51
|
Schmidt GW, Delaney SK. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 2010; 283:233-41. [PMID: 20098998 DOI: 10.1007/s00438-010-0511-1] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/06/2010] [Indexed: 11/25/2022]
Abstract
Real-time RT-PCR is a powerful technique for the measurement of gene expression, but its accuracy depends on the stability of the internal reference gene(s) used for data normalization. Tobacco (Nicotiana tabacum) is an important model in studies of plant gene expression, but stable reference genes have not been well-studied in the tobacco system. We address this problem by analysing the expression stability of eight potential tobacco reference genes. Primers targeting each gene (18S rRNA, EF-1alpha, Ntubc2, alpha- and beta-tubulin, PP2A, L25 and actin) were developed and optimized. The expression of each gene was then measured by real-time PCR in a diverse set of 22 tobacco cDNA samples derived from developmentally distinct tissues and from plants exposed to several abiotic stresses. L25 and EF-1alpha demonstrated the highest expression stability, followed by Ntubc2. Measurement of L25 and EF-1alpha was sufficient for accurate normalization in either the developmental or stress-treated samples, but Ntubc2 was also required when considering the entire sample set. Analysis of a tobacco circadian gene (NTCP-23) verified these reference genes in an additional context, and all techniques were optimized to enable a high-throughput approach. These results provide a foundation for the more accurate and widespread use of real-time RT-PCR in tobacco.
Collapse
Affiliation(s)
- Gregor W Schmidt
- Discipline of Genetics, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia.
| | | |
Collapse
|
52
|
Rampino P, Mita G, Assab E, De Pascali M, Giangrande E, Treglia AS, Perrotta C. Two sunflower 17.6HSP genes, arranged in tandem and highly homologous, are induced differently by various elicitors. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:13-22. [PMID: 20653884 DOI: 10.1111/j.1438-8677.2009.00200.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plants respond to environmental stimuli, such as heat shock, by re-programming cellular activity through differential gene expression, mainly controlled at the transcription level. The current study refers to two sunflower small heat shock protein (sHSP) genes arranged in tandem in head-to-head orientation and linked by a 3809 bp region. These genes exhibit only slight structural differences in the coding portion. They code for cytosolic class I sHSPs and are named HaHSP17.6a and HaHSP17.6b according to the molecular weight of the putative proteins. The genomic organization of these genes is consistent with the idea that many HSP genes originate from duplication events; in this case, probably an inversion and duplication occurred. The HaHSP17.6a and HaHSP17.6b genes are characterized by different expression levels under various heat stress conditions; moreover, their expression is differently induced by various elicitors. The differential regulation observed for HaHSP17.6a and HaHSP17.6b genes differs from previous observations on duplicated sHSP genes in plants.
Collapse
Affiliation(s)
- P Rampino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
53
|
Giorno F, Wolters-Arts M, Grillo S, Scharf KD, Vriezen WH, Mariani C. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:453-62. [PMID: 19854799 PMCID: PMC2803211 DOI: 10.1093/jxb/erp316] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/06/2009] [Accepted: 10/08/2009] [Indexed: 05/19/2023]
Abstract
The high sensitivity of male reproductive cells to high temperatures may be due to an inadequate heat stress response. The results of a comprehensive expression analysis of HsfA2 and Hsp17-CII, two important members of the heat stress system, in the developing anthers of a heat-tolerant tomato genotype are reported here. A transcriptional analysis at different developmental anther/pollen stages was performed using semi-quantitative and real-time PCR. The messengers were localized using in situ RNA hybridization, and protein accumulation was monitored using immunoblot analysis. Based on the analysis of the gene and protein expression profiles, HsfA2 and Hsp17-CII are finely regulated during anther development and are further induced under both short and prolonged heat stress conditions. These data suggest that HsfA2 may be directly involved in the activation of protection mechanisms in the tomato anther during heat stress and, thereby, may contribute to tomato fruit set under adverse temperatures.
Collapse
Affiliation(s)
- Filomena Giorno
- Department of Plant Cell Biology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- To whom correspondence should be addressed. E-mail:
| | - Mieke Wolters-Arts
- Department of Plant Cell Biology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Stefania Grillo
- CNR-IGV Institute of Plant Genetics, Via Università 133, 80055 Portici, Naples, Italy
| | - Klaus-Dieter Scharf
- Molecular Cell Biology, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany
| | - Wim H. Vriezen
- Department of Plant Cell Biology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Celestina Mariani
- Department of Plant Cell Biology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
54
|
Jiang C, Xu J, Zhang H, Zhang X, Shi J, Li M, Ming F. A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2009; 32:1046-59. [PMID: 19422616 DOI: 10.1111/j.1365-3040.2009.01987.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Among the heat shock proteins (HSPs) of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. To improve our understanding of sHSPs, we have characterized RcHSP17.8 from Rosa chinensis. Sequence alignments and phylogenetic analysis reveal this to be a cytosolic class I sHSP. RcHSP17.8 expression in R. chinensis was induced by heat, cold, salt, drought, osmotic and oxidative stresses. Recombinant RcHSP17.8 was overexpressed in Escherichia coli and yeast to study its possible function under stress conditions. The recombinant E. coli and yeast cells that accumulated RcHSP17.8 showed improved viability under thermal, salt and oxidative stress conditions compared with control cultures. We also produced transgenic Arabidopsis thaliana that constitutively expressed RcHSP17.8. These plants exhibited increased tolerance to heat, salt, osmotic and drought stresses. These results suggest that R. chinensis cytosolic class I sHSP (RcHSP17.8) has the ability to confer stress resistance not only to E. coli and yeast but also to plants grown under a wide variety of unfavorable environmental conditions.
Collapse
Affiliation(s)
- Changhua Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
55
|
Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X. Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:851-61. [PMID: 19135278 DOI: 10.1016/j.jplph.2008.11.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 05/03/2023]
Abstract
Expression profiles of nine rice heat shock protein genes (OsHSPs) were analyzed by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR). The nine genes exhibited distinctive expression in different organs. Expression of nine OsHSP genes was affected differentially by abiotic stresses and abscisic acid (ABA). All nine OsHSP genes were induced strongly by heat shock treatment, whereas none of them were induced by cold. The transcripts of OsHSP80.2, OsHSP71.1 and OsHSP23.7 were increased during salt tress treatment. Expression of OsHSP80.2 and OsHSP24.1 genes were enhanced while treated with 10% PEG. Only OsHSP71.1 was induced by ABA while OsHSP24.1 was suppressed by ABA. These observations imply that the nine OsHSP genes may play different roles in plant development and abiotic stress responses.
Collapse
Affiliation(s)
- Jie Zou
- Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agricultural University, Changsha 410128, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | | | | | | | | | | | | |
Collapse
|
56
|
Haerizadeh F, Wong CE, Bhalla PL, Gresshoff PM, Singh MB. Genomic expression profiling of mature soybean (Glycine max) pollen. BMC PLANT BIOLOGY 2009; 9:25. [PMID: 19265555 PMCID: PMC2660330 DOI: 10.1186/1471-2229-9-25] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 03/06/2009] [Indexed: 05/19/2023]
Abstract
BACKGROUND Pollen, the male partner in the reproduction of flowering plants, comprises either two or three cells at maturity. The current knowledge of the pollen transcriptome is limited to the model plant systems Arabidopsis thaliana and Oryza sativa which have tri-cellular pollen grains at maturity. Comparative studies on pollen of other genera, particularly crop plants, are needed to understand the pollen gene networks that are subject to functional and evolutionary conservation. In this study, we used the Affymetrix Soybean GeneChip to perform transcriptional profiling on mature bi-cellular soybean pollen. RESULTS Compared to the sporophyte transcriptome, the soybean pollen transcriptome revealed a restricted and unique repertoire of genes, with a significantly greater proportion of specifically expressed genes than is found in the sporophyte tissue. Comparative analysis shows that, among the 37,500 soybean transcripts addressed in this study, 10,299 transcripts (27.46%) are expressed in pollen. Of the pollen-expressed sequences, about 9,489 (92.13%) are also expressed in sporophytic tissues, and 810 (7.87%) are selectively expressed in pollen. Overall, the soybean pollen transcriptome shows an enrichment of transcription factors (mostly zinc finger family proteins), signal recognition receptors, transporters, heat shock-related proteins and members of the ubiquitin proteasome proteolytic pathway. CONCLUSION This is the first report of a soybean pollen transcriptional profile. These data extend our current knowledge regarding regulatory pathways that govern the gene regulation and development of pollen. A comparison between transcription factors up-regulated in soybean and those in Arabidopsis revealed some divergence in the numbers and kinds of regulatory proteins expressed in both species.
Collapse
Affiliation(s)
- Farzad Haerizadeh
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Faculty of Land and Food resources, The University of Melbourne, Parkville 3010, Australia
| | | | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Faculty of Land and Food resources, The University of Melbourne, Parkville 3010, Australia
| | - Peter M Gresshoff
- ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, Brisbane, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Faculty of Land and Food resources, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
57
|
Delaplace P, Fauconnier ML, Sergeant K, Dierick JF, Oufir M, van der Wal F, America AHP, Renaut J, Hausman JF, du Jardin P. Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1273-88. [PMID: 19204031 PMCID: PMC2657538 DOI: 10.1093/jxb/erp008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During post-harvest storage, potato tubers age as they undergo an evolution of their physiological state influencing their sprouting pattern. In the present study, physiological and biochemical approaches were combined to provide new insights on potato (Solanum tuberosum L. cv. Désirée) tuber ageing. An increase in the physiological age index (PAI) value from 0.14 to 0.83 occurred during storage at 4 degrees C over 270 d. Using this reference frame, a proteomic approach was followed based on two-dimensional electrophoresis. In the experimental conditions of this study, a marked proteolysis of patatin occurred after the PAI reached a value of 0.6. In parallel, several glycolytic enzymes were up-regulated and cellular components influencing protein conformation and the response to stress were altered. The equilibrium between the 20S and 26S forms of the proteasome was modified, the 20S form that recycles oxidized proteins being up-regulated. Two proteins belonging to the cytoskeleton were also differentially expressed during ageing. As most of these changes are also observed in an oxidative stress context, an approach focused on antioxidant compounds and enzymes as well as oxidative damage on polyunsaturated fatty acids and proteins was conducted. All the changes observed during ageing seemed to allow the potato tubers to maintain their radical scavenging activity until the end of the storage period as no accumulation of oxidative damage was observed. These data are interpreted considering the impact of reactive oxygen species on the development and the behaviour of other plant systems undergoing ageing or senescence processes.
Collapse
Affiliation(s)
- Pierre Delaplace
- Gembloux Agricultural University, Plant Biology Unit, Avenue de la Faculté d'Agronomie 2A, 5030 Gembloux, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3891-908. [PMID: 19628571 PMCID: PMC2736902 DOI: 10.1093/jxb/erp234] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 05/18/2023]
Abstract
Above-optimal temperatures reduce yield in tomato largely because of the high heat stress (HS) sensitivity of the developing pollen grains. The high temperature response, especially at this most HS-sensitive stage of the plant, is poorly understood. To obtain an overview of molecular mechanisms underlying the HS response (HSR) of microspores, a detailed transcriptomic analysis of heat-stressed maturing tomato microspores was carried out using a combination of Affymetrix Tomato Genome Array and cDNA-amplified fragment length polymorphism (AFLP) techniques. The results were corroborated by reverse transcription-PCR (RT-PCR) and immunoblot analyses. The data obtained reveal the involvement of specific members of the small heat shock protein (HSP) gene family, HSP70 and HSP90, in addition to the HS transcription factors A2 (HSFA2) and HSFA3, as well as factors other than the classical HS-responsive genes. The results also indicate HS regulation of reactive oxygen species (ROS) scavengers, sugars, plant hormones, and regulatory genes that were previously implicated in other types of stress. The use of cDNA-AFLP enabled the detection of genes representing pollen-specific functions that are missing from the tomato Affymetrix chip, such as those involved in vesicle-mediated transport and a pollen-specific, calcium-dependent protein kinase (CDPK2). For several genes, including LeHSFA2, LeHSP17.4-CII, as well as homologues of LeHSP90 and AtVAMP725, higher basal expression levels were detected in microspores of cv. Hazera 3042 (a heat-tolerant cultivar) compared with microspores of cv. Hazera 3017 (a heat-sensitive cultivar), marking these genes as candidates for taking part in microspore thermotolerance. This work provides a comprehensive analysis of the molecular events underlying the HSR of maturing microspores of a crop plant, tomato.
Collapse
Affiliation(s)
- Gil Frank
- Department of Vegetable Research, Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, POB 6, Bet Dagan, 50250, Israel
| | - Etan Pressman
- Department of Vegetable Research, Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, POB 6, Bet Dagan, 50250, Israel
| | - Ron Ophir
- Department of Fruit Tree Sciences, Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, POB 6, Bet Dagan, 50250, Israel
| | - Levia Althan
- Department of Vegetable Research, Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, POB 6, Bet Dagan, 50250, Israel
| | - Rachel Shaked
- Department of Vegetable Research, Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, POB 6, Bet Dagan, 50250, Israel
| | - Moshe Freedman
- Department of Vegetable Research, Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, POB 6, Bet Dagan, 50250, Israel
| | - Shmuel Shen
- Department of Vegetable Research, Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, POB 6, Bet Dagan, 50250, Israel
| | - Nurit Firon
- Department of Vegetable Research, Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, POB 6, Bet Dagan, 50250, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
59
|
Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. PLANT PHYSIOLOGY 2008; 148:1201-11. [PMID: 18775970 PMCID: PMC2577266 DOI: 10.1104/pp.108.126375] [Citation(s) in RCA: 321] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 09/02/2008] [Indexed: 05/17/2023]
Abstract
Pollen germination, along with pollen tube growth, is an essential process for the reproduction of flowering plants. The germinating pollen with tip-growth characteristics provides an ideal model system for the study of cell growth and morphogenesis. As an essential step toward a detailed understanding of this important process, the objective of this study was to comprehensively analyze the transcriptome changes during pollen germination and pollen tube growth. Using Affymetrix Arabidopsis (Arabidopsis thaliana) ATH1 Genome Arrays, this study is, to our knowledge, the first to show the changes in the transcriptome from desiccated mature pollen grains to hydrated pollen grains and then to pollen tubes of Arabidopsis. The number of expressed genes, either for total expressed genes or for specifically expressed genes, increased significantly from desiccated mature pollen to hydrated pollen and again to growing pollen tubes, which is consistent with the finding that pollen germination and tube growth were significantly inhibited in vitro by a transcriptional inhibitor. The results of Gene Ontology analyses showed that expression of genes related to cell rescue, transcription, signal transduction, and cellular transport was significantly changed, especially for up-regulation, during pollen germination and tube growth. In particular, genes of the calmodulin/calmodulin-like protein, cation/hydrogen exchanger, and heat shock protein families showed the most significant changes during pollen germination and tube growth. These results demonstrate that the overall transcription of genes, both in the number of expressed genes and in the levels of transcription, was increased. Furthermore, the appearance of many novel transcripts during pollen germination as well as tube growth indicates that these newly expressed genes may function in this complex process.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
60
|
Dafny-Yelin M, Tzfira T, Vainstein A, Adam Z. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2008; 67:363-373. [PMID: 18379884 DOI: 10.1007/s11103-008-9326-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 03/19/2008] [Indexed: 05/26/2023]
Abstract
Heat-shock proteins (HSPs) are a group of evolutionarily conserved polypeptides whose expression is induced in all organisms in response to environmental stresses and during various developmental processes. In this work, we show that the rose (Rosa hybrida) cytoplasmic 17.5-kDa Class I small HSP (sHSP17.5-CI, accession number: BQ103946) increases dramatically during flower development, and accumulates in closed bud petals and leaves only in response to heat stress. mRNA for a putative ortholog of this protein is also found in petals, but not leaves, of Arabidopsis (Arabidopsis thaliana) plants grown under optimal conditions, and it accumulates in leaves in response to heat stress. Analysis of Arabidopsis T-DNA insertion lines affected at three homologous genes revealed that their acquired thermotolerance, as measured by hypocotyl-elongation assay, is impaired. The correlation between sHSP-CI accumulation and expansion of rose petal cells, impairment of acquired thermotolerance, and defects in early embryogenesis of the double mutants (hsp17.4/hsp17.6A), all suggest that sHSP-CI proteins play a role in protecting cell proteins at various developmental stages, whereas in hypocotyl elongation they have a non-redundant function in acquired thermotolerance but have a redundant function in early embryogenesis.
Collapse
Affiliation(s)
- Mery Dafny-Yelin
- The Robert H Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | | | |
Collapse
|
61
|
Barcala M, García A, Cubas P, Almoguera C, Jordano J, Fenoll C, Escobar C. Distinct heat-shock element arrangements that mediate the heat shock, but not the late-embryogenesis induction of small heat-shock proteins, correlate with promoter activation in root-knot nematode feeding cells. PLANT MOLECULAR BIOLOGY 2008; 66:151-64. [PMID: 18046507 DOI: 10.1007/s11103-007-9259-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 11/02/2007] [Indexed: 05/08/2023]
Abstract
Genes coding small heat-shock proteins (sHSPs) show distinct behaviours with respect to environmental and developmental signals. Their transcriptional regulation depends on particular combinations of heat stress cis-elements (heat-shock elements; HSEs) but many aspects regarding their regulation remain unclear. Cyst and root-knot nematodes induce, in the roots of infected plants, the differentiation of special feeding cells with high metabolic activity (syncytia and giant cells, respectively), a process accompanied by extensive gene expression changes. The Hahsp17.7G4 (G4) promoter was active in giant cells and its HSE arrangements were crucial for this activation. In the present work, we provide further basis to associate giant cell expression with the heat-shock response of this gene class, by analysing additional promoters. The Hahsp17.6G1 (G1) promoter, not induced by heat shock, was silent in giant cells, while Hahsp18.6G2 (G2), which responds to heat shock, was specifically induced in giant cells. In addition, a mutated Hahsp17.7G4 promoter version (G4MutP) with a strong heat-shock induction was also induced in giant cells. The responses of the different promoters correlated with distinct HSE configurations, which might have implications on differential trans-activation. Furthermore, the shortest giant cell and heat-shock-inducible sHSP promoter version analysed in tobacco (-83pb Hahsp17.7G4) fully maintained its expression profile in Arabidopsis. Cyst nematodes did not induce the Hahsp17.7G4 promoter, revealing additional specificity in the nematode response. These findings, together with the fact that the class I sHSP products of endogenous genes accumulated specifically in tobacco giant cells, support the idea that these nematode-induced giant cells represent a transcriptional state very similar to that produced by heat shock regarding this class of genes. The high metabolic rate of giant cells may result in unfolded proteins requiring class I sHSPs as chaperones, which might, somehow, mimic heat-shock and/or other stress responses.
Collapse
Affiliation(s)
- Marta Barcala
- Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, Campus de la Real Fábrica de Armas, 45071 Toledo, Spain
| | | | | | | | | | | | | |
Collapse
|
62
|
Yi SY, Sun AQ, Sun Y, Yang JY, Zhao CM, Liu J. Differential regulation of Lehsp23.8 in tomato plants: Analysis of a multiple stress-inducible promoter. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2006; 171:398-407. [PMID: 22980210 DOI: 10.1016/j.plantsci.2006.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 03/28/2006] [Accepted: 04/28/2006] [Indexed: 06/01/2023]
Abstract
Small heat shock proteins (sHSPs) are the major family of HSP induced by heat stress in plants. In this report, an approximately 1.9kb of Lehsp23.8 5'-flanking sequence was isolated from tomato genome. By using the β-glucuronidase (GUS) reporter gene system, the developmental and tissue specific expression of the gus gene controlled by the Lehsp23.8 promoter was characterized in transgenic tomato plants. Strong GUS staining was detected in the roots, leaves, flowers, fruits and germinated seeds after heat shock. The heat-induced GUS activity was different in the floral tissues at various developmental stages. Fluorometric GUS assay showed that the heat-induced GUS activity was higher in the pericarp than in the placenta, and it was the lowest in the locular gel. The heat-shock induction of the Lehsp23.8 promoter depended on the different stages of fruit development. The optimal heat-shock temperatures leading to the maximal GUS activity in the pericarp of green, breaker, pink and red fruits were 42, 36, 39 and 39°C, respectively. The heat-induced GUS activity in tomato fruits increased gradually within 48h of treatment and weakened during tomato fruit ripening. Obvious GUS activities under cold, exogenous ABA and heavy metal (Cd(2+), Cu(2+), Pb(2+) or Zn(2+)) stress conditions were also detected. These results show that the Lehsp23.8 promoter is characterized as strongly heat-inducible and multiple-stress responsive.
Collapse
Affiliation(s)
- Shu-Ying Yi
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | | | | | | | | | | |
Collapse
|