapse
Affiliation(s)
- Carla I M Santos
- CQFM, Centro de Química-Física Molecular, IN-Institute of Nanosciences and Nanotechnology and CQE, Centro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:50-59. [DOI: 10.1016/j.msec.2018.02.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/01/2017] [Accepted: 02/16/2018] [Indexed: 01/16/2023]
|
64
|
Song H, Wang Y, Wang J, Wang G, He J, Wei H, Luo S. Preparation and biodistribution of 131I-labeled graphene quantum dots. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5804-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
65
|
Zhang R, Ding Z. Recent Advances in Graphene Quantum Dots as Bioimaging Probes. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0047-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
66
|
Goreham RV, Schroeder KL, Holmes A, Bradley SJ, Nann T. Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells. Mikrochim Acta 2018; 185:128. [PMID: 29594671 DOI: 10.1007/s00604-018-2679-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/15/2018] [Indexed: 12/19/2022]
Abstract
The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.
Collapse
Affiliation(s)
- Renee V Goreham
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Science, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
| | - Kathryn L Schroeder
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Science, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Amy Holmes
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, 5000, Australia
| | - Siobhan J Bradley
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Science, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Thomas Nann
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Science, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| |
Collapse
|
67
|
Rakovich A, Rakovich T. Semiconductorversusgraphene quantum dots as fluorescent probes for cancer diagnosis and therapy applications. J Mater Chem B 2018; 6:2690-2712. [DOI: 10.1039/c8tb00153g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review provides a comparison of optical, chemical and biocompatibility properties of graphene and semiconductor quantum dots as fluorescent probes.
Collapse
Affiliation(s)
- Aliaksandra Rakovich
- Photonics and Nanotechnology Group
- Department of Physics
- King's College London
- London
- UK
| | - Tatsiana Rakovich
- Department of Molecular Rheumatology
- Trinity Biomedical Sciences Institute
- Dublin 2
- Ireland
| |
Collapse
|
68
|
Preparation of blue-color-emitting graphene quantum dots and their in vitro and in vivo toxicity evaluation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
69
|
Tomić S, Janjetović K, Mihajlović D, Milenković M, Kravić-Stevović T, Marković Z, Todorović-Marković B, Spitalsky Z, Micusik M, Vučević D, Čolić M, Trajković V. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials 2017; 146:13-28. [DOI: 10.1016/j.biomaterials.2017.08.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
|
70
|
Khabibullin A, Alizadehgiashi M, Khuu N, Prince E, Tebbe M, Kumacheva E. Injectable Shear-Thinning Fluorescent Hydrogel Formed by Cellulose Nanocrystals and Graphene Quantum Dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12344-12350. [PMID: 28953408 DOI: 10.1021/acs.langmuir.7b02906] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the search for new building blocks of nanofibrillar hydrogels, cellulose nanocrystals (CNCs) have attracted great interest because of their sustainability, biocompatibility, ease of surface functionalization, and mechanical strength. Making these hydrogels fluorescent extends the range of their applications in tissue engineering, bioimaging, and biosensing. We report the preparation and properties of a multifunctional hydrogel formed by CNCs and graphene quantum dots (GQDs). We show that although CNCs and GQDs are both negatively charged, hydrogen bonding and hydrophobic interactions overcome the electrostatic repulsion between these nanoparticles and yield a physically cross-linked hydrogel with tunable mechanical properties. Owing to their shear-thinning behavior, the CNC-GQD hydrogels were used as an injectable material in 3D printing. The hydrogels were fluorescent and had an anisotropic nanofibrillar structure. The combination of these advantageous properties makes this hybrid hydrogel a promising material and fosters the development of new manufacturing methods such as 3D printing.
Collapse
Affiliation(s)
- Amir Khabibullin
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, M5S 3H6 Ontario, Canada
| | - Moien Alizadehgiashi
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, M5S 3H6 Ontario, Canada
| | - Nancy Khuu
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, M5S 3H6 Ontario, Canada
| | - Elisabeth Prince
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, M5S 3H6 Ontario, Canada
| | - Moritz Tebbe
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, M5S 3H6 Ontario, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, M5S 3H6 Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
71
|
Zheng F, Zhang P, Xi Y, Chen X, He Z, Meng T, Chen J, Li L, Zhu JJ. Hierarchical Nanocarriers for Precisely Regulating the Therapeutic Process via Dual-Mode Controlled Drug Release in Target Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36655-36664. [PMID: 28975792 DOI: 10.1021/acsami.7b12251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A precisely controlled drug release is a great challenge in exploring methodologies of drug administration and fighting drug resistance for successful cancer chemotherapy. Herein, we developed a dual-mode nanocarrier to specifically deliver doxorubicin (Dox) and precisely control the drug release in target tumor cells. This hierarchical nanocarrier consisted of a gold nanorod as the heating core, biodegradable mesoporous silica as the storage chamber, and graphene quantum dot (GQD) as a drug carrier. The Arg-Gly-Asp peptides on the nanocarrier surface facilitated the specific interaction with integrin-overexpressed tumor cells and subsequent uptake via receptor-mediated endocytosis. Once exposed under the near-infrared (NIR) laser, the internalized nanocarrier rapidly heated the surrounding environment, which led to an instantaneous drug release by collapsing the π-π interaction between Dox and GQDs at high temperature and thereby intensified therapeutic efficacy. On the other hand, the silica shells underwent gradual degradation in the cellular matrix environment, along with stepwise liberation of the embedded GQD-Dox composites from the confined porous structure for the Dox release, exerting a long-term lethality to the tumor cells. By virtue of the physicochemical properties and synergistic behavior of the multiple components in this hierarchical nanocarrier, the NIR-triggered prompt release mode and the biodegradation-mediated slow release mode functioned in a precise and collaborative fashion, providing a promising way to manipulate the pharmacokinetics for precise cancer treatment.
Collapse
Affiliation(s)
- Fenfen Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Penghui Zhang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an 710049, People's Republic of China
| | - Yu Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Zhimei He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Tiantian Meng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Jingjia Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Lingling Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| |
Collapse
|
72
|
Ghafary SM, Nikkhah M, Hatamie S, Hosseinkhani S. Simultaneous Gene Delivery and Tracking through Preparation of Photo-Luminescent Nanoparticles Based on Graphene Quantum Dots and Chimeric Peptides. Sci Rep 2017; 7:9552. [PMID: 28842617 PMCID: PMC5573361 DOI: 10.1038/s41598-017-09890-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/26/2017] [Indexed: 11/08/2022] Open
Abstract
Designing suitable nano-carriers for simultaneous gene delivery and tracking is in the research priorities of the molecular medicine. Non-toxic graphene quantum dots (GQDs) with two different (green and red) emission colors are synthesized by Hummer's method and characterized by UV-Vis, Photoluminescence (PL), Fourier Transform Infrared (FTIR) and Raman spectroscopies, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The GQDs are conjugated with MPG-2H1 chimeric peptide and plasmid DNA (pDNA) by non-covalent interactions. Following conjugation, the average diameter of the prepared GQDs increased from 80 nm to 280 nm in complex structure, and the ζ-potential of the complex increased (from -36.87 to -2.56 mV). High transfection efficiency of the nano-carrier and results of confocal microscopy demonstrated that our construct can be considered as a nontoxic carrier with dual functions for gene delivery and nuclear targeting.
Collapse
Affiliation(s)
- Soroush Moasses Ghafary
- Department of Nanobiothechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiothechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shadie Hatamie
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
73
|
Liu G, Sun Z, Fu Z, Ma L, Wang X. Temperature sensing and bio-imaging applications based on polyethylenimine/CaF2 nanoparticles with upconversion fluorescence. Talanta 2017; 169:181-188. [DOI: 10.1016/j.talanta.2017.03.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 01/26/2023]
|
74
|
|
75
|
Hwang DW, Hong BH, Lee DS. Multifunctional graphene oxide for bioimaging: emphasis on biological research. EUROPEAN JOURNAL OF NANOMEDICINE 2017. [DOI: 10.1515/ejnm-2016-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractGraphene oxide (GO) nanomaterials offer a wide range of bioimaging applicability. Almost complete quenching ability of fluorescence by GO and natural interaction of GO with single stranded nucleic acid made GO a useful and intriguing multifunctional nanoplatform both as a biosensor for in vitro microplate diagnostics and as a drug delivery carrier for targeted delivery. GO’s large surface area and strong near infrared absorbance contribute to enhancement of a therapeutic effect with abundant loading of drugs for possible photothermal and photodynamic therapy. Bioimaging capability of GO made it a good theranostic tool, while enabling tracing in vivo pharmacokinetics during concurrent treatment. Fluorescence, either signal on or off, Raman and surface-enhanced Raman scattering (SERs), photoacoustic, and radionuclide imaging modalities can be used for theranostic purposes using GO nanomaterials. In this review, we highlight current applications of GO for bioimaging that are classified into in vitro microplate, in vitro cellular and in vivo bioimaging.
Collapse
|
76
|
Mukherjee S, Prasad E, Chadha A. H-Bonding controls the emission properties of functionalized carbon nano-dots. Phys Chem Chem Phys 2017; 19:7288-7296. [DOI: 10.1039/c6cp08889a] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of H-bonds in controlling the photoluminescence from N-CDs is investigated and the results indicate that both the Lippert–Mataga model and Kamlet–Taft parameters are required to satisfactorily explain the photophysical properties of dispersed N-CDs.
Collapse
Affiliation(s)
- Soumalya Mukherjee
- Laboratory of Bioorganic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Edamana Prasad
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry
- Department of Biotechnology
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|