51
|
Hu F, Liu J, Liu H, Li F, Wan M, Zhang M, Jiang Y, Rao M. Role of Exosomal Non-coding RNAs in Gastric Cancer: Biological Functions and Potential Clinical Applications. Front Oncol 2021; 11:700168. [PMID: 34195097 PMCID: PMC8238120 DOI: 10.3389/fonc.2021.700168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most common fatal cancers worldwide. The communication between GC and other cells in the GC microenvironment directly affects GC progression. Recently, exosomes have been revealed as new players in intercellular communication. They play an important role in human health and diseases, including cancer, owing to their ability to carry various bioactive molecules, including non-coding RNAs (ncRNAs). NcRNAs, including micro RNAs, long non-coding RNAs, and circular RNAs, play a significant role in various pathophysiological processes, especially cancer. Increasing evidence has shown that exosomal ncRNAs are involved in the regulation of tumor proliferation, invasion, metastasis, angiogenesis, immune regulation, and treatment resistance in GC. In addition, exosomal ncRNAs have promising potential as diagnostic and prognostic markers for GC. Considering the biocompatibility of exosomes, they can also be used as biological carriers for targeted therapy. This review summarizes the current research progress on exosomal ncRNAs in gastric cancer, focusing on their biological role in GC and their potential as new biomarkers for GC and therapeutics. Our review provides insight into the mechanisms involved in GC progression, which may provide a new point cut for the discovery of new diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Feng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jixuan Liu
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Huibo Liu
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Minjie Wan
- Department of Central Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Manli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Min Rao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
52
|
Ye Q, Qi C, Xi M, Ye G. Circular RNA hsa_circ_0001874 is an indicator for gastric cancer. J Clin Lab Anal 2021; 35:e23851. [PMID: 34028890 PMCID: PMC8274977 DOI: 10.1002/jcla.23851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies have indicated that circular RNAs (circRNAs) are novel endogenous RNAs whose 5' and 3' ends are covalently linked and play critical roles in gastric carcinogenesis. However, the significance of circRNA hsa_circ_0001874 in gastric cancer (GC) is still unclear. METHODS Therefore, we first detected hsa_circ_0001874 levels in GC cell lines and tissues and analyzed their potential correlation with clinicopathological factors. Then, a receiver operating characteristic (ROC) curve was established to evaluate its clinical value. Finally, we further predicted the biological functions of this molecule by bioinformatics analysis. RESULTS Our data showed that as an indicator, hsa_circ_0001874 expression was significantly decreased in 78.02% (71/91) of the GC patients. Combined with clinicopathological factors, the hsa_circ_0001874 level was strongly associated with cell differentiation (p < 0.001), tumor stage (p = 0.005), invasion (p = 0.024), lymphatic metastasis (p = 0.023), and CEA level (p < 0.001) in GC tissues. The area under the curve (AUC) was up to 0.673, with a sensitivity and specificity of 61.54% and 68.13%, respectively. Bioinformatics analysis showed that hsa_circ_0001874 harbors miR-593-5p, miR-103a-3p, and miR-107 seed sequences to regulate these three miRNAs and downstream target genes and exert its various biological functions in the carcinogenesis and progression of GC. CONCLUSION In summary, these data suggest that hsa_circ_0001874 is an indicator of GC and plays a significant role in gastric carcinogenesis and progression.
Collapse
Affiliation(s)
- Qihua Ye
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China.,Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Changlei Qi
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Mengting Xi
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
53
|
Wu H, Fu M, Liu J, Chong W, Fang Z, Du F, Liu Y, Shang L, Li L. The role and application of small extracellular vesicles in gastric cancer. Mol Cancer 2021; 20:71. [PMID: 33926452 PMCID: PMC8081769 DOI: 10.1186/s12943-021-01365-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer (GC) is a common tumour that affects humans worldwide, is highly malignant and has a poor prognosis. Small extracellular vesicles (sEVs), especially exosomes, are nanoscale vesicles released by various cells that deliver bioactive molecules to recipient cells, affecting their biological characteristics, changing the tumour microenvironment and producing long-distance effects. In recent years, many studies have clarified the mechanisms by which sEVs function with regard to the initiation, progression, angiogenesis, metastasis and chemoresistance of GC. These molecules can function as mediators of cell-cell communication in the tumour microenvironment and might affect the efficacy of immunotherapy. Due to their unique physiochemical characteristics, sEVs show potential as effective antitumour vaccines as well as drug carriers. In this review, we summarize the roles of sEVs in GC and highlight the clinical application prospects in the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Mengdi Fu
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Wei Chong
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Zhen Fang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China
| | - Fengying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Yang Liu
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Shang
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| | - Leping Li
- Department of Gastroenterological Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Gastroenterological Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Digestive Tumor Translational Medicine, Engineering Laboratory of Shandong Province, Shandong Provincial Hospital, Jinan, 250021, Shandong, China.
| |
Collapse
|
54
|
Ping Z, Ai L, Shen H, Zhang X, Jiang H, Song Y. Identification and comparison of circular RNAs in preeclampsia. PeerJ 2021; 9:e11299. [PMID: 33976984 PMCID: PMC8063878 DOI: 10.7717/peerj.11299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Background Preeclampsia (PE) is a pregnancy-specific syndrome, belongs to the gestational hypertension diseases category and is considered among the causes of maternal and perinatal mortality and morbidity. However, the pathogenesis of PE is still vague. Methods In the present study, the circular RNA (circRNA) expression patterns of normal pregnant women and PE patients were investigated using whole RNA sequencing. Results A total of 151 differential expressed circRNAs were identified including 121 upregulated and 30 downregulated ones. Functional and pathway enrichment analysis was conducted on the differentially expressed circRNAs using Gene Ontology and KEGG databases. The results of this analysis indicated that several crucial biological processes and pathways were enriched in PE patients. circRNA–microRNA (miRNA) interaction analysis indicated that the reported differentially expresse circRNAs may be associated with some regulatory functions through miRNAs in PE patients. Two ceRNAs networks were constructed according to the targeting relationship between circRNAs/miRNAs and miRNAs/mRNAs. One sub-network contained one upregulated circRNA, four downregulated miRNAs and five upregulated mRNAs, and another sub-network contained 10 downregulated circRNAs, 21 upregulated miRNAs and 15 downregulated mRNAs. Conclusion CircRNA expression patterns have been investigated and this analysis revealed their potential regulatory mechanisms in PE patients. We constructed the ceRNAs (competing endogenous RNA) to reveal the potential molecular roles of dysregulated circRNAs in the PE patients using RNA sequencing data. circRNA_13301 was the only one upregulated circRNA in ceRNA being targeted by four miRNAs.
Collapse
Affiliation(s)
- Zepeng Ping
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing, China
| | - Ling Ai
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing, China
| | - Huaxiang Shen
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, China
| | - Huling Jiang
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing, China
| | - Ye Song
- Department of Obstetrics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
55
|
Salmond N, Williams KC. Isolation and characterization of extracellular vesicles for clinical applications in cancer - time for standardization? NANOSCALE ADVANCES 2021; 3:1830-1852. [PMID: 36133088 PMCID: PMC9419267 DOI: 10.1039/d0na00676a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/13/2021] [Indexed: 05/08/2023]
Abstract
Extracellular vesicles (EVs) are nanometer sized lipid enclosed particles released by all cell types into the extracellular space and biological fluids in vivo, and into cell culture media in vitro. An important physiological role of EVs is cell-cell communication. EVs interact with, and deliver, their contents to recipient cells in a functional capacity; this makes EVs desirable vehicles for the delivery of therapeutic cargoes. In addition, as EVs contain proteins, lipids, glycans, and nucleic acids that reflect their cell of origin, their potential utility in disease diagnosis and prognostication is of great interest. The number of published studies analyzing EVs and their contents in the pre-clinical and clinical setting is rapidly expanding. However, there is little standardization as to what techniques should be used to isolate, purify and characterize EVs. Here we provide a comprehensive literature review encompassing the use of EVs as diagnostic and prognostic biomarkers in cancer. We also detail their use as therapeutic delivery vehicles to treat cancer in pre-clinical and clinical settings and assess the EV isolation and characterization strategies currently being employed. Our report details diverse isolation strategies which are often dependent upon multiple factors such as biofluid type, sample volume, and desired purity of EVs. As isolation strategies vary greatly between studies, thorough EV characterization would be of great importance. However, to date, EV characterization in pre-clinical and clinical studies is not consistently or routinely adhered to. Standardization of EV characterization so that all studies image EVs, quantitate protein concentration, identify the presence of EV protein markers and contaminants, and measure EV particle size and concentration is suggested. Additionally, the use of RNase, DNase and protease EV membrane protection control experiments is recommended to ensure that the cargo being investigated is truly EV associated. Overall, diverse methodology for EV isolation is advantageous as it can support different sample types and volumes. Nevertheless, EV characterization is crucial and should be performed in a rigorous manor.
Collapse
Affiliation(s)
- Nikki Salmond
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| | - Karla C Williams
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| |
Collapse
|
56
|
Tao X, Shao Y, Yan J, Yang L, Ye Q, Wang Q, Lu R, Guo J. Biological roles and potential clinical values of circular RNAs in gastrointestinal malignancies. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0348. [PMID: 33710802 PMCID: PMC8185857 DOI: 10.20892/j.issn.2095-3941.2020.0348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/19/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs), a class of endogenous RNA molecules, are produced by alternative splicing of precursor RNA and are covalently linked at the 5' and 3' ends. Recent studies have revealed that dysregulated circRNAs are closely related to the occurrence and progression of gastrointestinal malignancies. Accumulating evidence indicates that circRNAs, including circPVT1, circLARP4, circ-SFMBT2, cir-ITCH, circRNA_100782, circ_100395, circ-DONSON, hsa_circ_0001368, circNRIP1, circFAT1(e2), circCCDC66, circSMARCA5, circ-ZNF652, and circ_0030235 play important roles in the proliferation, differentiation, invasion, and metastasis of cancer cells through a variety of mechanisms, such as acting as microRNA sponges, interacting with RNA-binding proteins, regulating gene transcription and alternative splicing, and being translated into proteins. With the characteristics of high abundance, high stability, extensive functions, and certain tissue-, time- and disease-specific expressions, circRNAs are expected to provide novel perspectives for the diagnoses and treatments of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Xueping Tao
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Gastroenterology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Yongfu Shao
- Department of Gastroenterology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Jianing Yan
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Gastroenterology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Liyang Yang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Gastroenterology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Qihua Ye
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Gastroenterology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Qingling Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Gastroenterology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Rongdan Lu
- Department of Gastroenterology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315211, China
- Department of Gastroenterology, the Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| |
Collapse
|
57
|
Lyu L, Yang W, Yao J, Wang H, Zhu J, Jin A, Liu T, Wang B, Zhou J, Fan J, Yang X, Guo W. The diagnostic value of plasma exosomal hsa_circ_0070396 for hepatocellular carcinoma. Biomark Med 2021; 15:359-371. [PMID: 33666515 DOI: 10.2217/bmm-2020-0476] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: We aimed to identify novel exosomal circular RNAs for hepatocellular carcinoma (HCC) diagnosis. Materials & methods: Exosomes were extracted and characterized. The expression level of exosomal circRNAs were verified via quantitative real-time PCR. The diagnostic value of candidate circRNAs was evaluated according to the receiver operating characteristic curve analysis. Results: The exosomal circ_0070396 significantly elevated in HCC patients than other control groups and it performed better in distinguishing HCC patients from healthy donors than that of α-fetoprotein. Combination of two above markers exerted greater diagnostic performance. Exosomal circ_0070396 could discriminate HCC individuals from patients with chronic hepatitis B and liver cirrhosis. Intriguingly, exosomal circ_0070396 was positively correlated with HCC progression. Conclusion: Exosomal circ_0070396 may be a potential biomarker for HCC detection and management.
Collapse
Affiliation(s)
- Lihua Lyu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiayi Yao
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xinrong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
58
|
Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, Xu X, Liang Q, Christiani DC, Wang M, Liu L, Du M. Circular RNAs in body fluids as cancer biomarkers: the new frontier of liquid biopsies. Mol Cancer 2021; 20:13. [PMID: 33430880 PMCID: PMC7798340 DOI: 10.1186/s12943-020-01298-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, particularly because of its high mortality rate in patients who are diagnosed at late stages. Conventional biomarkers originating from blood are widely used for cancer diagnosis, but their low sensitivity and specificity limit their widespread application in cancer screening among the general population. Currently, emerging studies are exploiting novel, highly-accurate biomarkers in human body fluids that are obtainable through minimally invasive techniques, which is defined as liquid biopsy. Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs generated mainly by pre-mRNA splicing. Following the rapid development of high-throughput transcriptome analysis techniques, numerous circRNAs have been recognized to exist stably and at high levels in body fluids, including plasma, serum, exosomes, and urine. CircRNA expression patterns exhibit distinctly differences between patients with cancer and healthy controls, suggesting that circRNAs in body fluids potentially represent novel biomarkers for monitoring cancer development and progression. In this study, we summarized the expression of circRNAs in body fluids in a pan-cancer dataset and characterized their clinical applications in liquid biopsy for cancer diagnosis and prognosis. In addition, a user-friendly web interface was developed to visualize each circRNA in fluids (https://mulongdu.shinyapps.io/circrnas_in_fluids/).
Collapse
Affiliation(s)
- Sumeng Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Ke Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shanyue Tan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Centre for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qianyu Yuan
- Departments of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Huanhuan Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Xian Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - David C Christiani
- Departments of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA.,Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Centre for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Centre for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Mulong Du
- Department of Biostatistics, Centre for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
59
|
The Significance of Exosomal RNAs in the Development, Diagnosis, and Treatment of Gastric Cancer. Genes (Basel) 2021; 12:genes12010073. [PMID: 33430032 PMCID: PMC7826966 DOI: 10.3390/genes12010073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. Exosomes, a subset of extracellular vesicles with an average diameter of 100 nm, contain and transfer a variety of functional macromolecules such as proteins, lipids, and nucleic acids. A large number of studies indicated that exosomes can play a significant role in the initiation and development of GC via facilitating intercellular communication between gastric cancer cells and microenvironment. Exosomal RNAs, one of the key functional cargos, are involved in the pathogenesis, development, and metastasis of GC. In addition, recent studies elucidated that exosomal RNAs may serve as diagnostic and prognostic biomarkers or therapeutic targets for GC. In this review, we summarized the function of exosomal RNA in the tumorigenesis, progression, diagnosis, and treatment of GC, which may further unveil the functions of exosome and promote the potentially diagnostic and therapeutic application of exosomes in GC.
Collapse
|
60
|
Cheng D, Wang J, Dong Z, Li X. Cancer-related circular RNA: diverse biological functions. Cancer Cell Int 2021; 21:11. [PMID: 33407501 PMCID: PMC7789196 DOI: 10.1186/s12935-020-01703-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Noncoding RNAs, including long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), are involved in regulating biological functions. In recent decades, miRNAs and lncRNAs have both inspired a wave of research, but the study of circRNA functions is still in its infancy. Studies have found that circRNAs actively participate in the occurrence and development of various diseases, which emphasizes the importance of circRNAs. Here, we review the features and classification of circRNAs and summarize their functions. Then, we briefly describe how to analyze circRNAs by bioinformatics procedures. In addition, the relationship between circRNAs and cancers is discussed with an emphasis on proving whether circRNAs can be potential biomarkers for the prognosis and diagnosis of cancer.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Jing Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
| |
Collapse
|
61
|
Zhang Y, Pisano M, Li N, Tan G, Sun F, Cheng Y, Zhang Y, Cui X. Exosomal circRNA as a novel potential therapeutic target for multiple myeloma-related peripheral neuropathy. Cell Signal 2020; 78:109872. [PMID: 33290841 DOI: 10.1016/j.cellsig.2020.109872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/03/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Peripheral neuropathy (PN) is an incurable complication of multiple myeloma (MM) which adversely affects patients' quality of life. The important roles that Circular RNAs (circRNAs) play in tumor progression, and exosome-mediated intracellular communication has been recognized as a crucial factor in the pathogenesis of MM. However, the role of exosome-derived circRNAs (exo-circRNAs) in MM and MM-induced PN remains elusive. In this study, we aimed to investigate the correlation between serum exo-circRNAs and MM to preliminarily explore the role of exo-circRNAs in MM-related PN. A cohort of 25 MM patients and 5 healthy control (HC) individuals were enrolled in the study. High-throughput sequencing and qRT PCR validation of serum exo-circRNAs were used to generate the aberrantly expressed exo-circRNAs profiles. Bioinformatics analysis was done using GO, KEGG, miRanda, Targetscan and Metascape. Correlation analysis was conducted between chr2:2744228-2,744,407+ and clinical characteristics of PN. ROC curve, univariate and multivariate COX regression models were conducted to identify the prognostic potential of chr2:2744228-2,744,407+ in the MM-related PN. 265 upregulated circRNAs and 787 downregulated circRNAs, with at least a two-fold difference in expression level in MM patients vs HC, were screened. Bioinformatics analysis indicated that upregulated circRNAs had the potential to facilitate MM-related PN. Furthermore, PCR validated the abundant expression of chr2:2744228-2,744,407+ in the serum exosomes of 25 MM patients. Bioinformatics analysis indicated that chr2:2744228-2,744,407+ might induce MM related PN via the downstream miRNA and GRIN2B axis. Overexpressed chr2:2744228-2,744,407+ in the serum exosomes of MM patients might lead to the downregulation of hsa-miR-6829-3p, elevation of GRIN2B in the serum and PC12 cells, and inhibited cell viability. The correlation analysis indicated that the expression of chr 2:2744228-2,744,407+ was positively correlated with the clinical characteristics of PN. ROC curve, univariate and multivariate COX regression analysis identified that chr2:2744228-2,744,407+ is an independent prognostic factor in the MM related PN. We identified that the abnormal expression of the serum exo-circRNA was correlated with MM-related PN, implying that exo-circRNA has potential as a novel therapeutic target for MM related PN.
Collapse
Affiliation(s)
- Yanyu Zhang
- Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan 250014, China.
| | - Michael Pisano
- Interdisciplinary Program in Immunology, The University of Iowa, 108 Calvin Hall, Iowa City, IA 52242-1396, USA.
| | - Nianhu Li
- Department of Orthopedic, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan 250014, China.
| | - Guoqing Tan
- Department of Orthopedic, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan 250014, China.
| | - Fumou Sun
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, MFRC 6033, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Yan Cheng
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, MFRC 6033, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Yanyan Zhang
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan 250014, China.
| | - Xing Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Jinan 250014, China.
| |
Collapse
|
62
|
Chen H, Liang C, Wang X, Liu Y, Yang Z, Shen M, Han C, Ren C. The prognostic value of circRNAs for gastric cancer: A systematic review and meta-analysis. Cancer Med 2020; 9:9096-9106. [PMID: 33108710 PMCID: PMC7724307 DOI: 10.1002/cam4.3497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer-related deaths worldwide. Novel biomarkers circRNAs can play an important role in the development of gastric cancer as oncogenes or tumor suppressor genes. The purpose of this study was to clarify the relationship between the abnormal expression of multiple circRNAs and their prognostic value in gastric cancer patients through a meta-analysis. We researched articles reporting the relationship between circRNAs and the prognosis of gastric cancer published in PubMed, Cochrane, Embase, Web of Science, Wanfang, CNKI, and VIP databases before 31 December 2019. Thirty-five articles were selected for the meta-analysis, involving 3135 gastric cancer patients. The total HR values (95% CI) of OS and DFS related to highly expressed circRNAs that indicated worse prognosis were 1.83 (1.64-2.03; p < 0.001) and 1.66 (1.33-2.07; p < 0.001), respectively. The total HR (95% CI) of OS and DFS related to highly expressed circRNAs that indicated better prognosis was 0.54 (0.45-0.66; p < 0.001) and 0.58 (0.43-0.78; p < 0.001), respectively. Two panels of five circRNAs predicted a more considerable HR value (circ_0009910, hsa_circ_0000467, hsa_circ_0065149, hsa_circ_0081143, and circDLST; and circSMARCA5, circLMTK2, hsa_circ_0001017, hsa_circ_0061276, and circ-KIAA1244). The results of the meta-analysis were 2.63 (2.08-3.33; p < 0.001) and 0.39 (0.27-0.59; p < 0.001) for OS, respectively. The two panels of dysregulated circRNAs can be considered as more suitable potential prognostic tumor biomarkers in patients with gastric cancer because of their larger HR values.
Collapse
Affiliation(s)
- Hui Chen
- Geriatric MedicineNorthern Jiangsu People’s HospitalYangzhouChina
| | - Chengtong Liang
- Department of Laboratory MedicineClinical Medical College of Yangzhou UniversityYangzhouChina
| | - Xuechun Wang
- Department of Laboratory MedicineDalian Medical UniversityDalianChina
| | - Yu Liu
- Department of Laboratory MedicineMedical College of Yangzhou UniversityYangzhouChina
| | - Zhanjun Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
| | - Ming Shen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
| | - Chongxu Han
- Department of Laboratory MedicineClinical Medical College of Yangzhou UniversityYangzhouChina
| | - Chuanli Ren
- Department of Laboratory MedicineClinical Medical College of Yangzhou UniversityYangzhouChina
| |
Collapse
|
63
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
64
|
Seimiya T, Otsuka M, Iwata T, Shibata C, Tanaka E, Suzuki T, Koike K. Emerging Roles of Exosomal Circular RNAs in Cancer. Front Cell Dev Biol 2020; 8:568366. [PMID: 33117799 PMCID: PMC7578227 DOI: 10.3389/fcell.2020.568366] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed continuous loop. The expression pattern of circRNA varies among cell types and tissues, and many circRNAs are aberrantly expressed in various cancers. Aberrantly expressed circRNAs have been shown to play crucial roles in carcinogenesis, functioning as microRNA sponges or new templates for protein translation. Recent research has shown that circRNAs are enriched in exosomes. Exosomes are secretory vesicles that mediate intercellular communication through the delivery of cargo, including proteins, lipids, DNA, and RNA. Exosome-mediated crosstalk between cancer cells and the tumor microenvironment promotes the epithelial-mesenchymal transition, angiogenesis, and immune escape, and thus may contribute to cancer invasion and metastasis. In this review, we discuss the biological functions of exosomal circRNAs and their significance in cancer progression. Additionally, we discuss the potential clinical applications of exosomal circRNAs as biomarkers and in cancer therapy.
Collapse
Affiliation(s)
- Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuma Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chikako Shibata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
65
|
Abstract
Exosomes, the nanoscale phospholipid bilayer vesicles, enriched in selected proteins, nucleic acids and lipids, which they participated in a variety of biological processes in the body, including physiology and pathology. CircRNAs (circular RNAs) are a class of single-stranded closed molecules with tissue development specific expression patterns that have crucial regulatory functions in various diseases. Non-coding RNAs (such as microRNAs and long non‑coding RNAs) in exosomes have also been shown to play an important regulatory role in humans. However, little research has focused on exosomal circRNAs. Recently, CircRNAs have been identified to be enriched and stably expressed in exosomes. In this review, we summarize the biogenesis and biological functions of exosomes and circRNA, and further revealed the potential role of exosome-derived circRNA in different diseases. Besides, we propose its use as a diagnostic marker and therapeutic punctuation for diseases, especially in cancer.
Collapse
|
66
|
Wang M, Yu F, Li P, Wang K. Emerging Function and Clinical Significance of Exosomal circRNAs in Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:367-383. [PMID: 32650235 PMCID: PMC7340966 DOI: 10.1016/j.omtn.2020.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Exosomes are a type of extracellular vesicles (EVs) secreted by almost all cells, with a diameter range of 30-150 nm and a lipid bilayer membrane. Exosomes are now considered as vital mediators of intercellular communication and participate in multiple cellular processes, such as signal transduction and antigen presentation. Recently, circular RNAs (circRNAs), a novel class of noncoding RNAs (ncRNAs), have been found to be abundant and stable in exosomes. Increasing evidence indicates that exosome-derived circRNAs act as signaling molecules to regulate cancer growth, angiogenesis, invasion, metastasis, and sensitivity to chemotherapy. Moreover, circulating exosomal circRNAs can reflect the progression and malignant characteristics of cancer, implying their great potential as promising, non-invasive biomarkers for cancer diagnosis and prognosis. In this review, we summarize the recent progress on the functional roles of exosomal circRNAs in cancer progression, discussing their potential as promising biomarkers and therapeutic targets in cancer. Comprehensive elucidation of molecular mechanisms relevant to the implications of exosomal circRNAs in cancer progression will be conducive to the development of innovative diagnostic and therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
67
|
Gao PF, Huang D, Wen JY, Liu W, Zhang HW. Advances in the role of exosomal non-coding RNA in the development, diagnosis, and treatment of gastric cancer (Review). Mol Clin Oncol 2020; 13:101-108. [PMID: 32714531 DOI: 10.3892/mco.2020.2068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are small vesicles secreted by a variety of cells that contain vrious biological macromolecules, including RNA, non-coding RNA and protein. An increasing number of studies have demonstrated that exosomes and particularly the non-coding RNAs they contain, serve important roles in many cellular processes, including the transmission of information. It is well established that the occurrence and development of gastric cancer, one of the four most common malignant tumors worldwide, involves the transmission of information. Based on the urgent need for the elucidation of the mechanism involved in this process, as well as advances in the diagnosis and treatment of gastric cancer, numerous reports have assessed the association between non-coding RNAs in exosomes and gastric cancer. The purpose of the present review was to summarize recent evidence on certain non-coding RNAs associated with the development, diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Peng-Fei Gao
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Da Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jun-Yan Wen
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Liu
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong-Wu Zhang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
68
|
Nie H, Wang Y, Liao Z, Zhou J, Ou C. The function and mechanism of circular RNAs in gastrointestinal tumours. Cell Prolif 2020; 53:e12815. [PMID: 32515024 PMCID: PMC7377939 DOI: 10.1111/cpr.12815] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/21/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal tumours are tumours that originate in the digestive tract and have extremely high morbidity and mortality. The main categories include: oesophageal, gastric, and colorectal cancers. Circular RNAs are a new class of non‐coding RNAs with a covalent closed‐loop structure without a 5’ cap or a 3’ poly A tail, which can encode a small amount of polypeptide. Recent studies have shown that circRNAs are involved in multiple biological processes during the development of gastrointestinal tumours including proliferation, invasion and metastasis, radio‐ and chemoresistance, and inflammatory responses. Also, the clinical and pathological characteristics of the patient, such as staging and lymph node metastasis, are closely associated with the expression level of circRNAs. Further investigation of the function and the role of circRNAs in the development of gastrointestinal tumours will provide new directions for its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, the Fourth Hospital of Changsha, Changsha, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
69
|
Zhang X, Zhan D, Li Y, Wang H, Cheng C, Yao Y, Jia J. Glutathione Peroxidase 8 as a Prognostic Biomarker of Gastric Cancer: An Analysis of The Cancer Genome Atlas (TCGA) Data. Med Sci Monit 2020; 26:e921775. [PMID: 32392186 PMCID: PMC7241213 DOI: 10.12659/msm.921775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Glutathione peroxidase 8 (GPX8) has previously been shown to play a role in Keshan disease. In the present study, we explored the prognostic relevance of GPX8 expression in patients with gastric cancer (GC) based upon The Cancer Genome Atlas (TCGA) data. Material/Methods We assessed the relationship between the expression of GPX8 and clinicopathological findings in GC patients via logistic regression analyses, Kruskal-Wallis tests, and Wilcoxon signed-rank tests. We further assessed the prognostic relevance of specific variables using Kaplan-Meier and Cox regression analyses. We lastly conducted gene set enrichment analyses (GSEA). Results We detected a significant association between elevated GPX8 levels and more advanced GC tumor stage (OR=5.92 for I vs. IV), as well as more advanced T (OR=22.91 for T1 vs. T4) and N classification (OR=1.82 for N0 vs. N3). We found worse prognosis in patients expressing high levels of GPX8 relative to those with lower expression of this gene (P=0.021). In a univariate analysis, we found high GPX8 expression was strongly correlated with worse OS (hazard ratio [HR]: 1.05; 95% confidence interval [CI]: 1.01–1.08; P=0.018), and multivariate analysis confirmed that GPX8 expression independently predicts GC patient OS (HR: 1.04; CI: 1.00–1.08, P=0.041). GSEA revealed that elevated GPX8 expression was associated with enrichment of pathways consistent with MAPK signaling, JAK/STAT signaling, TGF-β signaling, melanoma, and basal cell carcinoma. Conclusions The expression of GPX8 may have prognostic relevance, being positively associated with worse OS in GC patients.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Dankai Zhan
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yingying Li
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu, Anhui, China (mainland)
| | - Hui Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Chen Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yue Yao
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Jianguang Jia
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
70
|
Circ_0032821 acts as an oncogene in cell proliferation, metastasis and autophagy in human gastric cancer cells in vitro and in vivo through activating MEK1/ERK1/2 signaling pathway. Cancer Cell Int 2020; 20:74. [PMID: 32165864 PMCID: PMC7060514 DOI: 10.1186/s12935-020-1151-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNA (circRNA) is increasingly attracting attention in gastric cancer (GC). Hsa_circ_0032821 (circ_0032821) has been declared to be upregulated in human GC tissues. However, the biological role of circ_0032821 remains undisclosed in GC cells. Methods Expression of circ_0032821 was measured by real-time quantitative PCR. Cell proliferation, autophagy, Epithelial-mesenchymal transition (EMT), migration, and invasion were evaluated by Cell counting kit-8 assay, western blotting or transwell assays. Expression of proliferating cell nuclear antigen (PCNA), Matrix metalloproteinase 2 (MMP2), MMP9, Light chain 3 (LC3), p62, total and phosphorylated Extracellular signal-regulated kinase 1/2 (ERK1/2) and Mitogen-activated protein kinase’s kinase 1 (MEK1) was evaluated by western blotting. Xenograft tumor model was established to measure tumor growth in vivo. Results Circ_0032821 was significantly upregulated in human GC tumors and cells. Moreover, circ_0032821 might be a biomarker for the advanced Tumor node metastasis (TNM) stage, lymphoid node metastasis and poor prognosis in gastric cancer. Knockdown of circ_0032821 by transfection induced decrease of cell proliferation, EMT, migration and invasion, but increase of autophagy of AGS and HGC-27 cells in vitro, as well as induced tumor growth inhibition in vivo. Besides, overexpression of circ_0032821 by transfection functioned the opposite effects in human GC cells. Mechanically, the MEK1/ERK1/2 signaling pathway was activated when circ_0032821 upregulation, whereas inhibited when circ_0032821 silencing. Conclusion Circ_0032821 expression induced cell proliferation, EMT, migration, invasion, and autophagy inhibition in human GC cells in vitro and in vivo through activating MEK1/ERK1/2 signaling pathway, suggesting circ_0032821 as an oncogenic role in GC.
Collapse
|
71
|
Naeli P, Pourhanifeh MH, Karimzadeh MR, Shabaninejad Z, Movahedpour A, Tarrahimofrad H, Mirzaei HR, Bafrani HH, Savardashtaki A, Mirzaei H, Hamblin MR. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol 2020; 145:102854. [PMID: 31877535 PMCID: PMC6982584 DOI: 10.1016/j.critrevonc.2019.102854] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Both environmental and genetic factors are involved in the initiation and development of gastrointestinal cancer. Covalent closed circular RNAs (circRNAs) are produced by a mechanism called "back-splicing" from mRNAs. They are highly stable and show cell and tissue specific expression patterns. Although some functions such as "microRNA sponge" and "RNA binding protein sponge" have been reported for a small number of circRNAs, the function of thousands of other circRNAs is still unknown. Dysregulation of circRNAs has been reported in many GI cancers and are involved in metastasis and invasion. CircRNAs have been reported to be useful as prognostic markers and targets for developing new treatments. We first describe the properties and biogenesis of circRNAs. We then summarize recent reports about circRNA functions, expression status, and their potential to be used as biomarkers in GI cancers including, gastric cancer, colorectal cancer, esophageal cancer, hepatocellular carcinoma, gallbladder cancer and pancreatic cancer.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran.
| | | | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, School of Basic Sciences, TarbiatModares University, Tehran, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Hassani Bafrani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
72
|
Zhou X, Liu J, Meng A, Zhang L, Wang M, Fan H, Peng W, Lu J. Gastric juice piR-1245: A promising prognostic biomarker for gastric cancer. J Clin Lab Anal 2019; 34:e23131. [PMID: 31777102 PMCID: PMC7171314 DOI: 10.1002/jcla.23131] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Emerging reports demonstrated that PIWI‐interacting RNAs (piRNAs) played an indispensable role in tumorigenesis. However, it still remains elusive whether piR‐1245 in gastric juice specific in stomach could be employed as a biomarker for gastric cancer (GC). The present work is aiming at exploring the possibility of piR‐1245 in gastric juice as a potential marker to judge for diagnosis and prognosis of gastric cancer. Methods Gastric juice was collected from 66 GC patients and 66 healthy individuals. Quantitative real‐time reverse transcriptase polymerase chain reaction (qRT‐PCR) was employed to measure the levels of piR‐1245 expression. Then, the pattern of piR‐1245 expression in gastric juice was determined between GC patients and healthy individuals. A receiver operating characteristic (ROC) curve was constructed for distinguishing GC from healthy individuals. Results Gastric juice piR‐1245 levels in GC were higher than those of controls (P < .0001). The value of area under ROC (AUC) was 0.885 (sensitivity, 90.9%; specificity, 74.2%; 95% confidence interval, 0.8286 to 0.9414). High gastric juice piR‐1245 expression was signally correlated with tumor size (P = .013) and TNM stage (P = .001). GC patients with high piR‐1245 expression in gastric juice exerted a poorer overall survival (OS) (P = .0152) and progression‐free survival (PFS) (P = .013). COX regression analysis verified that gastric juice piR‐1245 expression was an independent prognostic risk variable for OS (P < .05). Conclusions The current study suggested that piR‐1245 in gastric juice had the potential to be a useful biomarker for GC detection and prognosis prediction.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jianhong Liu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Aifeng Meng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Lihong Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Min Wang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Hong Fan
- Department of Gastroenterology, First People's Hospital of Yunnan Province, Kunming, China
| | - Wei Peng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| |
Collapse
|