51
|
Tunca Koyun M, Sirin S, Aslim B, Taner G, Nigdelioglu Dolanbay S. Characterization of prodigiosin pigment by Serratia marcescens and the evaluation of its bioactivities. Toxicol In Vitro 2022; 82:105368. [PMID: 35476923 DOI: 10.1016/j.tiv.2022.105368] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
The aim of the present study is to discover a bacterial pigment providing protection and prevention of neurological damage and cancer development, which can have a role as a non-synthetic food additive in the food industry as well as an active drug ingredient of anticancer drugs and pharmaceuticals for neural injury. Within this scope, Serratia marcescens MB703 strain was used to produce prodigiosin. Characterization of the prodigiosin was carried out using UV-VIS, and FT-IR. In addition, its inhibitory action on AChE and antioxidant activities were determined. The cytotoxic, genotoxic and antigenotoxic activities of the prodigiosin as well as its antiproliferative activities were detected. It was determined that the maximum production of the prodigiosin (72 mg/L). The prodigiosin was found to cause no significant difference in its inhibitory effect on AChE. The prodigiosin was found effective on all antioxidant parameters tested. The IC50 values of the prodigiosin on SK-MEL-30 and HT-29 cells were calculated as 70 and 47 μM, respectively. This IC50 values of the prodigiosin showed no cytotoxic effect on L929 cells. Prodigiosin did not have genotoxic effect alone and also seem to decrease DNA damage induced by H2O2 in L929 cells. The findings of in vitro experimental studies suggest that using the prodigiosin pigment as a drug candidate for cancer and neurodegenerative disease therapy is both effective and safe.
Collapse
Affiliation(s)
- Merve Tunca Koyun
- Department of Biology, Faculty of Science, Gazi University, 06500 Teknikokullar, Ankara, Turkey; Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey.
| | - Seda Sirin
- Department of Biology, Faculty of Science, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - Belma Aslim
- Department of Biology, Faculty of Science, Gazi University, 06500 Teknikokullar, Ankara, Turkey
| | - Gokce Taner
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | | |
Collapse
|
52
|
Mogadem A, Naqvi A, Almamary MA, Ahmad WA, Jemon K, El-Alfy SH. Hepatoprotective effects of flexirubin, a novel pigment from Chryseobacterium artocarpi, against carbon tetrachloride-induced liver injury: An in vivo study and molecular modeling. Toxicol Appl Pharmacol 2022; 444:116022. [PMID: 35436475 DOI: 10.1016/j.taap.2022.116022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 12/31/2022]
|
53
|
Characterization of Bioactive Colored Materials Produced from Bacterial Cellulose and Bacterial Pigments. MATERIALS 2022; 15:ma15062069. [PMID: 35329521 PMCID: PMC8949564 DOI: 10.3390/ma15062069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/12/2023]
Abstract
A Bacterial Cellulose (BC) film was developed and characterized as a potential functional bioactive material. BC films, obtained from a microbial consortium of bacteria and yeast species, were functionalized with the bacterial pigment prodigiosin, produced by Serratia plymuthica, and flexirubin-type pigment, from Chryseobacterium shigense, which exhibit a wide range of biological properties. BC was successfully functionalized at 15% over the weight of the fiber at 40 °C during 60 min, and a color strength of 1.00 ± 0.01 was obtained for BC_prodigiosin and 0.38 ± 0.02 for BC_flexirubin-type pigment. Moreover, the BC films showed moderate hydrophilic character following alkaline treatment, which was maintained after both pigments were incorporated. The porosity and mechanical performance of the functionalized BC samples also remained unaffected. Furthermore, the BC samples functionalized with prodigiosin presented antibacterial activity and were able to inhibit the growth of pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa, with inhibition rates of 97.89 ± 0.60% and 85.12 ± 0.17%, respectively, while BC samples functionalized with flexirubin-type pigment exhibited the highest antioxidant activity, at 38.96 ± 0.49%. This research provides an eco-friendly approach to grant BC film-based material with color and advantageous bioactive properties, which can find application in several fields, especially for medical purposes.
Collapse
|
54
|
Al Omairi NE, Albrakati A, Alsharif KF, Almalki AS, Alsanie W, Abd Elmageed ZY, Zaafar D, Lokman MS, Bauomy AA, Belal SK, Abdel-Daim MM, Abdel Moneim AE, Alyami H, Kassab RB. Selenium Nanoparticles with Prodigiosin Rescue Hippocampal Damage Associated with Epileptic Seizures Induced by Pentylenetetrazole in Rats. BIOLOGY 2022; 11:biology11030354. [PMID: 35336729 PMCID: PMC8945383 DOI: 10.3390/biology11030354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Epilepsy is a chronic neurological disease characterized by neuronal hyper electrical activity and the development of unprovoked seizures. Although several antiepileptic drugs are currently available, their application is associated with undesirable adverse effects. In an attempt to find a novel antiepileptic medication with minimum side effects, we have investigated the potential neuroprotective activity of prodigiosin, a red pigment produced by bacterial species that have important pharmaceutical and biological activities biosynthesized with selenium formulation (SeNPs-PDG) against a murine epileptic model mediated by pentylenetetrazole. The main recorded findings revealed that SeNPs-PDG delayed the onset of epileptic seizures and decreased their duration significantly. Additionally, SeNPs-PDG prevented hippocampal cell loss, oxidative stress, neuroinflammation, restored the balance between excitatory and inhibitory neurotransmitters, and notably normalized the monoaminergic and cholinergic transmission. These promising findings indicate that SeNPs-PDG might serve as a naturally derived anticonvulsant agent due to their active antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory properties. Abstract Background: Prodigiosin (PDG) is a red pigment synthesized by bacterial species with important pharmaceutical and biological activities. Here, we investigated the neuroprotective and anticonvulsant activities of green biosynthesized selenium formulations with PDG (SeNPs-PDG) versus pentylenetetrazole (PTZ)-induced epileptic seizures. Methods: Rats were assigned into six experimental groups: control; PTZ (60 mg/kg, epileptic model); sodium valproate (200 mg/kg) + PTZ; PDG (300 mg/kg) + PTZ; sodium selenite (0.5 mg/kg) + PTZ; and SeNPs-PDG (0.5 mg/kg) + PTZ. The treatment duration is extended to 28 days. Results: SeNPs-PDG pre-treatment delayed seizures onset and reduced duration upon PTZ injection. Additionally, SeNPs-PDG enhanced the antioxidant capacity of hippocampal tissue by activating the expression of nuclear factor erythroid 2–related factor 2 and innate antioxidants (glutathione and glutathione derivatives, in addition to superoxide dismutase and catalase) and decreasing the levels of pro-oxidants (lipoperoxidation products and nitric oxide). SeNPs-PDG administration inhibited inflammatory reactions associated with epileptic seizure development by suppressing the production and activity of glial fibrillary acidic protein and pro-inflammatory mediators, including interleukin-1 beta, tumor necrosis factor-alpha, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B. Moreover, SeNPs-PDG protected against hippocampal cell loss following PTZ injection by decreasing the levels of cytosolic cytochrome c, Bax, and caspase-3 and enhancing the expression of anti-apoptotic Bcl-2. Interestingly, SeNPs-PDG restored the PTZ-induced imbalance between excitatory and inhibitory amino acids and improved monoaminergic and cholinergic transmission. Conclusions: These promising antioxidative, anti-inflammatory, anti-apoptotic, and neuromodulatory activities indicate that SeNPs-PDG might serve as a naturally derived anticonvulsant agent.
Collapse
Affiliation(s)
- Naif E. Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.A.O.); (H.A.)
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Correspondence: ; Tel.: +966-555696608
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (W.A.)
| | | | - Walaa Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (W.A.)
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA;
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11311, Egypt;
| | - Maha S. Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
| | - Amira A. Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, ArRass 52719, Saudi Arabia;
| | - Saied K. Belal
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed E. Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
| | - Hussain Alyami
- Department of Internal Medicine, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.A.O.); (H.A.)
| | - Rami B. Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo 11795, Egypt; (A.E.A.M.); (R.B.K.)
- Biology Department, Faculty of Science and Arts, Al-Baha University, Al-Mukhwah 65554, Saudi Arabia
| |
Collapse
|
55
|
Santos ALDC, Ferreira ACA, Figueiredo JRD. Potential use of bacterial pigments as anticancer drugs and female reproductive toxicity: a review. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72911e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract Natural bioactive compounds obtained from microorganisms, have awakened particular interest in the industry nowadays. This attention comes when natural resources depletion is pronounced, and the acquisition of both new plant origin resources and bioactive products, represents a challenge for the next generations. In this sense, prospecting for large-scale production and use of bacterial pigments is a necessary strategy for the development of novel products. A wide variety of properties have been attributed to these substances and, among them, their therapeutic potential against important diseases, such as cancer. There is consensus that available chemotherapy protocols are known to detrimentally affect cancer patients fertility. Hence, considerable part of the deleterious effects of chemotherapy is related to the drugs cytotoxicity, which, in addition to cancer cells, also affect normal cells. Therefore, the intrinsic properties of bacterial pigments associated with low cytotoxicity and relevant cell selectivity, certified them as potential anticancer drugs. However, little information is available about reproductive toxicity of these new and promising compounds. Thus, the present review aims to address the main bacterial pigments, their potential uses as anticancer drugs and their possible toxic effects, especially on the female gonad.
Collapse
|
56
|
Mnif S, Jardak M, Bouizgarne B, Aifa S. Prodigiosin from Serratia: Synthesis and potential applications. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.345515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
57
|
Santos ALDC, Ferreira ACA, Figueiredo JRD. Uso potencial de pigmentos bacterianos como drogas anticâncer e toxicidade reprodutiva feminina: uma revisão. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72911p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resumo Os compostos bioativos naturais obtidos de microrganismos têm despertado especial interesse da indústria nos últimos anos. Esta atenção ocorre em um momento em que o esgotamento de recursos naturais é pronunciado, e a aquisição de novos insumos e produtos bioativos de origem vegetal representa um desafio para as próximas gerações. Neste sentido, a prospecção para a produção e uso em larga escala dos pigmentos bacterianos tem representado uma importante estratégia para o desenvolvimento de novos produtos. Uma grande variedade de propriedades foi atribuída a estas substâncias, entre elas, o potencial terapêutico contra doenças importantes, como o câncer. Existe um consenso de que os protocolos quimioterápicos disponíveis são conhecidos por afetarem negativamente a fertilidade de pacientes com câncer. Grande parte dos efeitos deletérios da quimioterapia está relacionado à citotoxicidade das drogas usadas para este fim, que além das células cancerosas, afetam as células normais. Nesse sentido, as propriedades naturais atribuídas aos pigmentos bacterianos associadas à baixa citotoxicidade e relevante seletividade, os qualificaram como potenciais drogas anticâncer. No entanto, pouco se tem de informação a respeito da toxicidade reprodutiva destes novos e promissores compostos. Dessa forma, a presente revisão tem o objetivo de abordar os principais pigmentos bacterianos, suas utilizações potenciais como drogas anticâncer, bem como os seus possíveis efeitos tóxicos, sobretudo, sobre a gônada feminina.
Collapse
|
58
|
Farnesol and tyrosol: novel inducers for microbial production of carotenoids and prodigiosin. Arch Microbiol 2021; 204:107. [PMID: 34972980 DOI: 10.1007/s00203-021-02742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
This study was performed to elucidate the effects of two fungal quorum sensing molecules (tyrosol and farnesol) on carotenoid synthesis in the yeast Rhodotorula glutinis and prodigioin synthesis in the bacterium Serratia marcencens. Farnesol or tyrosol was directly added to the flask cultures at the beginning (immediately after inoculation with the preculture) of day 1 or the beginning (49th h) of day 3. The results demonstrated that tyrosol supplementation increased the synthesis of carotenoids but farnesol supplementation increased the synthesis of prodigiosin. It was found that adding farnesol or tyrosol into the culture on day 3 compared to day 1 caused more increments in pigment synthesis. The maximum increase (fivefold) in the synthesis of prodigiosin was achieved with 200 μL/L farnesol supplementation, whereas the maximum increase (2.13 fold) in the synthesis of carotenoids was achieved with 4 mg/L tyrosol supplementation. This is the first report about the effects of fungal quorum sensing molecules (farnesol and tyrosol) on the synthesis of carotenoids and prodigiosin in microorganisms. Due to non-human toxicity and low price and of farnesol and tyrosol, these molecules can be used as novel inducers for large-scale production of microbial pigments.
Collapse
|
59
|
Albrakati A, Alsharif KF, Al omairi NE, Alsanie WF, Almalki ASA, Abd Elmageed ZY, Elshopakey GE, Lokman MS, Bauomy AA, Abdel Moneim AE, Kassab RB. Neuroprotective Efficiency of Prodigiosins Conjugated with Selenium Nanoparticles in Rats Exposed to Chronic Unpredictable Mild Stress is Mediated Through Antioxidative, Anti-Inflammatory, Anti-Apoptotic, and Neuromodulatory Activities. Int J Nanomedicine 2021; 16:8447-8464. [PMID: 35002238 PMCID: PMC8722537 DOI: 10.2147/ijn.s323436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Depression is a mood disorder accompanied by intensive molecular and neurochemical alterations. Currently, available antidepressant therapies are not fully effective and are often accompanied by several adverse impacts. Accordingly, the ultimate goal of this investigation was to clarify the possible antidepressant effects of prodigiosins (PDGs) loaded with selenium nanoparticles (PDGs-SeNPs) in chronic unpredictable mild stress (CUMS)-induced depression-like behavior in rats. METHODS Sixty Sprague Dawley rats were randomly allocated into six groups: control, CUMS group (depression model), fluoxetine (Flu, 10 mg/kg)+CUMS, PDGs+CUMS (300 mg/kg), sodium selenite (Na2SeO3, 400 mg/kg)+CUMS, and PDGs-SeNPs+CUMS (200 mg/kg). All treatments were applied orally for 28 consecutive days. RESULTS PDGs-SeNPs administration prevented oxidative insults in hippocampal tissue, as demonstrated by decreased oxidant levels (nitric oxide and malondialdehyde) and elevated innate antioxidants (glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase), in addition to the upregulated expression of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in rats exposed to CUMS. Additionally, PDGs-SeNPs administration suppressed neuroinflammation in hippocampal tissue, as determined by the decreased production of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1β, and interleukin-6), increased anti-inflammatory cytokine interleukin-10, and decreased inflammatory mediators (prostaglandin E2, cyclooxygenase-2, and nuclear factor kappa B). Moreover, PDGs-SeNPs administration in stressed rats inhibited neuronal loss and the development of hippocampal apoptosis through enhanced levels of B cell lymphoma 2 and decreased levels of caspase 3 and Bcl-2-associated X protein. Interestingly, PDGs-SeNPs administration improved hormonal levels typically disrupted by CUMS exposure and significantly modulated hippocampal levels of monoamines, brain-derived neurotrophic factor, monoamine oxidase, and acetylcholinesterase activities, in addition to upregulating the immunoreactivity of glial fibrillary acidic protein in CUMS model rats. CONCLUSION PDGs-SeNPs may serve as a prospective antidepressant candidate due to their potent antioxidant, anti-inflammatory, and neuroprotective potential.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Naif E Al omairi
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Zakaria Y Abd Elmageed
- Department of Pharmacology, Edward via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA, USA
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Amira A Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, ArRassAl-Qassim, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Biology Department, Faculty of Science and Arts, Al Baha University, Al Makhwah Branch, Al Baha, Saudi Arabia
| |
Collapse
|
60
|
Jeong YJ, Kim HJ, Kim S, Park SY, Kim H, Jeong S, Lee SJ, Lee MS. Enhanced Large-Scale Production of Hahella chejuensis-Derived Prodigiosin and Evaluation of Its Bioactivity. J Microbiol Biotechnol 2021; 31:1624-1631. [PMID: 34675142 PMCID: PMC9705908 DOI: 10.4014/jmb.2109.09039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Prodigiosin as a high-valued compound, which is a microbial secondary metabolite, has the potential for antioxidant and anticancer effects. However, the large-scale production of functionally active Hahella chejuensis-derived prodigiosin by fermentation in a cost-effective manner has yet to be achieved. In the present study, we established carbon source-optimized medium conditions, as well as a procedure for producing prodigiosin by fermentation by culturing H. chejuensis using 10 L and 200 L bioreactors. Our results showed that prodigiosin productivity using 250 ml flasks was higher in the presence of glucose than other carbon sources, including mannose, sucrose, galactose, and fructose, and could be scaled up to 10 L and 200 L batches. Productivity in the glucose (2.5 g/l) culture while maintaining the medium at pH 6.89 during 10 days of cultivation in the 200 L bioreactor was measured and increased more than productivity in the basal culture medium in the absence of glucose. Prodigiosin production from 10 L and 200 L fermentation cultures of H. chejuensis was confirmed by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses for more accurate identification. Finally, the anticancer activity of crude extracted prodigiosin against human cancerous leukemia THP-1 cells was evaluated and confirmed at various concentrations. Conclusively, we demonstrate that culture conditions for H. chejuensis using a bioreactor with various parameters and ethanol-based extraction procedures were optimized to mass-produce the marine bacterium-derived high purity prodigiosin associated with anti-cancer activity.
Collapse
Affiliation(s)
- Yu-jin Jeong
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Suran Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Seo-Young Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - HyeRan Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sekyoo Jeong
- Research Division, Incospharm Corp., Daejeon 34036, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,
S.J. Lee Phone: +82-31-670-3356 E-mail:
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea,Corresponding authors M.S. Lee Phone: +82-42-879-8292 E-mail:
| |
Collapse
|
61
|
Sarmiento-Vizcaíno A, Martín J, Reyes F, García LA, Blanco G. Bioactive Natural Products in Actinobacteria Isolated in Rainwater From Storm Clouds Transported by Western Winds in Spain. Front Microbiol 2021; 12:773095. [PMID: 34858379 PMCID: PMC8631523 DOI: 10.3389/fmicb.2021.773095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Actinobacteria are the main producers of bioactive natural products essential for human health. Although their diversity in the atmosphere remains largely unexplored, using a multidisciplinary approach, we studied here 27 antibiotic producing Actinobacteria strains, isolated from 13 different precipitation events at three locations in Northern and Southern Spain. Rain samples were collected throughout 2013-2016, from events with prevailing Western winds. NOAA HYSPLIT meteorological analyses were used to estimate the sources and trajectories of the air-mass that caused the rainfall events. Five-day backward air masses trajectories of the diverse events reveals a main oceanic source from the North Atlantic Ocean, and in some events long range transport from the Pacific and the Arctic Oceans; terrestrial sources from continental North America and Western Europe were also estimated. Different strains were isolated depending on the precipitation event and the latitude of the sampling site. Taxonomic identification by 16S rRNA sequencing and phylogenetic analysis revealed these strains to belong to two Actinobacteria genera. Most of the isolates belong to the genus Streptomyces, thus increasing the number of species of this genus isolated from the atmosphere. Furthermore, five strains belonging to the rare Actinobacterial genus Nocardiopsis were isolated in some events. These results reinforce our previous Streptomyces atmospheric dispersion model, which we extend herein to the genus Nocardiopsis. Production of bioactive secondary metabolites was analyzed by LC-UV-MS. Comparative analyses of Streptomyces and Nocardiopsis metabolites with natural product databases led to the identification of multiple, chemically diverse, compounds. Among bioactive natural products identified 55% are antibiotics, both antibacterial and antifungal, and 23% have antitumor or cytotoxic properties; also compounds with antiparasitic, anti-inflammatory, immunosuppressive, antiviral, insecticidal, neuroprotective, anti-arthritic activities were found. Our findings suggest that over time, through samples collected from different precipitation events, and space, in different sampling places, we can have access to a great diversity of Actinobacteria producing an extraordinary reservoir of bioactive natural products, from remote and very distant origins, thus highlighting the atmosphere as a contrasted source for the discovery of novel compounds of relevance in medicine and biotechnology.
Collapse
Affiliation(s)
- Aida Sarmiento-Vizcaíno
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Luis A García
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Área de Ingeniería Química, Universidad de Oviedo, Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
62
|
Kettenmann SD, White M, Colard-Thomas J, Kraft M, Feßler AT, Danz K, Wieland G, Wagner S, Schwarz S, Wiehe A, Kulak N. Investigating Alkylated Prodigiosenes and Their Cu(II)-Dependent Biological Activity: Interactions with DNA, Antimicrobial and Photoinduced Anticancer Activity. ChemMedChem 2021; 17:e202100702. [PMID: 34779147 PMCID: PMC9306646 DOI: 10.1002/cmdc.202100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Indexed: 11/23/2022]
Abstract
Prodigiosenes are a family of red pigments with versatile biological activity. Their tripyrrolic core structure has been modified many times in order to manipulate the spectrum of activity. We have been looking systematically at prodigiosenes substituted at the C ring with alkyl chains of different lengths, in order to assess the relevance of this substituent in a context that has not been investigated before for these derivatives: Cu(II) complexation, DNA binding, self‐activated DNA cleavage, photoinduced cytotoxicity and antimicrobial activity. Our results indicate that the hydrophobic substituent has a clear influence on the different aspects of their biological activity. The cytotoxicity study of the Cu(II) complexes of these prodigiosenes shows that they exhibit a strong cytotoxic effect towards the tested tumor cell lines. The Cu(II) complex of a prodigiosene lacking any alkyl chain excelled in its photoinduced anticancer activity, thus demonstrating the potential of prodigiosenes and their metal complexes for an application in photodynamic therapy (PDT). Two derivatives along with their Cu(II) complexes showed also antimicrobial activity against Staphylococcus aureus strains.
Collapse
Affiliation(s)
| | - Matthew White
- Imperial College London, Department of Chemistry, UNITED KINGDOM
| | - Julien Colard-Thomas
- Ecole Nationale Superieur de Chimie de Paris: Ecole nationale superieure de chimie de Paris, Chimie, FRANCE
| | - Matilda Kraft
- Freie Universität Berlin: Freie Universitat Berlin, Institut für Chemie und Biochemie, GERMANY
| | - Andrea T Feßler
- Freie Universität Berlin: Freie Universitat Berlin, Institute for Microbiology, GERMANY
| | - Karin Danz
- Fraunhofer-Institut fur Biomedizinische Technik IBMT, Zellmodelle und Toxikologie, GERMANY
| | | | - Sylvia Wagner
- Fraunhofer-Institut fur Biomedizinische Technik IBMT, Zellmodelle und Toxikologie, GERMANY
| | - Stefan Schwarz
- Freie Universität Berlin: Freie Universitat Berlin, Institut für Mikrobiologie, GERMANY
| | | | - Nora Kulak
- Otto von Guericke Universitat Magdeburg, Institut für Chemie, Universitätsplatz 2, 39106, Magdeburg, GERMANY
| |
Collapse
|
63
|
Ramesh C, Anwesh M, Vinithkumar NV, Kirubagaran R, Dufossé L. Complete Genome Analysis of Undecylprodigiosin Pigment Biosynthesizing Marine Streptomyces Species Displaying Potential Bioactive Applications. Microorganisms 2021; 9:microorganisms9112249. [PMID: 34835376 PMCID: PMC8618203 DOI: 10.3390/microorganisms9112249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023] Open
Abstract
Marine Streptomyces species are underexplored for their pigment molecules and genes. In this study, we report the genome of the undecylprodigiosin biosynthesizing gene cluster carrying Streptomyces sp. strain BSE6.1, displaying antioxidant, antimicrobial, and staining properties. This Gram-positive obligate aerobic bacterium was isolated from the coastal sediment of the Andaman and Nicobar Islands, India. Pink to reddish pigmented colonies with whitish powdery spores on both agar and broth media are the important morphological characteristics of this bacterium. Growth tolerance to NaCl concentrations was 2 to 7%. The assembled genome of Streptomyces sp. BSE6.1 contains one linear chromosome 8.02 Mb in length with 7157 protein-coding genes, 82 tRNAs, 3 rRNAs and at least 11 gene clusters related to the synthesis of various secondary metabolites, including undecylprodigiosin. This strain carries type I, type II, and type III polyketide synthases (PKS) genes. Type I PKS gene cluster is involved in the biosynthesis of red pigment undecylprodigiosin of BSE6.1, similar to the one found in the S. coelicolor A3(2). This red pigment was reported to have various applications in the food and pharmaceutical industries. The genome of Streptomyces sp. BSE6.1 was submitted to NCBI with a BioProject ID of PRJNA514840 (Sequence Read Archive ID: SRR10849367 and Genome accession ID: CP085300).
Collapse
Affiliation(s)
- Chatragadda Ramesh
- National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (MOES), Government of India (GOI), Dollygunj, Port Blair 744103, Andaman and Nicobar Islands, India;
- Correspondence: (C.R.); (M.A.); (L.D.)
| | - Maile Anwesh
- Model Rural Health Research Unit (ICMR-MRHRU), Dahanu 401601, Maharashtra, India
- Correspondence: (C.R.); (M.A.); (L.D.)
| | - Nambali Valsalan Vinithkumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (MOES), Government of India (GOI), Dollygunj, Port Blair 744103, Andaman and Nicobar Islands, India;
| | - Ramalingam Kirubagaran
- Marine Biotechnology Group, National Institute of Ocean Technology, MOES, GOI, Chennai 600100, Tamil Nadu, India;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CEDEX 9, F-97744 Saint-Denis, France
- Correspondence: (C.R.); (M.A.); (L.D.)
| |
Collapse
|
64
|
Cediel Becerra JDD, Suescún Sepúlveda JA, Fuentes JL. Prodigiosin Production and Photoprotective/Antigenotoxic Properties in Serratia marcescens Indigenous Strains from Eastern Cordillera of Colombia. Photochem Photobiol 2021; 98:254-261. [PMID: 34403528 DOI: 10.1111/php.13507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Serratia marcescens is a bacterial species that produces an antibacterial pigment (Prodigiosin) showing a wide adaptive response to environmental stresses. The study aimed to investigate Prodigiosin production in S. marcescens wild-type strains, as well as its relation to photoprotection and antigenotoxicity against UVB. Prodigiosin yield was spectrophotometrically assayed in extracts of bacterial strains grown in different culture media. In vitro photoprotection efficacy was evaluated using the in vitro indices sun protection factor (SPFin vitro ) and critical wavelength (λc). The percentage of UVB antigenotoxicity estimates (%GI) in the SOS Chromotest was also evaluated. Correlation analysis was used to examine the relationship between Prodigiosin yield, SPFin vitro , %GI estimates and environmental traits (altitude, temperature, rainfall and solar irradiance). Prodigiosin yield in S. marcescens strains varied depending on culture media used for its growth, and it was correlated with environmental variables such as temperature and solar irradiance. SPFin vitro estimates were well correlated with Prodigiosin concentration and %GI values in the bacterial strains being studied. UVB photoprotective efficacy of the extracts obtained from S. marcescens strains depends on the strain's Prodigiosin yield and its antigenotoxic potential. The extracts with Prodigiosin yield higher than ˜17 μg mL-1 could be used as sources of sunscreen ingredients.
Collapse
Affiliation(s)
- José D D Cediel Becerra
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigación en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jhon Alexander Suescún Sepúlveda
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigación en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Jorge Luis Fuentes
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigación en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
65
|
PLGA-CS-PEG Microparticles for Controlled Drug Delivery in the Treatment of Triple Negative Breast Cancer Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we explore the development of controlled PLGA-CS-PEG microspheres, which are used to encapsulate model anticancer drugs (prodigiosin (PGS) or paclitaxel (PTX)) for controlled breast cancer treatment. The PLGA microspheres are blended with hydrophilic polymers (chitosan and polyethylene glycol) in the presence of polyvinyl alcohol (PVA) that were synthesized via a water-oil-water (W/O/W) solvent evaporation technique. Chitosan (CS) and polyethylene glycol (PEG) were used as surface-modifying additives to improve the biocompatibility and reduce the adsorption of plasma proteins onto the microsphere surfaces. These PLGA-CS-PEG microspheres are loaded with varying concentrations (5 and 8 mg/mL) of PGS or PTX, respectively. Scanning electron microscopy (SEM) revealed the morphological properties while Fourier transform infrared spectroscopy (FTIR) was used to elucidate the functional groups of drug-loaded PLGA-CS-PEG microparticles. A thirty-day, in vitro, encapsulated drug (PGS or PTX) release was carried out at 37 °C, which corresponds to human body temperature, and at 41 °C and 44 °C, which correspond to hyperthermic temperatures. The thermodynamics and kinetics of in vitro drug release were also elucidated using a combination of mathematical models and the experimental results. The exponents of the Korsmeyer–Peppas model showed that the kinetics of drug release was well characterized by anomalous non-Fickian drug release. Endothermic and nonspontaneous processes are also associated with the thermodynamics of drug release. Finally, the controlled in vitro release of cancer drugs (PGS and PTX) is shown to decrease the viability of MDA-MB-231 cells. The implications of the results are discussed for the development of drug-encapsulated PLGA-CS-PEG microparticles for the controlled release of cancer drugs in treatment of triple negative breast cancer.
Collapse
|
66
|
Butylcycloheptylprodigiosin and undecylprodigiosin are potential photosensitizer candidates for photodynamic cancer therapy. Mol Biol Rep 2021; 48:5965-5975. [PMID: 34331180 DOI: 10.1007/s11033-021-06598-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prodiginines are bacterial red polypyrrole pigments and multifaceted secondary metabolites. These agents have anti-proliferative, immunosuppressive, antimicrobial, and anticancer effects. Recent analysis revealed that prodigiosin hypersensitizes Serratia marcescens to gamma radiation. In the present study, we report the cytotoxicity and genotoxicity properties of undecylprodigiosin and butylcycloheptylprodigiosin in the presence and absence of radiation through the MTT and alkaline comet experiments. METHODS AND RESULTS Findings demonstrated that undecylprodigiosin was at least a fivefold more cytotoxic at low radiation doses (1 and 3 Gy) on both MCF7 and HDF lines rather than in the absence or high radiation doses (5 Gy) (P value < 0.05). Although butylcycloheptylprodigiosin toxicity on MCF7 and HDF was dose-dependent, it was not influenced by any radiation doses (P value > 0.05). Comet findings confirmed that these compounds' genotoxicity is only dose-dependent. Radiation had no significant effects on DNA damage on any of the cells (P value > 0.05). CONCLUSIONS In general, it can be concluded that the prodiginines are cytotoxic agents that act as a double-edged sword, radiosensitizers and radio-protective, respectively at low and high radiation doses in cancer treatment process. As the results they could be used in antitumor therapies very soon.
Collapse
|
67
|
Li X, Li M, Guo J, Liu X, Liao X, Shi B. Collagen peptide provides Streptomyces coelicolor CGMCC 4.7172 with abundant precursors for enhancing undecylprodigiosin production. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Effective and ecofriendly converting biomass to chemicals is important for sustainable engineering based on the foreseeable shortage of fossil resources. Undecylprodigiosin (UP) is a promising antibiotic, but the direct feeding of pure precursor amino acids makes it costly for large-scale production. Here, collagen peptide (CP), a renewable animal-derived biomass contains abundant precursor amino acids of UP. CP can act as carbon and nitrogen source for the growth of Streptomyces coelicolor CGMCC 4.7172. The plant biomasses including soybean meal, wheat bran, and malt extract were unsuitable for UP prodution. However, 365.40 µg/L UP was detected after 24 h in the media containing CP, and its highest concentration reached 1198.01 µg/L. UP was also detected in the media containing meat hydrolysates of domestic animals, but its initial production time was delayed, and final concentration was lower than that in the medium containing CP only. Compared the fermentation performances of CP and other proteins, CP has a special superiority for UP production. These results revealed that UP biosynthesis may be dependent on amino acid availability of substrates and CP is beneficial for UP production because of its specific amino acid composition.
Graphical abstract
Collapse
|
68
|
Arslan NP. Use of wool protein hydrolysate as nitrogen source in production of microbial pigments. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
69
|
Dilution-to-Extinction Platform for the Isolation of Marine Bacteria-Producing Antitumor Compounds. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2296:77-87. [PMID: 33977443 DOI: 10.1007/978-1-0716-1358-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Gram-negative marine bacteria are an underexplored source of new chemical entities for a wide range of applications. Even though, some have shown a high antitumor activity. This chapter describes an isolation and screening protocol based on the Dilution-to-Extinction approach coupled with an antiproliferative test oriented to the discovery of new cytotoxic compounds synthesized by marine bacteria. In addition to the discovery of new bioactive secondary metabolites, this protocol provides a high-throughput isolation and screening platform for discarding no bioactive strains during the first steps of the drug discovery process.
Collapse
|
70
|
Nguyen HT, Kim HG, Yu NH, Hwang IM, Kim H, Kim YC, Kim JC. In Vitro and In Vivo Antibacterial Activity of Serratamid, a Novel Peptide-Polyketide Antibiotic Isolated from Serratia plymuthica C1, against Phytopathogenic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5471-5480. [PMID: 33914513 DOI: 10.1021/acs.jafc.1c01162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new hybrid non-ribosomal peptide-polyketide antibiotic (serratamid) for phytoprotection was isolated from the ethyl acetate layer of tryptic soy agar culture of the soil bacterium Serratia plymuthica C1 through bioassay-guided fractionation. Its chemical structure was elucidated using instrumental analyses, such as mass and nuclear magnetic resonance spectrometry. Serratamid showed antibacterial activity against 15 phytopathogenic bacteria, with minimum inhibitory concentration (MIC) values ranging from 0.244 to 31.25 μg/mL. In vitro, it displayed strong antibacterial activity against Ralstonia solanacearum and four Xanthomonas spp., with MIC values (0.244-0.488 μg/mL) superior to those of streptomycin sulfate, oxolinic acid, and oxytetracycline. Further, serratamid and the ethyl acetate layer of S. plymuthica C1 effectively reduced bacterial wilt caused by R. solanacearum on tomato seedlings and fire blight caused by Erwinia on apple fruits in a dose-dependent manner. These results suggest that serratamid is a promising candidate as a potent bactericide for controlling bacterial diseases.
Collapse
Affiliation(s)
- Hoa Thi Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyoung-Geun Kim
- Natural Product Chemistry Lab, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In Min Hwang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Young Cheol Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
71
|
Li X, Tan X, Zhang J, Zhang J. Complete Genome Sequences of One Prodigiosin-Producing Serratia marcescens Strain ZPG19. Front Bioeng Biotechnol 2021; 9:665077. [PMID: 34046401 PMCID: PMC8144439 DOI: 10.3389/fbioe.2021.665077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xue Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xinfeng Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jing Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jie Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
72
|
Rapid Genome Modification in Serratia marcescens Through Red Homologous Recombination. Appl Biochem Biotechnol 2021; 193:2916-2931. [PMID: 33970425 DOI: 10.1007/s12010-021-03576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Despite the great potential of Serratia marcescens in industrial applications, lack of powerful genetic modification tools limits understanding of the regulatory networks of the useful metabolites and therefore restricts their mass production. To meet the urgent demand, we established a genome-editing strategy for S. marcescens based on Red recombineering in this study. Without host modification in advance, nucA and pigA were substituted by PCR-amplified resistance genes. No long homologous arms were required at the two sides of resistance genes. Using this procedure, the fragment at the S. marcescens as large as 20 kb was easily deleted. Then we constructed a counter-selection gene kil constructed under the control of inducible PBAD operon, which demonstrates obvious lethality to S. marcescens. Subsequently, GmR-kil double selection cassette was inserted into the CDS of pigA gene. Using single-stranded DNA-mediated recombination, this insertion mutation was efficiently repaired through kil counter-selection. A powerful genetic modification platform based on Red recombineering system was successfully established for S. marcescens. Multiple types of modification and multiple recombination strategies can all be performed easily in this species. We hope this study will be useful for the theoretical research and the research of metabolic engineering in S. marcescens.
Collapse
|
73
|
Han R, Xiang R, Li J, Wang F, Wang C. High-level production of microbial prodigiosin: A review. J Basic Microbiol 2021; 61:506-523. [PMID: 33955034 DOI: 10.1002/jobm.202100101] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Prodigiosin is a natural red pigment derived primarily from secondary metabolites of microorganisms, especially Serratia marcescens. It can also be chemically synthesized. Prodigiosin has been proven to have antitumor, antibacterial, antimalaria, anti-insect, antialgae, and immunosuppressive activities, and is gaining increasing important in the global market because of its great potential application value in clinical medicine development, environmental treatment, preparation of food additives, and so on. Due to the low efficiency of prodigiosin chemical synthesis, high-level prodigiosin of production by microorganisms are necessary for prodigiosin applications. In this paper, the production of prodigiosin by microorganism in recent decades is reviewed. The methods and strategies for increasing the yield of prodigiosin are discussed from the aspects of medium composition, additives, factors affecting production conditions, strain modification, and fermentation methods.
Collapse
Affiliation(s)
- Rui Han
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Roujin Xiang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Jinglin Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Fengqing Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Chuan Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| |
Collapse
|
74
|
Lee J, Kim HJ, Lee SJ, Lee MS. Effects of Hahella chejuensis-Derived Prodigiosin on UV-Induced ROS Production, Inflammation and Cytotoxicity in HaCaT Human Skin Keratinocytes. J Microbiol Biotechnol 2021; 31:475-482. [PMID: 33397835 PMCID: PMC9705880 DOI: 10.4014/jmb.2011.11024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Prodigiosins, which are natural tripyrrole red pigments and synthetic derivatives, reportedly have multiple biological effects mainly on various types of cancer cells. However, the effects of bacterial prodigiosin on non-cancerous HaCaT human skin keratinocytes have not been reported. Therefore, the present study aimed to investigate the functional activities of prodigiosin derived from cultures of the bacterium Hahella chejuensis in HaCaT cells. Cell viability, the cell proliferation rate, and reactive oxygen species (ROS) production in vitro were assayed following treatment of HaCaT cells with prodigiosin. Prodigiosin did not cause cytotoxicity and notably increased proliferation of HaCaT cells. Furthermore, prodigiosin reduced ultraviolet (UV) irradiation-induced ROS production and the inflammatory response in HaCaT cells. More importantly, prodigiosin reduced matrix metalloproteinase-9 expression and increased collagen synthesis in UV-irradiated HaCaT cells, demonstrating that it elicits anti-aging effects. In conclusion, our results reveal that H. chejuensis-derived prodigiosin is a potential natural product to develop functional cosmetic ingredients.
Collapse
Affiliation(s)
- Jieun Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,S.J. Lee Phone: +82-31-670-3356 E-mail:
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea,Corresponding authors M.S. Lee Phone: +82-42-879-8292 E-mail:
| |
Collapse
|
75
|
Chatragadda R, Dufossé L. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms 2021; 9:637. [PMID: 33803896 PMCID: PMC8003166 DOI: 10.3390/microorganisms9030637] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural pigments from microbes, synthetic colorants are widely used due to high production, high intensity, and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial pigments needs to be extended, explored, and exploited to find potential industrial applications. In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments from macro-organisms are also discussed in some sections for comparison with microbes.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Département Agroalimentaire, Université de La Réunion, F-97744 Saint-Denis, France
| |
Collapse
|
76
|
Clements T, Rautenbach M, Ndlovu T, Khan S, Khan W. A Metabolomics and Molecular Networking Approach to Elucidate the Structures of Secondary Metabolites Produced by Serratia marcescens Strains. Front Chem 2021; 9:633870. [PMID: 33796505 PMCID: PMC8007976 DOI: 10.3389/fchem.2021.633870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/27/2021] [Indexed: 01/29/2023] Open
Abstract
An integrated approach that combines reverse-phase high-performance liquid chromatography (RP-HPLC), electrospray ionization mass spectrometry, untargeted ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MSE) and molecular networking (using the Global Natural Products Social molecular network platform) was used to elucidate the metabolic profiles and chemical structures of the secondary metabolites produced by pigmented (P1) and non-pigmented (NP1) Serratia marcescens (S. marcescens) strains. Tandem mass spectrometry-based molecular networking guided the structural elucidation of 18 compounds for the P1 strain (including 6 serratamolides, 10 glucosamine derivatives, prodigiosin and serratiochelin A) and 15 compounds for the NP1 strain (including 8 serratamolides, 6 glucosamine derivatives and serratiochelin A) using the MSE fragmentation profiles. The serratamolide homologues were comprised of a peptide moiety of two L-serine residues (cyclic or open-ring) linked to two fatty acid chains (lengths of C10, C12, or C12:1). Moreover, the putative structure of a novel open-ring serratamolide homologue was described. The glucosamine derivative homologues (i.e., N-butylglucosamine ester derivatives) consisted of four residues, including glucose/hexose, valine, a fatty acid chain (lengths of C13 - C17 and varying from saturated to unsaturated) and butyric acid. The putative structures of seven novel glucosamine derivative homologues and one glucosamine derivative congener (containing an oxo-hexanoic acid residue instead of a butyric acid residue) were described. Moreover, seven fractions collected during RP-HPLC, with major molecular ions corresponding to prodigiosin, serratamolides (A, B, and C), and glucosamine derivatives (A, C, and E), displayed antimicrobial activity against a clinical Enterococcus faecalis S1 strain using the disc diffusion assay. The minimum inhibitory and bactericidal concentration assays however, revealed that prodigiosin exhibited the greatest antimicrobial potency, followed by glucosamine derivative A and then the serratamolides (A, B, and C). These results provide crucial insight into the secondary metabolic profiles of pigmented and non-pigmented S. marcescens strains and confirms that S. marcescens strains are a promising natural source of novel antimicrobial metabolites.
Collapse
Affiliation(s)
- Tanya Clements
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Marina Rautenbach
- BioPep™ Peptide Group, Department of Biochemistry, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Thando Ndlovu
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
77
|
Tian X, Ahsan N, Lulla A, Lev A, Abbosh P, Dicker DT, Zhang S, El-Deiry WS. P53-independent partial restoration of the p53 pathway in tumors with mutated p53 through ATF4 transcriptional modulation by ERK1/2 and CDK9. Neoplasia 2021; 23:304-325. [PMID: 33582407 PMCID: PMC7890376 DOI: 10.1016/j.neo.2021.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
A long-term goal in the cancer-field has been to develop strategies for treating p53-mutated tumors. A novel small-molecule, PG3-Oc, restores p53 pathway-signaling in tumor cells with mutant-p53, independently of p53/p73. PG3-Oc partially upregulates the p53-transcriptome (13.7% of public p53 target-gene dataset; 15.2% of in-house dataset) and p53-proteome (18%, HT29; 16%, HCT116-p53−/−). Bioinformatic analysis indicates critical p53-effectors of growth-arrest (p21), apoptosis (PUMA, DR5, Noxa), autophagy (DRAM1), and metastasis-suppression (NDRG1) are induced by PG3-Oc. ERK1/2- and CDK9-kinases are required to upregulate ATF4 by PG3-Oc which restores p53 transcriptomic-targets in cells without functional-p53. PG3-Oc represses MYC (ATF4-independent), and upregulates PUMA (ATF4-dependent) in mediating cell death. With largely nonoverlapping transcriptomes, induced-ATF4 restores p53 transcriptomic targets in drug-treated cells including functionally important mediators such as PUMA and DR5. Our results demonstrate novel p53-independent drug-induced molecular reprogramming involving ERK1/2, CDK9, and ATF4 to restore upregulation of p53 effector genes required for cell death and tumor suppression.
Collapse
Affiliation(s)
- Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, USA; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University Alpert Medical School, Providence, RI, USA; Division of Biology and Medicine, Brown University, Providence, RI, USA; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nagib Ahsan
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA; COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, USA; Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Amriti Lulla
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Avital Lev
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Philip Abbosh
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David T Dicker
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, USA; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University Alpert Medical School, Providence, RI, USA; Division of Biology and Medicine, Brown University, Providence, RI, USA; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, USA; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University Alpert Medical School, Providence, RI, USA; Division of Biology and Medicine, Brown University, Providence, RI, USA; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, USA; The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University Alpert Medical School, Providence, RI, USA; Division of Biology and Medicine, Brown University, Providence, RI, USA; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA; Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI, USA.
| |
Collapse
|
78
|
Ambrose AJ, Pham NT, Sivinski J, Guimarães L, Mollasalehi N, Jimenez P, Abad MA, Jeyaprakash AA, Shave S, Costa-Lotufo LV, La Clair JJ, Auer M, Chapman E. A two-step resin based approach to reveal survivin-selective fluorescent probes. RSC Chem Biol 2021; 2:181-186. [PMID: 34458780 PMCID: PMC8342005 DOI: 10.1039/d0cb00122h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/07/2020] [Indexed: 01/24/2023] Open
Abstract
The identification of modulators for proteins without assayable biochemical activity remains a challenge in chemical biology. The presented approach adapts a high-throughput fluorescence binding assay and functional chromatography, two protein-resin technologies, enabling the discovery and isolation of fluorescent natural product probes that target proteins independently of biochemical function. The resulting probes also suggest targetable pockets for lead discovery. Using human survivin as a model, we demonstrate this method with the discovery of members of the prodiginine family as fluorescent probes to the cancer target survivin.
Collapse
Affiliation(s)
- Andrew J Ambrose
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Nhan T Pham
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | - Jared Sivinski
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Larissa Guimarães
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
- Departamento de Farmacologia, Universidade de São Paulo São Paulo SP 05508-900 Brazil
| | - Niloufar Mollasalehi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| | - Paula Jimenez
- Instituto do Mar, Universidade Federal de São Paulo Santos SP 11.070-100 Brazil
| | - Maria A Abad
- Wellcome Centre for Cell Biology, University of Edinburgh Edinburgh EH9 3BF UK
| | | | - Steven Shave
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | | | - James J La Clair
- Xenobe Research Institute P. O. Box 3052 San Diego CA 92163-1052 USA
| | - Manfred Auer
- School of Biological Sciences and Edinburgh Medical School, Biomedical Sciences, University of Edinburgh The King's Buildings CH Waddington Building 3.07 Max Born Crescent Edinburgh EH9 3BF UK
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
79
|
Rivera-Tarazona LK, Campbell ZT, Ware TH. Stimuli-responsive engineered living materials. SOFT MATTER 2021; 17:785-809. [PMID: 33410841 DOI: 10.1039/d0sm01905d] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Stimuli-responsive materials are able to undergo controllable changes in materials properties in response to external cues. Increasing efforts have been directed towards building materials that mimic the responsive nature of biological systems. Nevertheless, limitations remain surrounding the way these synthetic materials interact and respond to their environment. In particular, it is difficult to synthesize synthetic materials that respond with specificity to poorly differentiated (bio)chemical and weak physical stimuli. The emerging area of engineered living materials (ELMs) includes composites that combine living cells and synthetic materials. ELMs have yielded promising advances in the creation of stimuli-responsive materials that respond with diverse outputs in response to a broad array of biochemical and physical stimuli. This review describes advances made in the genetic engineering of the living component and the processing-property relationships of stimuli-responsive ELMs. Finally, the implementation of stimuli-responsive ELMs as environmental sensors, biomedical sensors, drug delivery vehicles, and soft robots is discussed.
Collapse
Affiliation(s)
- Laura K Rivera-Tarazona
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77843, USA.
| | | | | |
Collapse
|
80
|
Dasgupta Mandal D, Majumdar S, Dey S, Dutta S, Mandal T. Utilization of Low-Cost Fatty Acid Sources by Bacterial Isolate for Improved Production of Valuable Prodigiosin. LECTURE NOTES IN BIOENGINEERING 2021. [DOI: 10.1007/978-981-15-7409-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
81
|
Brands S, Sikkens JG, Davari MD, Brass HUC, Klein AS, Pietruszka J, Ruff AJ, Schwaneberg U. Understanding substrate binding and the role of gatekeeping residues in PigC access tunnels. Chem Commun (Camb) 2021; 57:2681-2684. [DOI: 10.1039/d0cc08226k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prodigiosin ligase PigC has been engineered by semi-rational design to accept short chain-pyrroles, providing molecular understanding of access tunnels and the substrate-binding pocket.
Collapse
Affiliation(s)
- Stefanie Brands
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- Bioeconomy Science Center (BioSC)
- Worringerweg 3
- Aachen 52074
| | - Jarno G. Sikkens
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- Bioeconomy Science Center (BioSC)
- Worringerweg 3
- Aachen 52074
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- Bioeconomy Science Center (BioSC)
- Worringerweg 3
- Aachen 52074
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- Bioeconomy Science Center (BioSC)
- Building 15.8
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- Bioeconomy Science Center (BioSC)
- Building 15.8
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- Bioeconomy Science Center (BioSC)
- Building 15.8
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- Bioeconomy Science Center (BioSC)
- Worringerweg 3
- Aachen 52074
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- Bioeconomy Science Center (BioSC)
- Worringerweg 3
- Aachen 52074
| |
Collapse
|
82
|
Maglangit F, Yu Y, Deng H. Bacterial pathogens: threat or treat (a review on bioactive natural products from bacterial pathogens). Nat Prod Rep 2021; 38:782-821. [PMID: 33119013 DOI: 10.1039/d0np00061b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to the second quarter of 2020 Threat or treat? While pathogenic bacteria pose significant threats, they also represent a huge reservoir of potential pharmaceuticals to treat various diseases. The alarming antimicrobial resistance crisis and the dwindling clinical pipeline urgently call for the discovery and development of new antibiotics. Pathogenic bacteria have an enormous potential for natural products drug discovery, yet they remained untapped and understudied. Herein, we review the specialised metabolites isolated from entomopathogenic, phytopathogenic, and human pathogenic bacteria with antibacterial and antifungal activities, highlighting those currently in pre-clinical trials or with potential for drug development. Selected unusual biosynthetic pathways, the key roles they play (where known) in various ecological niches are described. We also provide an overview of the mode of action (molecular target), activity, and minimum inhibitory concentration (MIC) towards bacteria and fungi. The exploitation of pathogenic bacteria as a rich source of antimicrobials, combined with the recent advances in genomics and natural products research methodology, could pave the way for a new golden age of antibiotic discovery. This review should serve as a compendium to communities of medicinal chemists, organic chemists, natural product chemists, biochemists, clinical researchers, and many others interested in the subject.
Collapse
Affiliation(s)
- Fleurdeliz Maglangit
- Department of Biology and Environmental Science, College of Science, University of the Philippines Cebu, Lahug, Cebu City, 6000, Philippines. and Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Centre for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
83
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
84
|
Tran T, Dawrs SN, Norton GJ, Virdi R, Honda JR. Brought to you courtesy of the red, white, and blue-pigments of nontuberculous mycobacteria. AIMS Microbiol 2020; 6:434-450. [PMID: 33364537 PMCID: PMC7755587 DOI: 10.3934/microbiol.2020026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Pigments are chromophores naturally synthesized by animals, plants, and microorganisms, as well as produced synthetically for a wide variety of industries such as food, pharmaceuticals, and textiles. Bacteria produce various pigments including melanin, pyocyanin, bacteriochlorophyll, violacein, prodigiosin, and carotenoids that exert diverse biological activities as antioxidants and demonstrate anti-inflammatory, anti-cancer, and antimicrobial properties. Nontuberculous mycobacteria (NTM) include over 200 environmental and acid-fast species; some of which can cause opportunistic disease in humans. Early in the study of mycobacteriology, the vast majority of mycobacteria were not known to synthesize pigments, particularly NTM isolates of clinical significance such as the Mycobacterium avium complex (MAC) species. This paper reviews the overall understanding of microbial pigments, their applications, as well as highlights what is currently known about pigments produced by NTM, the circumstances that trigger their production, and their potential roles in NTM survival and virulence.
Collapse
Affiliation(s)
- Tru Tran
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Stephanie N Dawrs
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Grant J Norton
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Ravleen Virdi
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Jennifer R Honda
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
85
|
Branco PC, Pontes CA, Rezende-Teixeira P, Amengual-Rigo P, Alves-Fernandes DK, Maria-Engler SS, da Silva AB, Pessoa ODL, Jimenez PC, Mollasalehi N, Chapman E, Guallar V, Machado-Neto JA, Costa-Lotufo LV. Survivin modulation in the antimelanoma activity of prodiginines. Eur J Pharmacol 2020; 888:173465. [PMID: 32814079 DOI: 10.1016/j.ejphar.2020.173465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Melanoma is a type of skin cancer with an elevated incidence of metastasis and chemoresistance. Such features hamper treatment success of these neoplasms, demanding the search for new therapeutic options. Using a two-step resin-based approach, we recently demonstrated that cytotoxic prodiginines bind to the inhibitor of apoptosis protein, survivin. Herein, we explore the role of survivin in melanoma and whether its modulation is related to the antimelanoma properties of three cytotoxic prodiginines (prodigiosin, cyclononylprodigiosin, and nonylprodigiosin) isolated from marine bacteria. In melanoma patients and cell lines, survivin is overexpressed, and higher levels negatively impact survival. All three prodiginines caused a decrease in cell growth with reduced cytotoxicity after 24 h compared to 72 h treatment, suggesting that low concentrations promote cytostatic effects in SK-Mel-19 (BRAF mutant) and SK-Mel-28 (BRAF mutant), but not in SK-Mel-147 (NRAS mutant). An increase in G1 population was observed after 24 h treatment with prodigiosin and cyclononylprodigiosin in SK-Mel-19. Further studies indicate that prodigiosin induced apoptosis and DNA damage, as detected by increased caspase-3 cleavage and histone H2AX phosphorylation, further arguing for the downregulation of survivin. Computer simulations suggest that prodigiosin and cyclononylprodigiosin bind to the BIR domain of survivin. Moreover, knockdown of survivin increased long-term toxicity of prodigiosin, as observed by reduced clonogenic capacity, but did not alter short-term cytotoxicity. In summary, prodiginine treatment provoked cytostatic rather than cytotoxic effects, cell cycle arrest at G0/G1 phase, induction of apoptosis and DNA damage, downregulation of survivin, and decreased clonogenic capacity in survivin knockdown cells.
Collapse
Affiliation(s)
- Paola C Branco
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-900, Sao Paulo, SP, Brazil
| | - Cristine A Pontes
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-900, Sao Paulo, SP, Brazil
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-900, Sao Paulo, SP, Brazil
| | - Pep Amengual-Rigo
- Department of Life Sciences, Barcelona Supercomputing Center, 08034, Barcelona, Spain
| | - Débora K Alves-Fernandes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Alison B da Silva
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, 60021, Fortaleza, CE, Brazil
| | - Otília Deusdênia L Pessoa
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, 60021, Fortaleza, CE, Brazil
| | - Paula C Jimenez
- Institute of Marine Sciences, Institute of Marine Sciences, Federal University of São Paulo, 11.070-100, Santos, SP, Brazil
| | - Niloufar Mollasalehi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 85721-0207, Tucson, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 85721-0207, Tucson, USA
| | - Victor Guallar
- Department of Life Sciences, Barcelona Supercomputing Center, 08034, Barcelona, Spain
| | - João A Machado-Neto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-900, Sao Paulo, SP, Brazil
| | - Leticia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, 05508-900, Sao Paulo, SP, Brazil.
| |
Collapse
|
86
|
Majumdar S, Paul I, Dey S, Dutta S, Mandal T, Mandal DD. Biotransformation of paper mill sludge by Serratia marcescens NITDPER1 for prodigiosin and cellulose nanocrystals: A strategic valorization approach. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
87
|
Serratia marcescens secretes proteases and chitinases with larvicidal activity against Anopheles dirus. Acta Trop 2020; 212:105686. [PMID: 32866458 DOI: 10.1016/j.actatropica.2020.105686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023]
Abstract
Vector control, the most efficient tool to reduce mosquito-borne disease transmission, has been compromised by the rise of insecticide resistance. Recent studies suggest the potential of mosquito-associated microbiota as a source for new biocontrol agents or new insecticidal chemotypes. In this study, we identified a strain of Serratia marcescens that has larvicidal activity against Anopheles dirus, an important malaria vector in Southeast Asia. This bacterium secretes heat-labile larvicidal macromolecules when cultured under static condition at 25°C but not 37°C. Two major protein bands of approximately 55 kDa and 110 kDa were present in spent medium cultured at 25°C but not at 37°C. The Liquid Chromatography-Mass Spectrometry (LC-MS) analyses of these two protein bands identified several proteases and chitinases that were previously reported for insecticidal properties against agricultural insect pests. The treatment with protease and chitinase inhibitors led to a reduction in larvicidal activity, confirming that these two groups of enzymes are responsible for the macromolecule's toxicity. Taken together, our results suggest a potential use of these enzymes in the development of larvicidal agents against Anopheles mosquitoes.
Collapse
|
88
|
Barros-Nepomuceno FWA, de Araújo Viana D, Pinheiro DP, de Cássia Evangelista de Oliveira F, Magalhães Ferreira J, R de Queiroz MG, Ma X, Cavalcanti BC, Pessoa C, Banwell MG. The Effects of the Alkaloid Tambjamine J on Mice Implanted with Sarcoma 180 Tumor Cells. ChemMedChem 2020; 16:420-428. [PMID: 32886437 DOI: 10.1002/cmdc.202000387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/18/2020] [Indexed: 12/12/2022]
Abstract
The tambjamines are a small group of bipyrrolic alkaloids that, collectively, display a significant range of biological activities including antitumor, antimicrobial and immunosuppressive properties. The key objective of the present study was to undertake preclinical assessments of tambjamine J (T-J) so as to determine its in vivo antitumor effects. To that end, sarcoma 180 cells were transplanted in mice and the impacts of the title compound then evaluated using a range of protocols including hematological, biochemical, histopathological, genotoxic and clastogenic assays. As a result it was established that this alkaloid has a significant therapeutic window and effectively reduces tumor growth (by 40 % and 79 % at doses of 10 and 20 mg/kg/day, respectively). In this regard it displays similar antitumor activity to the anticancer agent cyclophosphamide and alters animal weight in an analogous manner.
Collapse
Affiliation(s)
- Francisco Washington A Barros-Nepomuceno
- Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Acarape, 62.785-000, CE, Brazil.,Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | - Daniel de Araújo Viana
- PATHOVET Laboratory, Pathological Anatomy and Veterinary Clinic, Fortaleza, 60.020.001, CE, Brazil
| | - Daniel Pascoalino Pinheiro
- Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | | | - Jamile Magalhães Ferreira
- Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Acarape, 62.785-000, CE, Brazil.,Clinical and Toxicological Analysis Department, Faculty of Pharmacy, Odontology and Nursing, Federal University of Ceará, Fortaleza, 60.714.903, CE, Brazil
| | - Maria Goretti R de Queiroz
- Clinical and Toxicological Analysis Department, Faculty of Pharmacy, Odontology and Nursing, Federal University of Ceará, Fortaleza, 60.714.903, CE, Brazil
| | - Xinghua Ma
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bruno Coêlho Cavalcanti
- Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | - Claudia Pessoa
- Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia.,Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, 519070, Guangdong, China
| |
Collapse
|
89
|
Zhang H, Xie W, Hou F, Hu J, Yao Z, Zhao Q, Zhang D. Response of microbial community to the lysis of Phaeocystis globosa induced by a biological algicide, prodigiosin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115047. [PMID: 32585552 DOI: 10.1016/j.envpol.2020.115047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Terminating harmful algal blooms by using algicidal agents is a strong disturbance event in marine environment, which has powerful structural influences on microbial ecosystems. But, the response of microbial ecosystem to algicidal agent is largely unknown. Here, we conducted Phaeocystis globosa microcosms to investigate the dynamics, assembly processes, and co-occurrence patterns of microbial communities in response to algicidal process induced by a highly efficient algicidal agent, prodigiosin, by using 16S rRNA gene amplicon sequencing. The α-diversity of microbial community showed no obvious changes during the algicidal process in P. globosa microcosm treated with prodigiosin (group PD). Rhodobacteraceae increased significantly (P < 0.05) during algicidal process in PD, and this was mainly due to the lysis of P. globosa cells. Compared to the control group, the temporal turnover rates of common and rare taxa in PD were significantly higher because of the lysis of P. globosa induced by prodigiosin. Neutral processes mainly drove the assembly of microbial communities in all microcosms, even though the algicidal process induced by prodigiosin had no effect on the assembly processes. In addition, the time-decay relationship and co-occurrence network analysis indicate that rare taxa play important roles in maintaining microbial community stability in response to the algicidal process, rather than prodigiosin. These findings suggest that prodigiosin cannot affect the dynamics of microbial communities directly; however, future investigations into the function of microbial communities in response to prodigiosin remain imperative.
Collapse
Affiliation(s)
- Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Weijuan Xie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Fanrong Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Qunfen Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
90
|
Gohil N, Bhattacharjee G, Singh V. Synergistic bactericidal profiling of prodigiosin extracted from Serratia marcescens in combination with antibiotics against pathogenic bacteria. Microb Pathog 2020; 149:104508. [PMID: 32956792 PMCID: PMC7499092 DOI: 10.1016/j.micpath.2020.104508] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
The emergence of multidrug-resistant (MDR) bacteria is on the rise and the situation has been worsening with each passing day, which is evident from the outpouring number of reports about how more and more pathogens are becoming resistant to even the third and fourth generations of antibiotics. Lately, combination therapies or drug synergy have been giving promising results in curbing infections since it delineates its action on multiple aspects as compared to monotherapies. In this study, we used prodigiosin, a bacterial pigment endowed with magnificent biological properties, in combination with six antibiotics to study its effect on Pseudomonas aeruginosa, Staphylococcus aureus and Chromobacterium violaceum. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of prodigiosin against the test organisms was determined and a checkerboard assay of prodigiosin with various antibiotic combinations was performed with an aim to abate antimicrobial resistance. MIC and MBC of prodigiosin was obtained in the range of 4–16 μg/mL, which was lower than that of most test antibiotics. Coupling prodigiosin with other test antibiotics exhibited an excellent synergy profile against all test organisms and the effects were reported to be either synergistic or additive. In the case of S. aureus and C. violaceum, all combinations were found to be synergic, and remarkably for S. aureus, FBC index was reported to be as low as ≤0.25 with all of the test antibiotics. Therefore, it is deduced that prodigiosin augments and intensifies the action of antibiotics, and results in a double-whammy against the MDR strains. Prodigiosin showed excellent bactericidal activity against P. aeruginosa, S. aureus and C. violaceum. Prodigiosin in combination with antibiotics exhibited synergic effect in majority of the cases against all test pathogens. For S. aureus, prodigiosin-antibiotic combinations showed excellent synergic effect with an FBC index as low as ≤0.25. Prodigiosin augments the action of antibiotics against pathogenic bacteria.
Collapse
Affiliation(s)
- Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
91
|
Reclassification of the Taxonomic Framework of Orders Cellvibrionales, Oceanospirillales, Pseudomonadales, and Alteromonadales in Class Gammaproteobacteria through Phylogenomic Tree Analysis. mSystems 2020; 5:5/5/e00543-20. [PMID: 32934116 PMCID: PMC7498684 DOI: 10.1128/msystems.00543-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Orders Oceanospirillales and Pseudomonadales play important roles in various ecosystems as the keystone taxa of microbiomes. However, the two orders present a close evolutionary relationship, which might have caused taxonomic misinterpretation and resulted in an incorrect understanding of their evolutionary history. In this study, first, we used the 16S rRNA gene sequences of 2,049 species of Gammaproteobacteria to build a phylogenetic tree, which demonstrated that reports regarding the evolutionary relationship of orders Cellvibrionales, Oceanospirillales, and Pseudomonadales based on a single conserved gene with a poor resolution have been conflicting; in particular, the major families Moraxellaceae and Pseudomonadaceae of order Pseudomonadales were separated from orders Cellvibrionales and Oceanospirillales Subsequently, we constructed the bac120 trees of all representative reference genomes of class Gammaproteobacteria based on 120 ubiquitous single-copy proteins from bacteria and a phylogenomic tree based on the 119 core genes of 257 reference genomes obtained from orders Cellvibrionales, Oceanospirillales, and Pseudomonadales to cross validate and infer their intrinsic evolutionary relationships. These results indicated that two novel orders, Moraxellales ord. nov. and Kangiellales ord. nov., and three novel families, Marinobacteraceae fam. nov., Perlucidibacaceae fam. nov., and Zooshikellaceae fam. nov., should be proposed. Additionally, orders Cellvibrionales and Oceanospirillales were merged into the order Pseudomonadales except for families Moraxellaceae and Kangiellaceae in class Gammaproteobacteria, which currently includes 18 families. Our work sheds some light on the evolutionary history of class Gammaproteobacteria, which could facilitate the detection and taxonomic analysis of natural communities.IMPORTANCE The orders Cellvibrionales, Oceanospirillales, and Pseudomonadales, as three major orders of the largest bacterial class, Gammaproteobacteria, play important roles in various ecosystems as the keystone taxa of microbiomes, but their evolutionary relationship is currently polyphyletic and chaotic. Here, we constructed a bac120 tree and core-genome tree and calculated the amino acid identity (AAI) value to explore their intrinsic evolutionary history. In this study, we proposed two novel orders and three novel families. This evolution study vastly reconstructed the taxonomic framework of class Gammaproteobacteria and could provide a more distinct perspective on global distribution and evolutionary patterns of these environmental microorganisms.
Collapse
|
92
|
Anwar MM, Shalaby M, Embaby AM, Saeed H, Agwa MM, Hussein A. Prodigiosin/PU-H71 as a novel potential combined therapy for triple negative breast cancer (TNBC): preclinical insights. Sci Rep 2020; 10:14706. [PMID: 32895397 PMCID: PMC7477571 DOI: 10.1038/s41598-020-71157-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Prodigiosin, a secondary metabolite red pigment produced by Serratia marcescens, has an interesting apoptotic efficacy against cancer cell lines with low or no toxicity on normal cells. HSP90α is known as a crucial and multimodal target in the treatment of TNBC. Our research attempts to assess the therapeutic potential of prodigiosin/PU-H71 combination on MDA-MB-231 cell line. The transcription and protein expression levels of different signalling pathways were assessed. Treatment of TNBC cells with both drugs resulted in a decrease of the number of adherent cells with apoptotic effects. Prodigiosin/PU-H71 combination increased the levels of caspases 3,8 and 9 and decreased the levels of mTOR expression. Additionally, there was a remarkable decrease of HSP90α transcription and expression levels upon treatment with combined therapy. Also, EGFR and VEGF expression levels decreased. This is the first study to show that prodigiosin/PU-H71 combination had potent cytotoxicity on MDA-MB-231 cells; proving to play a paramount role in interfering with key signalling pathways in TNBC. Interestingly, prodigiosin might be a potential anticancer agent to increase the sensitivity of TNBC cells to apoptosis. This study provides a new basis for upcoming studies to overcome drug resistance in TNBC cells.
Collapse
Affiliation(s)
- Mohammed Moustapha Anwar
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Manal Shalaby
- Medical Biotechnology Department, Institute of Genetic Engineering, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Behooth St, Dokki, Giza 12311, Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
93
|
Choksi J, Vora J, Shrivastava N. Bioactive Pigments from Isolated Bacteria and Its Antibacterial, Antioxidant and Sun Protective Application Useful for Cosmetic Products. Indian J Microbiol 2020; 60:379-382. [PMID: 32647396 PMCID: PMC7329960 DOI: 10.1007/s12088-020-00870-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/07/2020] [Indexed: 01/18/2023] Open
Abstract
Bacterial pigments are the unique and sustainable source of bioactive colour compounds used in cosmetics, food, textiles, printing and pharmaceutical products. Here, we report the pigment-producing isolates and their biological activities that could be benefited for different industries including cosmeceuticals. In this study, a total of 19 pigment-producing bacteria were isolated and purified from collected soil and water samples. The colour production ability of purified bacteria was observed up to 5 transfers. Of the 19 isolates, two isolates lost colour production ability in subsequent transfers. Crude pigments extracted from the remaining 17 isolates showed sunscreen activity in the range of 0.4-8.34. However, only 6 of them showed significant antibacterial and antioxidant activities. In the media optimization experiment, these 6 bacteria showed optimum growth in neutral to alkaline pH, while optimum temperatures for growth were different for different bacteria. One isolate produces the promising pigment, out of all six potential pigments. It is stable up to 5 transfers, having antioxidant and antibacterial activity with Sun protective activity; the strain was identified using 16srRNA gene sequencing and obtained accession number as MK770403 (probable strain is Staphylococcus xylosus) from National Center for Biotechnology Information (NCBI) database. The results of this study suggested that these bioactive pigments can further be developed and used as antibacterial, antioxidant and sun-protective ingredients in cosmeceuticals.
Collapse
Affiliation(s)
- Janki Choksi
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat India
- Shree Ramkrishna Institute of Computer Education and Applied Sciences, Surat, Gujarat India
| | - Jaykant Vora
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat India
- Department of Life Science, Gujarat University, Ahmedabad, Gujarat India
| | - Neeta Shrivastava
- B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat India
| |
Collapse
|
94
|
Doxorubicin metabolism moderately attributes to putative toxicity in prodigiosin/doxorubicin synergism in vitro cells. Mol Cell Biochem 2020; 475:119-126. [PMID: 32754875 PMCID: PMC7599147 DOI: 10.1007/s11010-020-03864-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Doxorubicin (Dox) is a widely neoplasm chemotherapeutic drug with high incidences of cardiotoxicity. Prodigiosin (PG), a red bacterial pigment from Serratia marcescens, has been demonstrated to potentiate Dox’s cytotoxicity against oral squamous cell carcinoma cells through elevating Dox influx and identified as a Dox enhancer via PG-induced autophagy; however, toxicity of normal cell remains unclear. This study is conducted to evaluate putative cytotoxicity features of PG/Dox synergism in the liver, kidney, and heart cells and further elucidate whether PG augmented Dox’s effect via modulating Dox metabolism in normal cells. Murine hepatocytes FL83B, cardio-myoblast h9c2, and human kidney epithelial cells HK-2 were sequentially treated with PG and Dox by measuring cell viability, cell death characteristics, oxidative stress, Dox flux, and Dox metabolism. PG could slightly significant increase Dox cytotoxicity in all tested normal cells whose toxic alteration was less than that of oral squamous carcinoma cells. The augmentation of Dox cytotoxicity might be attributed to the increase of Dox-mediated ROS accumulation that might cause slight reduction of Dox influx and reduction of Dox metabolism. It was noteworthy to notice that sustained cytotoxicity appeared in normal cells after PG and Dox were removed. Taken together, moderately metabolic reduction of Dox might be ascribed to the mechanism of increase Dox cytotoxicity in PG-induced normal cells; nevertheless, the determination of PG/Dox dose with sustained cytotoxicity in normal cells needs to be comprehensively considered.
Collapse
|
95
|
Elmallah MIY, Cogo S, Constantinescu AA, Elifio-Esposito S, Abdelfattah MS, Micheau O. Marine Actinomycetes-Derived Secondary Metabolites Overcome TRAIL-Resistance via the Intrinsic Pathway through Downregulation of Survivin and XIAP. Cells 2020; 9:cells9081760. [PMID: 32708048 PMCID: PMC7464567 DOI: 10.3390/cells9081760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 01/03/2023] Open
Abstract
Resistance of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis represents the major hurdle to the clinical use of TRAIL or its derivatives. The discovery and development of lead compounds able to sensitize tumor cells to TRAIL-induced cell death is thus likely to overcome this limitation. We recently reported that marine actinomycetes’ crude extracts could restore TRAIL sensitivity of the MDA-MB-231 resistant triple negative breast cancer cell line. We demonstrate in this study, that purified secondary metabolites originating from distinct marine actinomycetes (sharkquinone (1), resistomycin (2), undecylprodigiosin (3), butylcyclopentylprodigiosin (4), elloxizanone A (5) and B (6), carboxyexfoliazone (7), and exfoliazone (8)), alone, and in a concentration-dependent manner, induce killing in both MDA-MB-231 and HCT116 cell lines. Combined with TRAIL, these compounds displayed additive to synergistic apoptotic activity in the Jurkat, HCT116 and MDA-MB-231 cell lines. Mechanistically, these secondary metabolites induced and enhanced procaspase-10, -8, -9 and -3 activation leading to an increase in PARP and lamin A/C cleavage. Apoptosis induced by these compounds was blocked by the pan-caspase inhibitor QvD, but not by a deficiency in caspase-8, FADD or TRAIL agonist receptors. Activation of the intrinsic pathway, on the other hand, is likely to explain both their ability to trigger cell death and to restore sensitivity to TRAIL, as it was evidenced that these compounds could induce the downregulation of XIAP and survivin. Our data further highlight that compounds derived from marine sources may lead to novel anti-cancer drug discovery.
Collapse
Affiliation(s)
- Mohammed I. Y. Elmallah
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt;
- Correspondence: (M.I.Y.E.); (O.M.)
| | - Sheron Cogo
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Graduate Programme in Health Sciences, Pontifícia Universidade Catolica do Parana, Curitiba 80215–901, Parana, Brazil;
| | - Andrei A. Constantinescu
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
| | - Selene Elifio-Esposito
- Graduate Programme in Health Sciences, Pontifícia Universidade Catolica do Parana, Curitiba 80215–901, Parana, Brazil;
| | - Mohammed S. Abdelfattah
- Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt;
- Marine Natural Products Unit (MNPRU), Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt
| | - Olivier Micheau
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Correspondence: (M.I.Y.E.); (O.M.)
| |
Collapse
|
96
|
Bacterial Pigment Prodigiosin Demonstrates a Unique Antiherpesvirus Activity That Is Mediated through Inhibition of Prosurvival Signal Transducers. J Virol 2020; 94:JVI.00251-20. [PMID: 32295926 DOI: 10.1128/jvi.00251-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus (HSV) is among the most prevalent viral infections worldwide and remains incurable. While nucleoside analogs are used to relieve symptoms of infection, they suffer from having serious adverse effects and are unable to abolish the virus from the host. Here, we demonstrate a unique antiviral effect of prodigiosin (PG), a natural secondary metabolite produced by Serratia marcescens, on HSV infection. We show that PG naturally exerts antiviral activity against HSV-1 and HSV-2 infections. PG treatment resulted in robust inhibition of viral replication in vitro and ex vivo in cultured porcine corneas. Additionally, PG protected against HSV-1 infection and disease progression in a murine model of ocular infection. In our quest to determine the molecular mechanisms of its antiviral activity, we show that PG specifically inhibits NF-κB and Akt signaling pathways and promotes accelerated cell death in HSV-infected cells. Our findings reveal novel antiviral properties of PG, suggesting its high potential as an alternative treatment for herpetic diseases. They also provide new information on antiviral effects of HSV-bacterial metabolite interactions.IMPORTANCE In this article, we provide a new role for a commonly found bacterial pigment in controlling herpes simplex virus infection, for which diverse and multimodal antiviral agents are needed to prevent drug resistance. Serratia marcescens is a red pigment (prodigiosin)-producing Gram-negative bacillus that is naturally found in soil and water. It is associated with many kinds of human infections, including wound and eye infections, and meningitis. Taking cues from previous studies on prodigiosin, including possible proapoptotic anticancer properties, we investigated how it might affect HSV infection. Interestingly, we found that it is a potent virucidal compound that disrupts host signaling pathways needed for HSV growth and survival. The mode of antiviral action suggests potentially broad activity against enveloped viruses. Our results also indicate that interactions with commensal bacteria may inhibit HSV infection, underscoring the importance of studying these microbial metabolites and their implications for viral pathogenesis and treatment.
Collapse
|
97
|
Wang SL, Nguyen VB, Doan CT, Tran TN, Nguyen MT, Nguyen AD. Production and Potential Applications of Bioconversion of Chitin and Protein-Containing Fishery Byproducts into Prodigiosin: A Review. Molecules 2020; 25:E2744. [PMID: 32545769 PMCID: PMC7356639 DOI: 10.3390/molecules25122744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
The technology of microbial conversion provides a potential way to exploit compounds of biotechnological potential. The red pigment prodigiosin (PG) and other PG-like pigments from bacteria, majorly from Serratia marcescens, have been reported as bioactive secondary metabolites that can be used in the broad fields of agriculture, fine chemicals, and pharmacy. Increasing PG productivity by investigating the culture conditions especially the inexpensive carbon and nitrogen (C/N) sources has become an important factor for large-scale production. Investigations into the bioactivities and applications of PG and its related compounds have also been given increased attention. To save production cost, chitin and protein-containing fishery byproducts have recently been investigated as the sole C/N source for the production of PG and chitinolytic/proteolytic enzymes. This strategy provides an environmentally-friendly selection using inexpensive C/N sources to produce a high yield of PG together with chitinolytic and proteolytic enzymes by S. marcescens. The review article will provide effective references for production, bioactivity, and application of S. marcescens PG in various fields such as biocontrol agents and potential pharmaceutical drugs.
Collapse
Affiliation(s)
- San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Minh Trung Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| |
Collapse
|
98
|
Guryanov I, Naumenko E, Akhatova F, Lazzara G, Cavallaro G, Nigamatzyanova L, Fakhrullin R. Selective Cytotoxic Activity of Prodigiosin@halloysite Nanoformulation. Front Bioeng Biotechnol 2020; 8:424. [PMID: 32528938 PMCID: PMC7264093 DOI: 10.3389/fbioe.2020.00424] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
Prodigiosin, a bioactive secondary metabolite produced by Serratia marcescens, is an effective proapoptotic agent against various cancer cell lines, with little or no toxicity toward normal cells. The hydrophobicity of prodigiosin limits its use for medical and biotechnological applications, these limitations, however, can be overcome by using nanoscale drug carriers, resulting in promising formulations for target delivery systems with great potential for anticancer therapy. Here we report on prodigiosin-loaded halloysite-based nanoformulation and its effects on viability of malignant and non-malignant cells. We have found that prodigiosin-loaded halloysite nanotubes inhibit human epithelial colorectal adenocarcinoma (Caco-2) and human colon carcinoma (HCT116) cells proliferative activity. After treatment of Caco-2 cells with prodigiosin-loaded halloysite nanotubes, we have observed a disorganization of the F-actin structure. Comparison of this effects on malignant (Caco-2, HCT116) and non-malignant (MSC, HSF) cells suggests the selective cytotoxic and genotoxic activity of prodigiosin-HNTs nanoformulation.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina Naumenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Palermo, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Florence, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Palermo, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Florence, Italy
| | - Läysän Nigamatzyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
99
|
Vitale GA, Sciarretta M, Palma Esposito F, January GG, Giaccio M, Bunk B, Spröer C, Bajerski F, Power D, Festa C, Monti MC, D'Auria MV, de Pascale D. Genomics-Metabolomics Profiling Disclosed Marine Vibrio spartinae 3.6 as a Producer of a New Branched Side Chain Prodigiosin. JOURNAL OF NATURAL PRODUCTS 2020; 83:1495-1504. [PMID: 32275146 DOI: 10.1021/acs.jnatprod.9b01159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A wide range of prescreening tests for antimicrobial activity of 59 bacterial isolates from sediments of Ria Formosa Lagoon (Algarve, Portugal) disclosed Vibrio spartinae 3.6 as the most active antibacterial producing strain. This bacterial strain, which has not previously been submitted for chemical profiling, was subjected to de novo whole genome sequencing, which aided in the discovery and elucidation of a prodigiosin biosynthetic gene cluster that was predicted by the bioinformatic tool KEGG BlastKoala. Comparative genomics led to the identification of a new membrane di-iron oxygenase-like enzyme, annotated as Vspart_02107, which is likely to be involved in the biosynthesis of cycloprodigiosin and analogues. The combined genomics-metabolomics profiling of the strain led to the isolation and identification of one new branched-chain prodigiosin (5) and to the detection of two new cyclic forms. Furthermore, the evaluation of the minimum inhibitory concentrations disclosed the major prodigiosin as very effective against multi-drug-resistant pathogens including Stenotrophomonas maltophilia, a clinical isolate of Listeria monocytogenes, as well as some human pathogens reported by the World Health Organization as prioritized targets.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- Institute of Biochemistry and Cellular Biology, National Research Council (IBBC-CNR), Via Pietro Castellino 111, I-80131 Naples, Italy
| | - Martina Sciarretta
- Department of Pharmacy, University of Naples "Federico II" (UNINA), Via Domenico Montesanto, 49, I-80131 Naples, Italy
| | - Fortunato Palma Esposito
- Institute of Biochemistry and Cellular Biology, National Research Council (IBBC-CNR), Via Pietro Castellino 111, I-80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale di Napoli, I-80121 Naples, Italy
| | - Grant Garren January
- Institute of Biochemistry and Cellular Biology, National Research Council (IBBC-CNR), Via Pietro Castellino 111, I-80131 Naples, Italy
| | - Marianna Giaccio
- Institute of Biochemistry and Cellular Biology, National Research Council (IBBC-CNR), Via Pietro Castellino 111, I-80131 Naples, Italy
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, German
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, German
| | - Felizitas Bajerski
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, German
| | - Deborah Power
- Centro de Ciencias do Mar (CCMAR), Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II" (UNINA), Via Domenico Montesanto, 49, I-80131 Naples, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno (UNISA), I-84084 Fisciano, SA, Italy
| | - Maria Valeria D'Auria
- Department of Pharmacy, University of Naples "Federico II" (UNINA), Via Domenico Montesanto, 49, I-80131 Naples, Italy
| | - Donatella de Pascale
- Institute of Biochemistry and Cellular Biology, National Research Council (IBBC-CNR), Via Pietro Castellino 111, I-80131 Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Villa Comunale di Napoli, I-80121 Naples, Italy
| |
Collapse
|
100
|
Lin SR, Chen YH, Tseng FJ, Weng CF. The production and bioactivity of prodigiosin: quo vadis? Drug Discov Today 2020; 25:828-836. [PMID: 32251776 DOI: 10.1016/j.drudis.2020.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Prodigiosin (PG), a red tripyrrole pigment, belongs to a member of the prodiginine family and is normally secreted by various sources including Serratia marcescens and other Gram-negative bacteria. The studies of PG have received innovative devotion as a result of reported antimicrobial, larvicidal and anti-nematoid immunomodulation and antitumor properties, owing to its antibiotic and cytotoxic activities. This review provides a comprehensive summary of research undertaken toward the isolation and structural elucidation of the prodiginine family of natural products. Additionally, the current evidence-based understanding of the biological activities and medicinal potential of PG is employed to determine the efficacy, with some reports of information related to pharmacokinetics, pharmacodynamics and toxicology.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduated Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11041, Taiwan
| | - Yu-Hsin Chen
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
| | - Feng-Jen Tseng
- Department of Orthopedics, Hualien Armed Force General Hospital, Hualien 97144, Taiwan
| | - Ching-Feng Weng
- The Center of Translational Medicine, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|