51
|
Wan M, Yin K, Yuan J, Ma S, Xu Q, Li D, Gao H, Gou X. YQFM alleviated cardiac hypertrophy by apoptosis inhibition and autophagy regulation via PI 3K/AKT/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114835. [PMID: 34798161 DOI: 10.1016/j.jep.2021.114835] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional compound preparation of Chinese medicine, Yiqi Fumai lyophilized injection (YQFM) has protective effects on various cardiac diseases including cardiac hypertrophy, which is the primary cause of arrhythmia. However, the involved mechanism remains unclear. AIM OF THE STUDY This study was projected to investigate whether YQFM could prevent cardiac hypertrophy and arrhythmia concurrence. MATERIALS AND METHODS The cardiac hypertrophy rats were established by transverse aortic ligation and the H9c2 hypertrophy cardiomyocyte was induced by angiotensin II (AngII). The electrocardiogram (ECG) was conducted to estimate the arrhythmia occurrence of cardiac hypertrophy rats under isoprenaline (iso) treatment. The cardiac related indicators and histopathology were also detected. The protective effects of YQFM on H9c2 hypertrophy cardiomyocyte were determined by the cell size measurement, apoptosis detection and mitochondrial membrane potential measurement. The cardiac hypertrophy relative proteins (ANP and BNP), autophagy related factors (LC3II, p62 and Beclin-1), apoptosis related markers (p53, caspase 3, Bax and Bcl-2) and the PI3K/AKT/mTOR pathway expressions were all measured by Western blot. RESULTS YQFM decreased the arrhythmia occurrence and improved cardiac function in cardiac hypertrophy rats. YQFM also reduced the H9c2 cardiomyocyte size and alleviated the cardiomyocyte apoptosis induced by AngII. In addition, YQFM inhibited cell apoptosis by increasing Bcl-2/Bax ratio and decreasing caspase 3 and p53 expressions in vitro and vivo. Meanwhile, YQFM regulated the autophagy pathway by down-regulating of LC3II and Beclin-1 expressions, as well as up-regulating of p62 expression. Finally, the results showed that YQFM could activate the PI3K/AKT/mTOR pathway by enhancing the p-AKT, p-PI3K and p-mTOR expressions. CONCLUSION Our results displayed that YQFM attenuated the cardiac hypertrophy by apoptosis inhibition and autophagy regulation via PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Meixu Wan
- Tianjin Tasly Pride Pharmaceutical Co., Ltd., 12 Huaihe Road, Beichen District, Tianjin, 300410, China.
| | - Kunkun Yin
- Henan Institute for Food and Drug Control, Zhengzhou, 450008, China.
| | - Jing Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Shiyan Ma
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 Binshui West Road, Xiqing District, Tianjin, 300100, China.
| | - Qing Xu
- Hebei College of Traditional Chinese Medicine, Shijiazhuang, 050091, China.
| | - Dekun Li
- Tianjin Tasly Pride Pharmaceutical Co., Ltd., 12 Huaihe Road, Beichen District, Tianjin, 300410, China.
| | - Hui Gao
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 Binshui West Road, Xiqing District, Tianjin, 300100, China.
| | - Xiangbo Gou
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 Binshui West Road, Xiqing District, Tianjin, 300100, China.
| |
Collapse
|
52
|
Zhang X, Li M, Huang M, Peng H, Song X, Chen L, Hu W, Xu W, Luo R, Han D, Shi Y, Cao Y, Li X, Hu C. Effect of RFRP-3, the mammalian ortholog of GnIH, on apoptosis and autophagy in porcine ovarian granulosa cells via the p38MAPK pathway. Theriogenology 2021; 180:137-145. [PMID: 34973645 DOI: 10.1016/j.theriogenology.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022]
Abstract
RFamide-related peptide-3 (RFRP-3) has been proposed as a key inhibitory regulator of mammalian reproduction. Our previous studies demonstrated that RFRP-3 mediated apoptosis and autophagy of the epididymis in rats and inhibited porcine granulosa cell (GC) proliferation. However, the molecular mechanisms of the RFRP-3 effect on porcine GC apoptosis and autophagy have not been studied before. Herein, we first investigated the role of RFRP-3 in apoptosis and autophagy in cultured porcine GCs in vitro. Our results showed that different doses of RFRP-3 dose-dependently elevated the expression of autophagy markers at both the mRNA and protein levels, whereas the expression of apoptosis markers exhibited a bidirectional, dose-dependent effect. Because the p38MAPK signaling pathway plays essential roles in apoptosis and autophagy, we subsequently evaluated the effect of RFRP-3 on p38MAPK activation. The results showed that 10-6 M RFRP-3 treatment not only significantly decreased p38MAPK phosphorylation but also inhibited the p38MAPK activator U-46619 to promote p38MAPK activation in porcine GCs. Finally, we applied U-46619 to investigate the role of the p38MAPK signaling pathway in apoptosis and autophagy in RFRP-3-treated porcine GCs. The results showed that all doses of RFRP-3 significantly inhibited the U-46619-induced increase in apoptosis in a dose-dependent manner. However, except for the U-46619-induced Beclin-1 expression increase, which was significantly suppressed in high-dose RFRP-3-treated porcine GCs, other doses of RFRP-3 treatment strengthened the U-46619-induced increase in other autophagy markers. In summary, our data demonstrate a critical role for the p38MAPK signaling pathway in the porcine GC cellular response to RFRP-3 by controlling the balance between apoptosis and autophagy.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Ming Li
- Chengdu Research Base of Giant Panda Breeding, China
| | | | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Lei Chen
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Wen Hu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Wenhao Xu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Rongrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China.
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning Guangxi, 530004, China.
| |
Collapse
|
53
|
Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J, Wang J. Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Commun Signal 2021; 19:120. [PMID: 34922574 PMCID: PMC8684172 DOI: 10.1186/s12964-021-00799-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Regulated cell death (RCD) is a ubiquitous process in living organisms that is essential for tissue homeostasis or to restore biological balance under stress. Over the decades, various forms of RCD have been reported and are increasingly being found to involve in human pathologies and clinical outcomes. We focus on five high-profile forms of RCD, including apoptosis, pyroptosis, autophagy-dependent cell death, necroptosis and ferroptosis. Cumulative evidence supports that not only they have different features and various pathways, but also there are extensive cross-talks between modes of cell death. As the understanding of RCD pathway in evolution, development, physiology and disease continues to improve. Here we review an updated classification of RCD on the discovery and features of processes. The prominent focus will be placed on key mechanisms of RCD and its critical role in neurodegenerative disease. Video abstract.
Collapse
Affiliation(s)
- Juntao Cui
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Suhan Zhao
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- School of Clinical Medicine, Qingdao University, Qingdao, 266071 China
| | - Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Danyang Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Bingjing Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
54
|
Abd El-Aziz YS, Leck LYW, Jansson PJ, Sahni S. Emerging Role of Autophagy in the Development and Progression of Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:6152. [PMID: 34944772 PMCID: PMC8699656 DOI: 10.3390/cancers13246152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a cellular catabolic process, which is characterized by degradation of damaged proteins and organelles needed to supply the cell with essential nutrients. At basal levels, autophagy is important to maintain cellular homeostasis and development. It is also a stress responsive process that allows the cells to survive when subjected to stressful conditions such as nutrient deprivation. Autophagy has been implicated in many pathologies including cancer. It is well established that autophagy plays a dual role in different cancer types. There is emerging role of autophagy in oral squamous cell carcinoma (OSCC) development and progression. This review will focus on the role played by autophagy in relation to different aspects of cancer progression and discuss recent studies exploring the role of autophagy in OSCC. It will further discuss potential therapeutic approaches to target autophagy in OSCC.
Collapse
Affiliation(s)
- Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
| |
Collapse
|
55
|
Cao L, Zhao J, Ma L, Chen J, Xu J, Rahman SU, Feng S, Li Y, Wu J, Wang X. Lycopene attenuates zearalenone-induced oxidative damage of piglet sertoli cells through the nuclear factor erythroid-2 related factor 2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112737. [PMID: 34482067 DOI: 10.1016/j.ecoenv.2021.112737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) has an estrogenic effect and often causes reproductive damage. Pigs are particularly sensitive to it. Lycopene (LYC) is a type of fat-soluble natural carotenoid that has antioxidant, anti-inflammatory, anti-cancer, anti-cardiovascular and detoxifying effects. In this study, piglet sertoli cells (SCs) were used as research objects to investigate the mechanism of ZEA induced damage to piglet SCs and to evaluate the protective effect of LYC on ZEA induced toxic damage to piglet SCs. The results showed that ZEA damaged the cell structure and inhibited the expression of nuclear factor erythroid-2 related factor 2 (Nrf2) in the nucleus, which down-regulated the relative mRNA expression of heme oxygenase 1 (HO-1) and glutathione peroxidase 1 (GPX1) and decreased the activity of HO-1, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD), resulting in an increase in malondialdehyde (MDA) and reactive oxygen species (ROS) content. ZEA downregulated the relative mRNA and protein expression of bcl-2 in piglet SCs, promoted cell apoptosis, and upregulated the relative mRNA and protein expression of LC3, beclin-1, and bax. After 3 h LYC-pretreatment, ZEA was added for mixed culture. The results of pretreatment with LYC showed that LYC could alleviate the cytotoxicity of ZEA to porlets SCs. Compared with ZEA group, improved the cell survival rate, promoted the expression of Nrf2 in the nucleus, upregulated the relative mRNA expression of HO-1 and GPX1, increased the activity of antioxidant enzymes, and reduced the levels of MDA and ROS. Moreover, after pretreatment with LYC, the mRNA expression of bcl-2 was upregulated, the apoptosis rate was decreased, the relative mRNA and protein expressions of LC3, beclin-1 and bax were downregulated, and autophagy was alleviated. In conclusion, LYC alleviated the oxidative damage of SCs caused by ZEA by promoting the expression of Nrf2 pathway and decreased autophagy and apoptosis.
Collapse
Affiliation(s)
- Li Cao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jie Zhao
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Li Ma
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jiawen Chen
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jingru Xu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Sajid Ur Rahman
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei, China.
| |
Collapse
|
56
|
ATG 4B Serves a Crucial Role in RCE-4-Induced Inhibition of the Bcl-2-Beclin 1 Complex in Cervical Cancer Ca Ski Cells. Int J Mol Sci 2021; 22:ijms222212302. [PMID: 34830185 PMCID: PMC8617943 DOI: 10.3390/ijms222212302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
RCE-4, a steroidal saponin isolated from Reineckia carnea, has been studied previously and has exhibited promising anti-cervical cancer properties by inducing programmed cell death (PCD) of Ca Ski cells. Considering the cancer cells developed various pathways to evade chemotherapy-induced PCD, there is, therefore, an urgent need to further explore the potential mechanisms underlying its actions. The present study focused on targeting the Bcl-2–Beclin 1 complex, which is known as the key regulator of PCD, to deeply elucidate the molecular mechanism of RCE-4 against cervical cancer. The effects of RCE-4 on the Bcl-2–Beclin 1 complex were investigated by using the co-immunoprecipitation assay. In addition, autophagy-related genes (ATG) were also analyzed due to their special roles in PCD. The results demonstrated that RCE-4 inhibited the formation of the Bcl-2–Beclin 1 complex in Ca Ski cells via various pathways, and ATG 4B proteins involved in this process served as a key co-factor. Furthermore, based on the above, the sensitivity of RCE-4 to Ca Ski cells was significantly enhanced by inhibiting the expression of the ATG 4B by applying the ATG 4B siRNA plasmid.
Collapse
|
57
|
Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 2021; 26:512-533. [PMID: 34510317 DOI: 10.1007/s10495-021-01687-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
The mechanisms of two programmed cell death pathways, autophagy, and apoptosis, are extensively focused areas of research in the context of cancer. Both the catabolic pathways play a significant role in maintaining cellular as well as organismal homeostasis. Autophagy facilitates this by degradation and elimination of misfolded proteins and damaged organelles, while apoptosis induces canonical cell death in response to various stimuli. Ideally, both autophagy and apoptosis have a role in tumor suppression, as autophagy helps in eliminating the tumor cells, and apoptosis prevents their survival. However, as cancer proceeds, autophagy exhibits a dual role by enhancing cancer cell survival in response to stress conditions like hypoxia, thereby promoting chemoresistance to the tumor cells. Thus, any inadequacy in either of their levels can lead to tumor progression. A complex array of biomarkers is involved in maintaining coordination between the two by acting as either positive or negative regulators of one or both of these pathways of cell death. The resulting crosstalk between the two and its role in influencing the survival or death of malignant cells makes it quintessential, among other challenges facing chemotherapeutic treatment of cancer. In view of this, the present review aims to highlight some of the factors involved in maintaining their diaphony and stresses the importance of inhibition of cytoprotective autophagy and deletion of the intermediate pathways involved to facilitate tumor cell death. This will pave the way for future prospects in designing drug combinations facilitating the synergistic effect of autophagy and apoptosis in achieving cancer cell death.
Collapse
Affiliation(s)
- Shreya Das
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Nidhi Shukla
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Sapana Kushwaha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
58
|
Xiu AY, Ding Q, Li Z, Zhang CQ. Doxazosin Attenuates Liver Fibrosis by Inhibiting Autophagy in Hepatic Stellate Cells via Activation of the PI3K/Akt/mTOR Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3643-3659. [PMID: 34456560 PMCID: PMC8387324 DOI: 10.2147/dddt.s317701] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Purpose To investigate the effect of doxazosin on autophagy and the activation of hepatic stellate cells (HSCs) in vivo and in vitro and determine the underlying mechanism. Methods In vivo, a mouse liver fibrosis model was induced by the intraperitoneal injection of carbon tetrachloride (CCl4). Doxazosin was administered at doses of 2.5, 5 and 10 mg/(kg*day) by gavage. After 20 weeks, blood and liver tissues were collected for serological and histological analysis, respectively. Blood analysis, hematoxylin and eosin (HE) staining, Masson’s trichrome staining, immunohistochemistry and immunofluorescence staining were used to measure the extent of liver fibrosis in model and control mice. In vitro, the human HSC cell line LX-2 was cultured and treated with different doses of doxazosin for the indicated times. The effects of doxazosin on LX-2 cell proliferation and migration were examined by Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. The number of autophagosomes in LX-2 cells was observed by transmission electron microscopy (TEM). Infection with green fluorescent protein (GFP)-LC3B adenovirus, GFP-red fluorescent protein (RFP)-LC3B adenovirus and mCherry-EGFP-LC3 adeno-associated virus was performed to examine changes in autophagic flux in vitro and in vivo. Cell apoptosis was measured by flow cytometry in vitro and by TUNEL assays both in vitro and in vivo. Immunoblotting was performed to evaluate the expression levels of proteins related to fibrosis, autophagy, apoptosis, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR). Results Doxazosin inhibited HSC proliferation and migration. HSC activation was attenuated by doxazosin in a concentration-dependent manner in vivo and in vitro. Doxazosin also blocked autophagic flux and induced apoptosis in HSCs. In addition, the PI3K/Akt/mTOR pathway was activated by doxazosin and regulated fibrosis, autophagy and apoptosis in HSCs. Conclusion The study confirmed that doxazosin could inhibit autophagy by activating the PI3K/Akt/mTOR signaling pathway and attenuate liver fibrosis.
Collapse
Affiliation(s)
- Ai-Yuan Xiu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Qian Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Zhen Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Chun-Qing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| |
Collapse
|
59
|
Moti BS, Oz E, Olga A, Bella G, Shifra S, Eilam P. New Cortical Neurodegenerative Pathways in the Hypertensive Rat Brain. Cereb Cortex 2021; 31:5487-5496. [PMID: 34179944 DOI: 10.1093/cercor/bhab173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 11/12/2022] Open
Abstract
Hypertension is a risk factor for neurodegenerative diseases. We hypothesized that chronic hypertension underlies neurodegeneration. In this study, we examined the expression of brain cortical proteins involved in homeostasis, apoptosis, and brain functions in Spontaneously Hypertensive Rats (SHR) compared with normotensive Wistar-Kyoto (WKY) rats. We used paraffin-embedded brain sections of 8-month-old SHR and WKY rats, immunohistochemically stained and analyzed by image processing. In SHR, cytochrome c oxidase subunit 7A increased, indicative of hypoxia; heat shock protein 40, the chaperon for refolding proteins, decreased, leading to accumulation of misfolded proteins; the levels of both voltage-gated sodium channels, Na1.2, 1.6, decreased, reflecting attenuation of the action potential, causing axonal injury; autophagy-related protein 4A (Atg4a), an essential protein of autophagy, decreased, reducing the removal of misfolded proteins; demyelination, the hallmark of neurodegeneration, was shown; modulation of both histone deacetylases 2 and histone acetyltransferase 1 was shown, indicative of altered regulation of gene transcription; increased activated (cleaved) caspase-3, indicative of apoptosis. These new findings suggest that chronic hypertension induces hypoxia and oxidative stress, axonal injury, accelerates the accumulation of misfolded proteins and apoptosis, pathways preceding neurodegeneration.
Collapse
Affiliation(s)
- Ben Shabat Moti
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Eliya Oz
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Azrilin Olga
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Gross Bella
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Neurology Department, Galilee Medical Center, Nahariya, Israel
| | - Sela Shifra
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Palzur Eilam
- Galilee Medical Center, Research Institute, PO Box 21, Nahariya 22100, Israel
| |
Collapse
|
60
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.1164/rccm.202111-2484oc+10.3389/fcell.2021.664896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2024] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
61
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.1164/rccm.202111-2484oc 10.3389/fcell.2021.664896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China,*Correspondence: Jia-feng Wang,
| | - Xiao-ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China,Xiao-ming Deng,
| |
Collapse
|
62
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.3389/fcell.2021.664896] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-Long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-Xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-Feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-Ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
63
|
Yin Z, Li J, Kang L, Liu X, Luo J, Zhang L, Li Y, Cai J. Epigallocatechin-3-gallate induces autophagy-related apoptosis associated with LC3B II and Beclin expression of bladder cancer cells. J Food Biochem 2021; 45:e13758. [PMID: 33997996 DOI: 10.1111/jfbc.13758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023]
Abstract
The incidence of bladder cancer in traditional green tea-consuming countries was dramatically lower than low green tea-consuming countries. Epigallocatechin-3-gallate (EGCG), an active ingredient extracted from green tea, showed effective inhibition of formation and progression of many tumors. However, whether autophagy involved in this tumor-suppression mechanism of EGCG on bladder cancer was still unclear. In this study, we demonstrated low concentration of EGCG-induced proliferation inhibition and increased apoptosis in bladder cancer cell lines (5,637 and T24 cells) indicated by the increased expression of apoptosis-related protein (caspase9, caspase3 and BAX). In addition, low dose of EGCG also regulated autophagy pathway associated protein (LC3B II and Beclin) expression and this autophagy pathway was blocked by PI3K/AKT inhibitor; moreover, knockdown of ATG5 reversed EGCG-induced apoptosis in 5,637 cells, indicating that EGCG might inhibit the bladder cancer through autophagy pathway. Our findings indicated that EGCG should be considered as a novel therapy for bladder cancer treatment by regulating autophagy pathway. PRACTICAL APPLICATIONS: Our research proved EGCG from green tea could be used as an effective anti-tumor ingredient by revealing another mechanism that epigallocatechin-3-Gallate inhibited bladder cancer cells via inducing autophagy-related apoptosis. And green tea could be considered as a kind of tumor-preventing beverage.
Collapse
Affiliation(s)
- Zhaofa Yin
- Department of Urology, Loudi Central Hospital of Hunan Province, Loudi, P.R. China
| | - Juan Li
- Department of Digestive, 2nd Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Le Kang
- Department of Urology, Loudi Central Hospital of Hunan Province, Loudi, P.R. China
| | - Xiangyang Liu
- Department of Ultrasound, Loudi Central Hospital of Hunan Province, Loudi, China
| | - Jianguo Luo
- Department of Urology, Loudi Central Hospital of Hunan Province, Loudi, P.R. China
| | - Ling Zhang
- Department of Urology, Loudi Central Hospital of Hunan Province, Loudi, P.R. China
| | - Yuting Li
- Department of Urology, Loudi Central Hospital of Hunan Province, Loudi, P.R. China
| | - Jiarong Cai
- Department of Urology, Loudi Central Hospital of Hunan Province, Loudi, P.R. China
| |
Collapse
|
64
|
Chen S, Du Y, Xu B, Li Q, Yang L, Jiang Z, Zeng Z, Chen L. Vaccinia-related kinase 2 blunts sorafenib's efficacy against hepatocellular carcinoma by disturbing the apoptosis-autophagy balance. Oncogene 2021; 40:3378-3393. [PMID: 33875785 DOI: 10.1038/s41388-021-01780-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with limited treatment options. Sorafenib is the only Food and Drug Administration (FDA)-approved first-line targeted drug for the treatment of advanced HCC. However, its effect on patient survival is limited. Recently, studies have demonstrated that the imbalance between apoptosis and autophagy plays a critical role in chemoresistance, and it is hypothesised that restoring the balance between these processes is a potential treatment strategy for improving chemoresistance in cancer. However, there is currently no evidence supporting this hypothesis. We aimed to investigate if vaccinia-related kinase 2 (VRK2), a serine/threonine protein kinase, confers sorafenib resistance in HCC cells. Here, we found that VRK2 was enriched in sorafenib-resistant HCC cells and patient-derived xenografts. Both in vivo and in vitro evidences showed that VRK2 blunts the efficacy of sorafenib against hepatocellular carcinoma by disturbing the balance between apoptosis and autophagy. Mechanistically, VRK2 promotes the phosphorylation of Bcl-2 by activating JNK1/MAPK8, thereby enhancing the dissociation of Bcl-2 from Beclin-1 and promoting the formation of the Beclin-1-Atg14-Vps34 complex, which facilitates autophagy. Furthermore, VRK2-induced phosphorylation of Bcl-2 promotes the interaction of Bcl-2 with BAX, thereby inhibiting apoptosis. In conclusion, targeting VRK2 for modulation of the balance between autophagy and apoptosis may be a novel strategy for overcoming sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Sisi Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunyan Du
- Department of Medical, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Bin Xu
- Department of Burns, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yang
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi Jiang
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Zeng
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
65
|
Chen J, Cheng W, Li J, Wang Y, Chen J, Shen X, Su A, Gan D, Ke L, Liu G, Lin J, Li L, Bai X, Zhang P. Notch-1 and Notch-3 Mediate Hypoxia-Induced Activation of Synovial Fibroblasts in Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:1810-1819. [PMID: 33844448 DOI: 10.1002/art.41748] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the molecular mechanism of hypoxia-induced rheumatoid arthritis synovial fibroblast (RASF) activation via Notch-1 and Notch-3 signaling, and to evaluate its potential as a therapeutic target. METHODS Expression of Notch-1 intracellular domain (N1ICD), N3ICD, and hypoxia-inducible factor 1α (HIF-1α) was assessed by immunhistology in synovial tissue from patients with RA. RASFs were cultured under hypoxic conditions and normoxic conditions with or without small interfering RNAs (siRNAs), and N1ICD and N3ICD were overexpressed under normoxic conditions. Rats with collagen-induced arthritis (CIA) were administered LY411575 (inhibitor of N1ICD and N3ICD) for 15 days and 28 days, and its therapeutic efficacy was assessed by histologic and radiologic evaluation of the rat synovial tissue, and by analysis of inflammatory cytokine production in the serum of rats. RESULTS N1ICD, N3ICD, and HIF-1α were expressed abundantly in the synovial tissue of RA patients. HIF-1α was shown to directly regulate the expression of Notch-1 and Notch-3 genes under hypoxic conditions. Moreover, hypoxia-induced N1ICD and N3ICD expression in RASFs was blocked by HIF-1α siRNA. Notch-1 siRNA and Notch-3 siRNA inhibited hypoxia-induced RASF invasion and angiogenesis in vitro, whereas overexpression of N1ICD and N3ICD promoted these processes. In addition, Notch-1 was shown to regulate RASF migration and epithelial-mesenchymal transition under hypoxic conditions, whereas Notch-3 was shown to regulate the processes of anti-apoptosis and autophagy. Furthermore, in vivo studies in rats with CIA showed that the N1ICD and N3ICD inhibitor LY411575 had a therapeutic effect in terms of ameliorating the symptoms and severity of the disease. CONCLUSION This study identified a functional link between HIF-1α, Notch-1, and Notch-3 signaling in regulating activation of RASFs and the processes involved in the pathogenesis of RA.
Collapse
Affiliation(s)
- Jianhai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Jingqin Chen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Xin Shen
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Ailing Su
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Donghao Gan
- Shandong University of Traditional Chinese Medicine, Jinan City, Jinan City, Shangdong, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Gang Liu
- Shenzhen Hospital, University of Chinese Academy of Sciences, Beijing, China
| | - Jietao Lin
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Liang Li
- Institutes of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xueling Bai
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China and University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
66
|
Gong Q, Wang H, Yu P, Qian T, Xu X. Protective or Harmful: The Dual Roles of Autophagy in Diabetic Retinopathy. Front Med (Lausanne) 2021; 8:644121. [PMID: 33842506 PMCID: PMC8026897 DOI: 10.3389/fmed.2021.644121] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/26/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a self-degradative pathway involving intracellular substance degradation and recycling. Recently, this process has attracted a great deal of attention for its fundamental effect on physiological processes in cells, tissues, and the maintenance of organismal homeostasis. Dysregulation of autophagy occurs in some diseases, including immune disease, cancer, and neurodegenerative conditions. Diabetic retinopathy (DR), as a serious microvascular complication of diabetes, is the main cause of visual loss in working-age adults worldwide. The pathogenic mechanisms of DR are thought to be associated with accumulation of oxidative stress, retinal cell apoptosis, inflammatory response, endoplasmic reticulum (ER) stress, and nutrient starvation. These factors are closely related to the regulation of autophagy under pathological conditions. Increasing evidence has demonstrated the potential role of autophagy in the progression of DR through different pathways. However, to date this role is not understood, and whether the altered level of autophagy flux protects DR, or instead aggravates the progression, needs to be explored. In this review, we explore the alterations and functions of autophagy in different retinal cells and tissues under DR conditions, and explain the mechanisms involved in DR progression. We aim to provide a basis on which DR associated stress-modulated autophagy may be understood, and to suggest novel targets for future therapeutic intervention in DR.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai, China
| | - Haiyan Wang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai, China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianwei Qian
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai, China
| | - Xun Xu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
67
|
Zhang X, Zhang L, Bi Y, Xi T, Zhang Z, Huang Y, Lu YY, Liu X, Shu S, Fang F. Inhibition of autophagy by 3-methyladenine restricts murine cytomegalovirus replication. J Med Virol 2021; 93:5001-5016. [PMID: 33421149 DOI: 10.1002/jmv.26787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023]
Abstract
Cytomegalovirus (CMV) induced autophagy affects virus replication and survival of the infected cells. The purpose of this study was to investigate the role of autophagy inhibition by 3-methyladenine (3-MA) on murine cytomegalovirus (MCMV) replication and whether it is associated with caspase-3 dependent apoptosis. The eyecup isolated from adult C57BL/6J mice (6-8 weeks old) and mouse embryo fibroblast cells (MEFs) were infected with MCMV K181 strain, followed by the treatment of 3-methyladenine (3-MA), chloroquine, or rapamycin to block or stimulate autophagy. In cultured MEFs, the ratio of LC3I/II was reduced at 24 hours post infection (hpi), but was increased at 48 hpi In the eyecup culture, LC3I/II ratio was also decreased at 4 and 7 days post infection (dpi). In addition, caspase-3 cleavage was increased at 48 hpi in MEFs and also elevated in MCMV infected eyecups at 4, 7, 10, and 14 dpi. 3-MA treatment significantly inhibited the virus replication in MEFs and eyecups. The expression of early antigen (EA) of MCMV was also decreased in MEFs and eyecups. Meanwhile, cleaved caspase-3 dependent cell death was promoted with the presence of 3-MA in MCMV infected MEFs and eyecups, while RIPK1/RIPK3/MLKL pathway was inhibited by 3-MA in eyecups. Inhibition of autophagy by 3-MA restricts virus replication and promotes caspase-3 dependent apoptosis in the eyecup and MEFs with MCMV infection. It can be explained that during the early period of MCMV infection, the suppressed autophagy process directly reduced virus release, but later caspase-3 dependent apoptosis dominated and resulted in decreased virus replication.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Zhang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yidan Bi
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Xi
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhan Zhang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Huang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Yuan Lu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
68
|
Cytoplasmic vacuolation with endoplasmic reticulum stress directs sorafenib induced non-apoptotic cell death in hepatic stellate cells. Sci Rep 2021; 11:3089. [PMID: 33542321 PMCID: PMC7862314 DOI: 10.1038/s41598-021-82381-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The activated hepatic stellate cells (HSCs) are the major cells that secrete the ECM proteins and drive the pathogenesis of fibrosis in chronic liver disease. Targeting of HSCs by modulating their activation and proliferation has emerged as a promising approach in the development of anti-fibrotic therapy. Sorafenib, a multi-kinase inhibitor has shown anti-fibrotic properties by inhibiting the survival and proliferation of HSCs. In present study we investigated sorafenib induced cytoplasmic vacuolation mediated decreased cell viability of HSCs in dose and time dependent manner. In this circumstance, sorafenib induces ROS and ER stress in HSCs without involvement of autophagic signals. The protein synthesis inhibitor cycloheximide treatment significantly decreased the sorafenib-induced cytoplasmic vacuolation with increasing cell viability. Antioxidant human serum albumin influences the viability of HSCs by reducing sorafenib induced vacuolation and cell death. However, neither caspase inhibitor Z-VAD-FMK nor autophagy inhibitor chloroquine could rescue the HSCs from sorafenib-induced cytoplasmic vacuolation and cell death. Using TEM and ER organelle tracker, we conclude that the cytoplasmic vacuoles are due to ER dilation. Sorafenib treatment induces calreticulin and GPR78, and activates IRE1α-XBP1s axis of UPR pathway, which eventually trigger the non-apoptotic cell death in HSCs. This study provides a notable mechanistic insight into the ER stress directed non-apoptotic cell death with future directions for the development of efficient anti-fibrotic therapeutic strategies.
Collapse
|
69
|
Xu C, Ni S, Zhuang C, Li C, Zhao G, Jiang S, Wang L, Zhu R, van Wijnen AJ, Wang Y. Polysaccharide from Angelica sinensis attenuates SNP-induced apoptosis in osteoarthritis chondrocytes by inducing autophagy via the ERK1/2 pathway. Arthritis Res Ther 2021; 23:47. [PMID: 33514407 PMCID: PMC7847159 DOI: 10.1186/s13075-020-02409-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/26/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Chondrocyte apoptosis plays a vital role in osteoarthritis (OA) progression. Angelica sinensis polysaccharide (ASP), a traditional Chinese medicine, possesses anti-inflammatory and anti-apoptotic properties in chondrocytes. This study aimed to determine the protective role of ASP on sodium nitroprusside (SNP)-induced chondrocyte apoptosis, and explore the underlying mechanism. METHOD Human primary chondrocytes isolated from the articular cartilage of OA patients were treated with SNP alone or in combination with different doses of ASP. Cell viability and apoptosis were assessed, and apoptosis-related proteins including Bcl-2 and Bax were detected. Autophagy levels were evaluated by light chain 3 (LC3) II immunofluorescence staining, mRFP-GFP-LC3 fluorescence localization, and western blot (LC3II, p62, Beclin-1, Atg5). Meanwhile, activation of the ERK 1/2 pathway was determined by western blot. The autophagy inhibitors, 3-methyladenine (3-MA), chloroquine (CQ), and a specific inhibitor of ERK1/2, SCH772984, were used to confirm the autophagic effect of ASP. RESULTS The results showed that SNP-induced chondrocyte apoptosis was significantly rescued by ASP, whereas ASP alone promoted chondrocyte proliferation. The anti-apoptotic effect of ASP was related to the enhanced autophagy and depended on the activation of the ERK1/2 pathway. CONCLUSION ASP markedly rescued SNP-induced apoptosis by activating ERK1/2-dependent autophagy in chondrocytes, and it made ASP as a potential therapeutic supplementation for OA treatment.
Collapse
Affiliation(s)
- Chao Xu
- Trauma Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Su Ni
- Medical Research Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Chao Zhuang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Chenkai Li
- Medical Research Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Gongyin Zhao
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Shijie Jiang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Ruixia Zhu
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN USA
| | - Yuji Wang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
- Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN USA
- Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Chinese Medicine, 222 Silong Road, Baiyin, 730900 China
| |
Collapse
|
70
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
71
|
Wohlfromm F, Richter M, Otrin L, Seyrek K, Vidaković-Koch T, Kuligina E, Richter V, Koval O, Lavrik IN. Interplay Between Mitophagy and Apoptosis Defines a Cell Fate Upon Co-treatment of Breast Cancer Cells With a Recombinant Fragment of Human κ-Casein and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Front Cell Dev Biol 2021; 8:617762. [PMID: 33537307 PMCID: PMC7849764 DOI: 10.3389/fcell.2020.617762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
A recombinant fragment of human κ-Casein, termed RL2, induces cell death of breast cancer cells; however, molecular mechanisms of RL2-mediated cell death have remained largely unknown. In the current study, we have decoded the molecular mechanism of the RL2-mediated cell death and found that RL2 acts via the induction of mitophagy. This was monitored by the loss of adenosine triphosphate production, LC3B-II generation, and upregulation of BNIP3 and BNIP3L/NIX, as well as phosphatase and tensin homolog-induced kinase 1. Moreover, we have analyzed the cross talk of this pathway with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis upon combinatorial treatment with RL2 and TRAIL. Strikingly, we found two opposite effects of this co-treatment. RL2 had inhibitory effects on TRAIL-induced cell death upon short-term co-stimulation. In particular, RL2 treatment blocked TRAIL-mediated caspase activation, cell viability loss, and apoptosis, which was mediated via the downregulation of the core proapoptotic regulators. Contrary to short-term co-treatment, upon long-term co-stimulation, RL2 sensitized the cells toward TRAIL-induced cell death; the latter observation provides the basis for the development of therapeutic approaches in breast cancer cells. Collectively, our findings have important implications for cancer therapy and reveal the molecular switches of the cross talk between RL2-induced mitophagy and TRAIL-mediated apoptosis.
Collapse
Affiliation(s)
- Fabian Wohlfromm
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Max Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Elena Kuligina
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Vladimir Richter
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Olga Koval
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
72
|
Deng L, Wu X, Zhu X, Yu Z, Liu Z, Wang J, Zheng Y. Combination effect of curcumin with docetaxel on the PI3K/AKT/mTOR pathway to induce autophagy and apoptosis in esophageal squamous cell carcinoma. Am J Transl Res 2021; 13:57-72. [PMID: 33527008 PMCID: PMC7847521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Docetaxel (DTX) is widely used to treat many malignant tumors but has many adverse effects. Curcumin (CUR) also has effects on a variety of tumor cells and can reduce the toxicity and side effects of chemotherapy drugs and the occurrence of drug resistance. However, the combination of CUR and DTX for treating esophageal cancer has not been reported. METHODS Human esophageal squamous cell carcinoma (ESCC) KYSE150 and KYSE510 cells were treated with CUR or DTX alone or both drugs and cancer cell viability was detected by CCK8, apoptosis, scratch-healing and migration assays. Electron microscopy and Western blots were used. In vivo experiments were used observe anti-tumor effects. RESULTS CUR combined with DTX significantly inhibited the viability and migration of esophageal cancer cells (P<0.01) and further promoted the apoptosis of cancer cells. In addition, CUR induced autophagy in esophageal cancer cells when combined with DTX. DTX combined with CUR may induce apoptosis and autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway. The compound 3-methyladenine (3MA) inhibited the autophagy induced by DTX and CUR (DC), further accelerated apoptosis and inhibited the proliferation of esophageal cancer cells when combined with DC. CONCLUSION CUR combined with DTX induced apoptosis and autophagy of ESCC and probably worked through the PI3K/AKT/mTOR signaling pathway. The combination of the autophagy inhibitor, CUR and DTX may become a new treatment strategy for esophageal cancer.
Collapse
Affiliation(s)
- Lian Deng
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
- Second Department of Oncology, Guilin Nanxishan HospitalGuangxi, China
| | - Xiaoran Wu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Xiongjie Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Zhongjian Yu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Zhile Liu
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Jinting Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| | - Yanfang Zheng
- Department of Oncology, Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
73
|
Wang Y, Liu Y, Bi X, Baudry M. Calpain-1 and Calpain-2 in the Brain: New Evidence for a Critical Role of Calpain-2 in Neuronal Death. Cells 2020; 9:E2698. [PMID: 33339205 PMCID: PMC7765587 DOI: 10.3390/cells9122698] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/24/2023] Open
Abstract
Calpains are a family of soluble calcium-dependent proteases that are involved in multiple regulatory pathways. Our laboratory has focused on the understanding of the functions of two ubiquitous calpain isoforms, calpain-1 and calpain-2, in the brain. Results obtained over the last 30 years led to the remarkable conclusion that these two calpain isoforms exhibit opposite functions in the brain. Calpain-1 activation is required for certain forms of synaptic plasticity and corresponding types of learning and memory, while calpain-2 activation limits the extent of plasticity and learning. Calpain-1 is neuroprotective both during postnatal development and in adulthood, while calpain-2 is neurodegenerative. Several key protein targets participating in these opposite functions have been identified and linked to known pathways involved in synaptic plasticity and neuroprotection/neurodegeneration. We have proposed the hypothesis that the existence of different PDZ (PSD-95, DLG and ZO-1) binding domains in the C-terminal of calpain-1 and calpain-2 is responsible for their association with different signaling pathways and thereby their different functions. Results with calpain-2 knock-out mice or with mice treated with a selective calpain-2 inhibitor indicate that calpain-2 is a potential therapeutic target in various forms of neurodegeneration, including traumatic brain injury and repeated concussions.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| |
Collapse
|
74
|
Garcia-Princival IMR, Princival JL, Dias da Silva E, de Arruda Lima SM, Carregosa JC, Wisniewski A, de Lucena CCO, Halwass F, Alves Franca JA, Ferreira LFGR, Hernandes MZ, Saraiva KLA, Peixoto CA, Baratte B, Robert T, Bach S, Gomes DC, Guedes Paiva PM, Marchand P, Rodrigues MDD, Gonçalves da Silva T. Streptomyces hygroscopicus UFPEDA 3370: A valuable source of the potent cytotoxic agent nigericin and its evaluation against human colorectal cancer cells. Chem Biol Interact 2020; 333:109316. [PMID: 33285127 DOI: 10.1016/j.cbi.2020.109316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
Streptomyces hygroscopicus UFPEDA 3370 was fermented in submerged cultivation and the biomass extract was partitioned, obtaining a fraction purified named EB1. After purification of EB1 fraction, nigericin free acid was obtained and identified. Nigericin presented cytotoxic activity against several cancer cell lines, being most active against HL-60 (human leukemia) and HCT-116 (human colon carcinoma) cell lines, presenting IC50 and (IS) values: 0.0014 μM, (30.0) and 0.0138 μM (3.0), respectively. On HCT-116, nigericin caused apoptosis and autophagy. In this study, nigericin was also screened both in vitro and in silico against a panel of cancer-related kinases. Nigericin was able to inhibit both JAK3 and GSK-3β kinases in vitro and its binding affinities were mapped through the intermolecular interactions with each target in silico.
Collapse
Affiliation(s)
| | - Jefferson Luiz Princival
- Departamento de Química Fundamental, Av. Jornalista Anibal Fernandes, s/n, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-560, Brazil
| | - Emmanuel Dias da Silva
- Departamento de Química Fundamental, Av. Jornalista Anibal Fernandes, s/n, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-560, Brazil
| | - Sandrine Maria de Arruda Lima
- Departamento de Antibióticos, Rua Prof. Moraes Rego, 1235, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Jhonattas Carvalho Carregosa
- Departamento de Química, Av. Marechal Rondon, s/n, Universidade Federal de Sergipe, Aracaju, Sergipe, 49100-000, Brazil
| | - Alberto Wisniewski
- Departamento de Química, Av. Marechal Rondon, s/n, Universidade Federal de Sergipe, Aracaju, Sergipe, 49100-000, Brazil
| | - Caio Cézar Oliveira de Lucena
- Departamento de Antibióticos, Rua Prof. Moraes Rego, 1235, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Fernando Halwass
- Departamento de Química Fundamental, Av. Jornalista Anibal Fernandes, s/n, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-560, Brazil
| | - José Adonias Alves Franca
- Departamento de Química Fundamental, Av. Jornalista Anibal Fernandes, s/n, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-560, Brazil
| | - Luiz Felipe Gomes Rebello Ferreira
- Laboratório de Química Teórica Medicinal (LQTM), Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. Prof. Artur de Sá - Cidade Universitária, Recife, PE, 50740-521, Brazil
| | - Marcelo Zaldini Hernandes
- Laboratório de Química Teórica Medicinal (LQTM), Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. Prof. Artur de Sá - Cidade Universitária, Recife, PE, 50740-521, Brazil
| | | | - Christina Alves Peixoto
- Laboratório de Ultraestrutura. Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife, PE, Brazil; Instituto de Ciências e Tecnologia em Neuroimunomodulação (INCT-NIM), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, RJ, Brazil
| | - Blandine Baratte
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29688, Roscoff, France.
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29688, Roscoff, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, F-29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility - KISSf, Station Biologique, F-29688, Roscoff, France.
| | - Dayene Correia Gomes
- Departamento de Bioquímica, Rua Prof. Moraes Rego, SN, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Patricia Maria Guedes Paiva
- Departamento de Bioquímica, Rua Prof. Moraes Rego, SN, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Pascal Marchand
- Universite de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, Nantes, F-44000, France
| | - Maria do Desterro Rodrigues
- Departamento de Antibióticos, Rua Prof. Moraes Rego, 1235, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Rua Prof. Moraes Rego, 1235, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| |
Collapse
|
75
|
Ma RH, Ni ZJ, Thakur K, Zhang F, Zhang YY, Zhang JG, Wei ZJ. Natural Compounds Play Therapeutic Roles in Various Human Pathologies via Regulating Endoplasmic Reticulum Pathway. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
76
|
Krawczynski K, Ouyang Y, Mouillet JF, Chu T, Coyne CB, Sadovsky Y. Unc-13 homolog D mediates an antiviral effect of the chromosome 19 microRNA cluster miR-517a. J Cell Sci 2020; 134:jcs246769. [PMID: 33093239 PMCID: PMC7687871 DOI: 10.1242/jcs.246769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
The function of microRNAs (miRNAs) can be cell autonomous or communicated to other cell types and has been implicated in diverse biological processes. We previously demonstrated that miR-517a-3p (miR-517a), a highly expressed member of the chromosome 19 miRNA cluster (C19MC) that is transcribed almost exclusively in human trophoblasts, attenuates viral replication via induction of autophagy in non-trophoblastic recipient cells. However, the molecular mechanisms underlying these effects remain unknown. Here, we identified unc-13 homolog D (UNC13D) as a direct, autophagy-related gene target of miR-517a, leading to repression of UNC13D. In line with the antiviral activity of miR-517a, silencing UNC13D suppressed replication of vesicular stomatitis virus (VSV), whereas overexpression of UNC13D increased VSV levels, suggesting a role for UNC13D silencing in the antiviral activity of miR-517a. We also found that miR-517a activated NF-κB signaling in HEK-293XL cells expressing TLR8, but the effect was not specific to C19MC miRNA. Taken together, our results define mechanistic pathways that link C19MC miRNA with inhibition of viral replication.
Collapse
Affiliation(s)
- Kamil Krawczynski
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Department of Obstetrics and Gynecology and Reproductive Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Department of Obstetrics and Gynecology and Reproductive Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jean-Francois Mouillet
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Department of Obstetrics and Gynecology and Reproductive Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tianjiao Chu
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Department of Obstetrics and Gynecology and Reproductive Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Center for Microbial Pathogenesis, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15224, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Department of Obstetrics and Gynecology and Reproductive Science, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
77
|
Chang CF, Islam A, Liu PF, Zhan JH, Chueh PJ. Capsaicin acts through tNOX (ENOX2) to induce autophagic apoptosis in p53-mutated HSC-3 cells but autophagy in p53-functional SAS oral cancer cells. Am J Cancer Res 2020; 10:3230-3247. [PMID: 33163267 PMCID: PMC7642647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023] Open
Abstract
Despite the progress that has been made in diagnosing and treating oral cancers, they continue to have a poor prognosis, with a 5-year overall survival rate of approximately 50%. We have intensively studied the anticancer properties of capsaicin (a burning constituent of chili pepper), mainly focusing on its apoptotic properties. Here, we investigated the interplay between apoptosis and autophagy in capsaicin-treated oral cancer cells with either functional or mutant p53. Cytotoxicity was determined by cell impedance measurements and WST-1 assays, and cell death was analyzed by flow cytometry. The interaction between capsaicin and tumor-associated NADH oxidase (tNOX, ENOX2) was studied by cellular thermal shift assay (CETSA) and isothermal dose-response fingerprint curves (ITDRFCETSA). Our CETSA data suggested that capsaicin directly engaged with tNOX, resulting in its degradation through the ubiquitin-proteasome and the autophagy-lysosome systems. In p53-functional SAS cells, capsaicin induced significant cytotoxicity via autophagy but not apoptosis. Given that tNOX catalyzes the oxidation of NADH, the direct binding of capsaicin to tNOX also inhibited the NAD+-dependent activity of sirtuin 1 (SIRT1) deacetylase, we found that capsaicin-induced autophagy involved enhanced acetylation of ULK1, which is a key player in autophagy activation, possibly through SIRT1 inhibition. In p53-mutated HSC-3 cells, capsaicin triggered both autophagy and apoptosis. In this case, autophagy occurred before apoptosis: during this early stage, autophagy seemed to inhibit apoptosis; at a later stage, in contrast, autophagy appeared to be essential for the induction of apoptosis. Western blot analysis revealed that the reduction in tNOX and SIRT1 associated with enhanced ULK1 acetylation and c-Myc acetylation, which in turn, reactivated the TRAIL pathway, ultimately leading to apoptosis. Taken together, our data highlight the potential value of leveraging capsaicin and tNOX in therapeutic strategies against oral cancer.
Collapse
Affiliation(s)
- Chin-Fang Chang
- Department of Otolaryngology, Head and Neck Surgery, Jen-Ai HospitalTaichung 41265, Taiwan
- Department of Medical Education and Research, Jen-Ai HospitalTaichung 41265, Taiwan
- Cancer Medicine Center, Jen-Ai HospitalTaichung 41265, Taiwan
- Basic Medical Education Center, Central Taiwan University of Science and TechnologyTaichung 40601, Taiwan
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University145 Xingda Road, Taichung 40227, Taiwan
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University145 Xingda Road, South District, Taichung 40227, Taiwan
| | - Jun-Han Zhan
- Bachelor Program of Biotechnology, National Chung Hsing University145 Xingda Road, Taichung 40227, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University145 Xingda Road, Taichung 40227, Taiwan
- Department of Medical Research, China Medical University HospitalTaichung 40402, Taiwan
- Graduate Institute of Basic Medicine, China Medical UniversityTaichung 40402, Taiwan
| |
Collapse
|
78
|
Gebril SM, Ito Y, Shibata MA, Maemura K, Abu-Dief EE, Hussein MRA, Abdelaal UM, Elsayed HM, Otsuki Y, Higuchi K. Indomethacin can induce cell death in rat gastric parietal cells through alteration of some apoptosis- and autophagy-associated molecules. Int J Exp Pathol 2020; 101:230-247. [PMID: 32985762 DOI: 10.1111/iep.12370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
In clinical medicine, indomethacin (IND, a non-steroidal anti-inflammatory drug) is used variously in the treatment of severe osteoarthritis, rheumatoid arthritis, gouty arthritis or ankylosing spondylitis. A common complication found alongside the therapeutic characteristics is gastric mucosal damage. This complication is mediated through apoptosis and autophagy of the gastrointestinal mucosal epithelium. Apoptosis and autophagy are critical homeostatic pathways catalysed by caspases downstream of the gastrointestinal mucosal epithelial injury. Both act through molecular signalling pathways characterized by the initiation, mediation, execution and regulation of the cell regulatory cycle. In this study we hypothesized that dysregulated apoptosis and autophagy are associated with IND-induced gastric damage. We examined the spectra of in vivo experimental gastric ulcers in male Sprague-Dawley rats through gastric gavage of IND. Following an 18-hour fast, IND was administered to experimental rats. They were sacrificed at 3-, 6- and 12-hour intervals. Parietal cells (H+ , K+ -ATPase β-subunit assay) and apoptosis (TUNEL assay) were determined. The expression of apoptosis-signalling caspase (caspases 3, 8, 9 and 12), DNA damage (anti-phospho-histone H2A.X) and autophagy (MAP-LC3, LAMP-1 and cathepsin B)-related molecules in gastric mucosal cells was examined. The administration of IND was associated with gastric mucosal erosions and ulcerations mainly involving the gastric parietal cells (PCs) of the isthmic and upper neck regions and a time-dependent gradual increase in the number of apoptotic PCs with the induction of both apoptotic (upregulation of caspases 3 and 8) cell death and autophagic (MAP-LC3-II, LAMP-1 and cathepsin B) cell death. Autophagy induced by fasting and IND 3 hours initially prompted the degradation of caspase 8. After 6 and 12 hours, damping down of autophagic activity occurred, resulting in the upregulation of active caspase 8 and its nuclear translocation. In conclusion we report that IND can induce time-dependent apoptotic and autophagic cell death of PCs. Our study provides the first indication of the interactions between these two homeostatic pathways in this context.
Collapse
Affiliation(s)
- Sahar M Gebril
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan.,Department of Histology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Kentaro Maemura
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Eman E Abu-Dief
- Department of Histology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Usama M Abdelaal
- Department of Internal Medicine, Sohag University Hospital, Sohag, Egypt.,Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | - Hoda M Elsayed
- Department of Histology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Yoshinori Otsuki
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Kazuhide Higuchi
- Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| |
Collapse
|
79
|
Heydarpour F, Sajadimajd S, Mirzarazi E, Haratipour P, Joshi T, Farzaei MH, Khan H, Echeverría J. Involvement of TGF-β and Autophagy Pathways in Pathogenesis of Diabetes: A Comprehensive Review on Biological and Pharmacological Insights. Front Pharmacol 2020; 11:498758. [PMID: 33041786 PMCID: PMC7522371 DOI: 10.3389/fphar.2020.498758] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Despite recent advancements in clinical drugs, diabetes treatment still needs further progress. As such, ongoing research has attempted to determine the precise molecular mechanisms of the disorder. Specifically, evidence supports that several signaling pathways play pivotal roles in the development of diabetes. However, the exact molecular mechanisms of diabetes still need to be explored. This study examines exciting new hallmarks for the strict involvement of autophagy and TGF-β signaling pathways in the pathogenesis of diabetes and the design of novel therapeutic strategies. Dysregulated autophagy in pancreatic β cells due to hyperglycemia, oxidative stress, and inflammation is associated with diabetes and accompanied by dysregulated autophagy in insulin target tissues and the progression of diabetic complications. Consequently, several therapeutic agents such as adiponectin, ezetimibe, GABA tea, geniposide, liraglutide, guava extract, and vitamin D were shown to inhibit diabetes and its complications through modulation of the autophagy pathway. Another pathway, TGF-β signaling pathway, appears to play a part in the progression of diabetes, insulin resistance, and autoimmunity in both type 1 and 2 diabetes and complications in diabetes. Subsequently, drugs that target TGF-β signaling, especially naturally derived ones such as resveratrol, puerarin, curcumin, hesperidin, and silymarin, as well as Propolis, Lycopus lucidus, and Momordica charantia extracts, may become promising alternatives to current drugs in diabetes treatment. This review provides keen insights into novel therapeutic strategies for the medical care of diabetes.
Collapse
Affiliation(s)
- Fatemeh Heydarpour
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Departament of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Elahe Mirzarazi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Pouya Haratipour
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Los Angeles, CA, United States
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
80
|
Liu L, Yan Z, Wang Y, Meng J, Chen G. Suppression of autophagy facilitates hydrogen gas-mediated lung cancer cell apoptosis. Oncol Lett 2020; 20:112. [PMID: 32863925 PMCID: PMC7448556 DOI: 10.3892/ol.2020.11973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/07/2020] [Indexed: 01/10/2023] Open
Abstract
Our previous study found that hydrogen gas (H2) could efficiently inhibit lung cancer progression; however, the underlying mechanisms still remains to be elucidated. The present study aimed to explore the roles of H2 in lung cancer cell autophagy, and reveal the effects of autophagy on H2-mediated lung cancer cell apoptosis and the underlying mechanisms. The expression levels of proteins associated with cell apoptosis and autophagy were detected using western blot analysis. Cell autophagy was inhibited by 3-methyladenine treatment or Beclin1 downregulation, while rapamycin was used to induce autophagy. Cell growth and apoptosis were detected using the Cell Counting Kit-8 and flow cytometry assays, respectively. The results demonstrated that cell apoptosis and autophagy were significantly enhanced in the A549 and H1975 lung cancer cell lines treated with H2. However, autophagy enhancement weakened H2 roles in promoting cell apoptosis and vice versa. In addition, it was found that H2 treatment induced marked decreases in the protein expression levels of phosphorylated STAT3 and Bcl2, and overexpression of STAT3 abolished H2 roles in promoting cell apoptosis and autophagy. Overall, the present study revealed that H2 can promote lung cancer cell apoptosis and autophagy via inhibiting the activation of STAT3/Bcl2 signaling and suppression of autophagy can enhance H2 roles in promoting lung cancer cell apoptosis.
Collapse
Affiliation(s)
- Leyuan Liu
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhenfeng Yan
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yuanyuan Wang
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jinghong Meng
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Gang Chen
- Department of Respiration, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
81
|
Yin L, Xia Y, Xu P, Zheng W, Gao Y, Xie F, Ji Z. Veratramine suppresses human HepG2 liver cancer cell growth in vitro and in vivo by inducing autophagic cell death. Oncol Rep 2020; 44:477-486. [PMID: 32468056 PMCID: PMC7336414 DOI: 10.3892/or.2020.7622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/07/2020] [Indexed: 01/07/2023] Open
Abstract
Liver cancer is the second leading cause of cancer‑related deaths. Traditional therapeutic strategies, such as chemotherapy, targeted therapy and interventional therapy, are inefficient and are accompanied by severe side effects for patients with advanced liver cancer. Therefore, it is crucial to develop a safer more effective drug to treat liver cancer. Veratramine, a known natural steroidal alkaloid derived from plants of the lily family, exerts anticancer activity in vitro. However, the underlying mechanism and whether it has an antitumor effect in vivo remain unknown. In the present study, the data revealed that veratramine significantly inhibited HepG2 cell proliferation, migration and invasion in vitro. Moreover, it was revealed that veratramine induced autophagy‑mediated apoptosis by inhibiting the PI3K/Akt/mTOR signaling pathway, which partly explained the underlying mechanism behind its antitumor activity. Notably, the results of in vivo experiments also revealed that veratramine treatment (2 mg/kg, 3 times a week for 4 weeks) significantly inhibited subcutaneous tumor growth of liver cancer cells, with a low systemic toxicity. Collectively, the results of the present study indicated that veratramine efficiently suppressed liver cancer HepG2 cell growth in vitro and in vivo by blocking the PI3K/Akt/mTOR signaling pathway to induce autophagic cell death. Veratramine could be a potential therapeutic agent for the treatment of liver cancer.
Collapse
Affiliation(s)
- Linlin Yin
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Yonghui Xia
- Department of Respiratory Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ping Xu
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wenli Zheng
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Yuanyuan Gao
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Faqin Xie
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China,Correspondence to: Professor Faqin Xie or Professor Zhaoning Ji, Department of Oncology, Yijishan Hospital of Wannan Medical College, 2 West Zheshan Road, Wuhu, Anhui 241001, P.R. China, E-mail: , E-mail:
| | - Zhaoning Ji
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China,Correspondence to: Professor Faqin Xie or Professor Zhaoning Ji, Department of Oncology, Yijishan Hospital of Wannan Medical College, 2 West Zheshan Road, Wuhu, Anhui 241001, P.R. China, E-mail: , E-mail:
| |
Collapse
|
82
|
Gebril SM, Ito Y, Abu-Dief EE, Hussein MRA, Elsayed HM, Mohammad AN, Abdelaal UM, Higuchi K. Ultra-structural study of the indomethacin-induced apoptosis and autophagy in rat gastric parietal cells. Ultrastruct Pathol 2020; 44:300-313. [PMID: 32672114 DOI: 10.1080/01913123.2020.1772429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIM OF THE WORK Indomethacin (IND), a non-steroidal anti-inflammatory drug, can induce gastric mucosal ulcerations. To date, the ultra-structural changes in the parietal cells (PCs) of the gastric mucosa following the intake of IND are mostly unknown. We carried out the current investigation to get insights into this issue. MATERIALS AND METHODS We established an animal model consisting of 35 adult male Sprague Dawley rats. The animals were divided into three groups, including; control (normal feeding), fasting, and indomethacin-treated groups. After treatment of 18-h fasting rats with IND, they were sacrificed at 3, 6, and 12-h intervals. The morphological features, including the apoptotic, and autophagic changes in the gastric mucosa PCs were examined using transmission electron microscopy. RESULTS In normal feeding animals (control group), the gastric PCs were present in various stages of activity. Fasting was associated with the predominance of the inactive parietal cells with features of up-regulated autophagy. In the IND -treated animals (at 3-h interval), PCs showed prominent autophagic changes, and subtle apoptotic cell death. In the IND -treated animals (at 6-12-h interval), PCs showed prominent apoptotic changes, and subtle autophagic features. CONCLUSIONS Our study indicates that IND treatment could induce gastropathy through time-dependent alterations in the autophagic and apoptotic machinery of PCs. Further studies are needed to examine the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sahar M Gebril
- Department of Anatomy, and Cell Biology, Osaka Medical College , Takatsuki, Japan.,Department of Histology, Faculty of Medicine, Sohag University , Sohag, Egypt
| | - Yuko Ito
- Department of Anatomy, and Cell Biology, Osaka Medical College , Takatsuki, Japan
| | - Eman E Abu-Dief
- Department of Histology, Faculty of Medicine, Sohag University , Sohag, Egypt
| | | | - Hoda M Elsayed
- Department of Histology, Faculty of Medicine, Sohag University , Sohag, Egypt
| | - Asmaa Naser Mohammad
- Department of Tropical Medicine and Gastroenterology, Sohag University Hospital , Sohag, Egypt
| | - Usama M Abdelaal
- Department of Internal Medicine, Sohag University Hospital , Egypt.,Department of Internal Medicine, Osaka Medical College , Takatsuki, Japan
| | - Kazuhide Higuchi
- Department of Internal Medicine, Osaka Medical College , Takatsuki, Japan
| |
Collapse
|
83
|
TRIB3 destabilizes tumor suppressor PPARα expression through ubiquitin-mediated proteasome degradation in acute myeloid leukemia. Life Sci 2020; 257:118021. [PMID: 32621919 DOI: 10.1016/j.lfs.2020.118021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
AIMS Tribbles homolog 3 (TRIB3) is emerging as a multifunctional oncoprotein associated with various cellular events in different tumors. However, the regulatory mechanism of TRIB3 in acute myeloid leukemia (AML) remains unknown. This study aims to investigate the molecular mechanisms and uncover the functions of TRIB3 in AML. METHODS Western blotting and quantitative real-time PCR were used to analyze the expression levels of TRIB3, peroxisome proliferator-activated receptor α (PPARα), apoptosis markers and autophagy markers in AML cells. Flow cytometry was used to assess cell apoptosis. The interaction of TRIB3 and PPARα was evaluated by immunofluorescence, coimmunoprecipitation, and in vivo ubiquitination assays. KEY FINDINGS We demonstrated that downregulating TRIB3 in leukemic cells effectively induced apoptosis and autophagy by regulating the degradation of PPARα. Mechanistically, TRIB3 interacted with PPARα and contributed to its destabilization by promoting its ubiquitination. When PPARα was activated by its specific agonist clofibrate, the apoptosis and autophagy of AML cells were significantly enhanced. These results were confirmed by rescue experiments. Blocking PPARα expression using the PPARα inhibitor GW6471 reversed the functional influence of TRIB3 on AML cells. SIGNIFICANCE The aim of this study is to provide evidence of the degradation of PPARα by TRIB3 via ubiquitin-dependent proteasomal degradation. This process meditates the progression of AML and prolongs the survival of leukemic cells. As a result, these data indicate that TRIB3 is a novel and promising therapeutic target for AML treatment.
Collapse
|
84
|
Kim D, Hwang HY, Kwon HJ. Targeting Autophagy In Disease: Recent Advances In Drug Discovery. Expert Opin Drug Discov 2020; 15:1045-1064. [DOI: 10.1080/17460441.2020.1773429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dasol Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hui-Yun Hwang
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
85
|
Domnina A, Ivanova J, Alekseenko L, Kozhukharova I, Borodkina A, Pugovkina N, Smirnova I, Lyublinskaya O, Fridlyanskaya I, Nikolsky N. Three-Dimensional Compaction Switches Stress Response Programs and Enhances Therapeutic Efficacy of Endometrial Mesenchymal Stem/Stromal Cells. Front Cell Dev Biol 2020; 8:473. [PMID: 32612993 PMCID: PMC7308716 DOI: 10.3389/fcell.2020.00473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells are currently tested as a promising tool for the treatment of a wide range of human diseases. Enhanced therapeutic potential of spheroids formed from these cells has been proved in numerous studies, however, the fundamental basics of this effect are still being discussed. In this work, we showed that endometrial mesenchymal stem/stromal cells (eMSCs) assembled in spheroids possess a higher therapeutic efficacy compared to cells grown in monolayer in the treatment of the defects that are non-specific for eMSC tissue origin – skin wounds. With the purpose to elucidate the possible causes of superior spheroid potency, we compared the tolerance of eMSC cultivated in spheres and monolayer to the stress insults. Using genetically encoded hydrogen peroxide biosensor HyPer, we showed that three-dimensional configuration (3D) helped to shield the inner cell layers of spheroid from the external H2O2-induced oxidative stress. However, the viability of oxidatively damaged eMSCs in spheroids appeared to be much lower than that of monolayer cells. An extensive analysis, which included administration of heat shock and irradiation stress, revealed that cells in spheroids damaged by stress factors activate the apoptosis program, while in monolayer cells stress-induced premature senescence is developed. We found that basal down-regulation of anti-apoptotic and autophagy-related genes provides the possible molecular basis of the high commitment of eMSCs cultured in 3D to apoptosis. We conclude that predisposition to apoptosis provides the programmed elimination of damaged cells and contributes to the transplant safety of spheroids. In addition, to investigate the role of paracrine secretion in the wound healing potency of spheroids, we exploited the in vitro wound model (scratch assay) and found that culture medium conditioned by eMSC spheroids accelerates the migration of adherent cells. We showed that 3D eMSCs upregulate transcriptional activator, hypoxia-inducible factor (HIF)-1, and secret ten-fold more HIF-1-inducible pro-angiogenic factor VEGF (vascular endothelial growth factor) than monolayer cells. Taken together, these findings indicate that enhanced secretory activity can promote wound healing potential of eMSC spheroids and that cultivation in the 3D cell environment alters eMSC vital programs and therapeutic efficacy.
Collapse
Affiliation(s)
- Alisa Domnina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Julia Ivanova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Larisa Alekseenko
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Irina Kozhukharova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Aleksandra Borodkina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Natalia Pugovkina
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Irina Smirnova
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Irina Fridlyanskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Nikolay Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
86
|
Lai Y, Wang M, Cheng A, Mao S, Ou X, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. Regulation of Apoptosis by Enteroviruses. Front Microbiol 2020; 11:1145. [PMID: 32582091 PMCID: PMC7283464 DOI: 10.3389/fmicb.2020.01145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
Enterovirus infection can cause a variety of diseases and severely impair the health of humans, animals, poultry, and other organisms. To resist viral infection, host organisms clear infected cells and viruses via apoptosis. However, throughout their long-term competition with host cells, enteroviruses have evolved a series of mechanisms to regulate the balance of apoptosis in order to replicate and proliferate. In the early stage of infection, enteroviruses mainly inhibit apoptosis by regulating the PI3K/Akt pathway and the autophagy pathway and by impairing cell sensors, thereby delaying viral replication. In the late stage of infection, enteroviruses mainly regulate apoptotic pathways and the host translation process via various viral proteins, ultimately inducing apoptosis. This paper discusses the means by which these two phenomena are balanced in enteroviruses to produce virus-favoring conditions – in a temporal sequence or through competition with each other. This information is important for further elucidation of the relevant mechanisms of acute infection by enteroviruses and other members of the picornavirus family.
Collapse
Affiliation(s)
- Yalan Lai
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
87
|
Relationship between the antiproliferative properties of Cu(II) complexes with the Schiff base derived from pyridine-2-carboxaldehyde and 5,6-diamino-1,3-dimethyluracil and the redox status mediated by antioxidant defense systems on glioma tumoral cells. J Inorg Biochem 2020; 207:111053. [DOI: 10.1016/j.jinorgbio.2020.111053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
|
88
|
Kaur S, Changotra H. The beclin 1 interactome: Modification and roles in the pathology of autophagy-related disorders. Biochimie 2020; 175:34-49. [PMID: 32428566 DOI: 10.1016/j.biochi.2020.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Beclin 1 a yeast Atg6/VPS30 orthologue has a significant role in autophagy process (Macroautophagy) and protein sorting. The function of beclin 1 depends on the interaction with several autophagy-related genes (Atgs) and other proteins during the autophagy process. The role mediated by beclin 1 is controlled by various conditions and factors. Beclin 1 is regulated at the gene and protein levels by different factors. These regulations could subsequently alter the beclin 1 induced autophagy process. Therefore, it is important to study the components of beclin 1 interactome and factors affecting its expression. Expression of this gene is differentially regulated under different conditions in different cells or tissues. So, the regulation part is important to study as beclin 1 is one of the candidate genes involved in diseases related to autophagy dysfunction. This review focuses on the functions of beclin 1, its interacting partners, regulations at gene and protein level, and the role of beclin 1 interactome in relation to various diseases along with the recent developments in the field.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, 173 234, Himachal Pradesh, India.
| |
Collapse
|
89
|
Shi W, Guo Z, Ji Y, Feng J. The protective effect of recombinant globular adiponectin on testis by modulating autophagy, endoplasmic reticulum stress and oxidative stress in streptozotocin-induced diabetic mice. Eur J Pharmacol 2020; 879:173132. [PMID: 32353359 DOI: 10.1016/j.ejphar.2020.173132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
This study was to investigate whether recombinant globular adiponectin produced its protective effect on the testis of diabetic mice by modulating autophagy, endoplasmic reticulum stress and oxidative stress. Male mice were randomly divided into control, diabetic, diabetic treated with low and high dose of adiponectin. Mice were killed at the termination after 4 weeks and 8 weeks of adiponectin treatment. Serum levels of glucose, lipids, testosterone, insulin, LH and FSH were measured. The protein expression of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), Caspase12, Beclin1, microtubule-associated protein light chain 3 (LC3) and p62 was determined by western blotting. The mRNA expression of adiponectin receptor 1 (AdipoR1), p22phox, p47phox, nuclear factor erythroid2-related factor 2 (Nrf2), NAD(P)H-quinone oxidoreductase 1(NQO1), heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) were determined by real-time fluorescence quantitative PCR. The testicular weight, the sperm number and motility, and the serum levels of testosterone and insulin were significantly decreased in diabetic mice (P < 0.05). The expression of Beclin1, LC3, Nrf2, NQO1, HO-1, SOD and AdipoR1 were significantly decreased (P < 0.05), while the expression of GRP78, CHOP, Caspase12, p62, p22phox and p47phox were notably increased in the testes of diabetic mice (P < 0.05). Adiponectin treatment significantly reversed the above-mentioned changes in the testes of diabetic mice, some of which were dose- and time-dependent (P < 0.05). These data suggested that recombinant globular adiponectin may produce the protective effect on the testes of diabetic mice by inducing autophagy and inhibiting ER stress and oxidative stress.
Collapse
Affiliation(s)
- Wenjiao Shi
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, 030001, China; Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Zhixin Guo
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, 030001, China.
| | - Yun Ji
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Jingyi Feng
- Department of Endocrinology, Second Hospital, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
90
|
Ray SK. Modulation of autophagy for neuroprotection and functional recovery in traumatic spinal cord injury. Neural Regen Res 2020; 15:1601-1612. [PMID: 32209759 PMCID: PMC7437603 DOI: 10.4103/1673-5374.276322] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) is a serious central nervous system trauma that leads to loss of motor and sensory functions in the SCI patients. One of the cell death mechanisms is autophagy, which is 'self-eating' of the damaged and misfolded proteins and nucleic acids, damaged mitochondria, and other impaired organelles for recycling of cellular building blocks. Autophagy is different from all other cell death mechanisms in one important aspect that it gives the cells an opportunity to survive or demise depending on the circumstances. Autophagy is a therapeutic target for alleviation of pathogenesis in traumatic SCI. However, functions of autophagy in traumatic SCI remain controversial. Spatial and temporal patterns of activation of autophagy after traumatic SCI have been reported to be contradictory. Formation of autophagosomes following therapeutic activation or inhibition of autophagy flux is ambiguous in traumatic SCI studies. Both beneficial and harmful outcomes due to enhancement autophagy have been reported in traumatic SCI studies in preclinical models. Only further studies will make it clear whether therapeutic activation or inhibition of autophagy is beneficial in overall outcomes in preclinical models of traumatic SCI. Therapeutic enhancement of autophagy flux may digest the damaged components of the central nervous system cells for recycling and thereby facilitating functional recovery. Many studies demonstrated activation of autophagy flux and inhibition of apoptosis for neuroprotective effects in traumatic SCI. Therapeutic induction of autophagy in traumatic SCI promotes axonal regeneration, supporting another beneficial role of autophagy in traumatic SCI. In contrast, some other studies demonstrated that disruption of autophagy flux in traumatic SCI strongly correlated with neuronal death at remote location and impaired functional recovery. This article describes our current understanding of roles of autophagy in acute and chronic traumatic SCI, cross-talk between autophagy and apoptosis, therapeutic activation or inhibition of autophagy for promoting functional recovery, and future of autophagy in traumatic SCI.
Collapse
Affiliation(s)
- Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA,Correspondence to: Swapan K. Ray, .
| |
Collapse
|
91
|
Ha YN, Song S, Orlikova-Boyer B, Cerella C, Christov C, Kijjoa A, Diederich M. Petromurin C Induces Protective Autophagy and Apoptosis in FLT3-ITD-Positive AML: Synergy with Gilteritinib. Mar Drugs 2020; 18:md18010057. [PMID: 31963113 PMCID: PMC7024157 DOI: 10.3390/md18010057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) remains inefficient due to drug resistance and relapse, particularly in patients with FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD). Marine-derived natural products have recently been used for drug development against AML. We show in this study that petromurin C, which was isolated from the culture extract of the marine-derived fungus Aspergillus candidus KUFA0062, isolated from the marine sponge Epipolasis sp., induces early autophagy followed by apoptotic cell death via activation of the intrinsic cell death pathway concomitant with mitochondrial stress and downregulation of Mcl-1 in FLT3-ITD mutated MV4-11 cells. Moreover, petromurin C synergized with the clinically-used FLT3 inhibitor gilteritinib at sub-toxic concentrations. Altogether, our results provide preliminary indications that petromurin C provides anti-leukemic effects alone or in combination with gilteritinib.
Collapse
MESH Headings
- Aniline Compounds/administration & dosage
- Aniline Compounds/pharmacology
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Aquatic Organisms/chemistry
- Autophagy/drug effects
- Biological Products/administration & dosage
- Biological Products/pharmacology
- Cell Line, Tumor
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm
- Drug Synergism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Pyrazines/administration & dosage
- Pyrazines/pharmacology
- Signal Transduction/drug effects
- U937 Cells
- Zebrafish
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- You Na Ha
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Korea; (Y.N.H.); (S.S.)
| | - Sungmi Song
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Korea; (Y.N.H.); (S.S.)
| | - Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg; (B.O.-B.); (C.C.)
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg; (B.O.-B.); (C.C.)
| | - Christo Christov
- Service d’Histologie, Faculté de Médicine, Université de Lorraine, INSERM U1256 NGERE, 54000 Nancy, France;
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Korea; (Y.N.H.); (S.S.)
- Correspondence: ; Tel.: +82-2-880-8919
| |
Collapse
|
92
|
Abstract
Osteosarcoma (OS) remains a difficult disease to treat. The standard chemotherapy regimen has not improved survival for the past three decades. Resistance to chemotherapy remains a challenge and constitutes a major concern to clinical investigators. Autophagy has been recognized as a survival mechanism implicated in resistance to chemotherapy. We previously demonstrated chemotherapy to induce autophagy in OS. However, whether induction of autophagy will lead to survival or death has been the focus of many laboratories. Autophagy is a very context-dependent process, and no specific biomarker has been identified to define whether the process will lead to survival or death. In the present chapter, we present some of the mechanisms involved in the process of autophagy and summarize some of the most recent work related to autophagy in OS and the challenges encountered with the use of old and new autophagy inhibitors.
Collapse
|
93
|
Guo M, Chen H, Duan W, Li Z, Li Y, Ma Y, Xu X, Yi L, Bi Y, Liu Y, Zhang J, Li C. FGF9 knockout in GABAergic neurons induces apoptosis and inflammation via the Fas/caspase-3 pathway in the cerebellum of mice. Brain Res Bull 2020; 154:91-101. [DOI: 10.1016/j.brainresbull.2019.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022]
|
94
|
Blocking AMPK/ULK1-dependent autophagy promoted apoptosis and suppressed colon cancer growth. Cancer Cell Int 2019; 19:336. [PMID: 31871431 PMCID: PMC6911288 DOI: 10.1186/s12935-019-1054-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background Autophagy is an evolutionarily conserved process through which cells degrade and recycle cytoplasm. The relation among autophagy, apoptosis and tumor is highly controversial until now and the molecular mechanism is poorly understood. Methods Cell viability and apoptosis were detected by CCK8, crystal violet staining, Hoechst333342 staining and flow cytometry. The expression of AMPK and ULK1 was analyzed by western blotting. Colon cancer growth suppression by NVP-BEZ235 or CQ in vivo was studied in a tumor xenograft mouse model. Results Our previous study revealed that NVP-BEZ235 suppressed colorectal cancer growth via inducing apoptosis, however later, we found it also initiated autophagy simultaneously. In this present study, our results show that NVP-BEZ235 induced autophagy through AMPK/ULK1 pathway in colon cancer cells. Blocking autophagy by knocking down AMPK or ULK1 inhibited cell proliferation and further promoted NVP-BEZ235 induced apoptosis. Meantime, the autophagy inhibitor chloroquine (CQ) shows obvious effect on inhibiting cell proliferation but not on inducing apoptosis, while it significantly increased NVP-BEZ235 induced apoptosis. Furthermore, the combinational therapy of NVP-BEZ235 and CQ shows synergistic antitumor effects in colon cancer in vivo. Conclusion NVP-BEZ235 induced AMPK/ULK1-dependent autophagy. Targeting this autophagy suppressed colon cancer growth through further promoting apoptosis, which is a potential therapeutic option for clinical patients.
Collapse
|
95
|
Kapuy O, Márton M, Bánhegyi G, Vinod PK. Multiple system-level feedback loops control life-and-death decisions in endoplasmic reticulum stress. FEBS Lett 2019; 594:1112-1123. [PMID: 31769869 DOI: 10.1002/1873-3468.13689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022]
Abstract
Scientific results have revealed that autophagy is able to promote cell survival in response to endoplasmic reticulum (ER) stress, while drastic events result in apoptotic cell death. Here, we analyse the important crosstalk of life-and-death decisions from a systems biological perspective by studying the regulatory modules of the unfolded protein response (UPR). While a double-negative loop between autophagy and apoptosis inducers is crucial for the switch-like characteristic of the stress response mechanism, a positive feedback loop between ER stress sensors is also essential. Corresponding to experimental data, here, we show the dynamical significance of Gadd34-CHOP connections inside the PERK branch of the UPR. The multiple system-level feedback loops seem to be crucial for managing a robust life-and-death decision depending on the level and durability of cellular stress.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Margita Márton
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary.,Pathobiochemistry Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - P K Vinod
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| |
Collapse
|
96
|
Choi SY, Park JS, Shon CH, Lee CY, Ryu JM, Son DJ, Hwang BY, Yoo HS, Cho YC, Lee J, Kim JW, Roh YS. Fermented Korean Red Ginseng Extract Enriched in Rd and Rg3 Protects against Non-Alcoholic Fatty Liver Disease through Regulation of mTORC1. Nutrients 2019; 11:nu11122963. [PMID: 31817227 PMCID: PMC6949916 DOI: 10.3390/nu11122963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
The fermentation of Korean red ginseng (RG) increases the bioavailability and efficacy of RG, which has a protective role in various diseases. However, the ginsenoside-specific molecular mechanism of the fermented RG with Cordyceps militaris (CRG) has not been elucidated in non-alcoholic fatty liver disease (NAFLD). A mouse model of NAFLD was induced by a fast-food diet (FFD) and treated with CRG (100 or 300 mg/kg) for the last 8 weeks. CRG-mediated signaling was assessed in the liver cells isolated from mice. CRG administration significantly reduced the FFD-induced steatosis, liver injury, and inflammation, indicating that CRG confers protective effects against NAFLD. Of note, an extract of CRG contains a significantly increased amount of ginsenosides (Rd and Rg3) after bioconversion compared with that of conventional RG. Moreover, in vitro treatment with Rd or Rg3 produced anti-steatotic effects in primary hepatocytes. Mechanistically, CRG protected palmitate-induced activation of mTORC1 and subsequent inhibition of mitophagy and PPARα signaling. Similar to that noted in hepatocytes, CRG exerted anti-inflammatory activity through mTORC1 inhibition-mediated M2 polarization. In conclusion, CRG inhibits lipid-mediated pathologic activation of mTORC1 in hepatocytes and macrophages, which in turn prevents NAFLD development. Thus, the administration of CRG may be an alternative for the prevention of NAFLD.
Collapse
Affiliation(s)
- Su-Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Chang-Ho Shon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Chae-Young Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Jae-Myun Ryu
- NOVA K-MED Co., Ltd., 1646 Yuseong-daero, HNU Innobiz Park Suite 403, Yuseong-gu, Daejeon 34054, Korea;
| | - Dong-Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Bang-Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Hwan-Soo Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Jin Lee
- Department of Pathology, School of Medicine, University of California, San Diego, CA 92093, USA;
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Deokjin-gu, Jeonju-si 54596, Korea
- Correspondence: (J.-W.K.); (Y.-S.R.); Tel.: +82-63-850-0953 (J.-W.K.); +82-43-261-2819 (Y.-S.R.)
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea; (S.-Y.C.); (J.-S.P.); (C.-H.S.); (C.-Y.L.); (D.-J.S.)
- Correspondence: (J.-W.K.); (Y.-S.R.); Tel.: +82-63-850-0953 (J.-W.K.); +82-43-261-2819 (Y.-S.R.)
| |
Collapse
|
97
|
Guamán-Ortiz LM, Bailon-Moscoso N, Morocho V, Vega-Ojeda D, Gordillo F, Suárez AI. Onoseriolide, from Hedyosmum racemosum, induces cytotoxicity and apoptosis in human colon cancer cells. Nat Prod Res 2019; 35:3151-3155. [PMID: 31736362 DOI: 10.1080/14786419.2019.1690485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The number of colon cancer patients is increasing, and new alternatives for treatment are important. We focused on the sesquiterpene lactone onoseriolide from Hedyosmum racemosum, which is widely used in traditional medicine. This compound was evaluated to determine its cytotoxic effect and the mechanism of cell death that is induced in the human colon cancer cell line RKO. A dose-dependent decrease in cell viability was observed. p53 expression increased followed by an increase in p21 expression, which is involved in cell cycle arrest in the G2/M phase. Caspase-3 activation and PARP-1 cleavage, which are apoptotic markers, were also monitored. Autophagy markers were also studied, and Beclin 1 was downregulated, while LC-3II increased in a dose-dependent manner. There were no changes in SQSTM1/p62 regulation. Onoseriolide exerts cytotoxic and cytostatic effects, activating the autophagy pathway as a protective mechanism and apoptosis as the cell death pathway.
Collapse
Affiliation(s)
| | - Natalia Bailon-Moscoso
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Vladimir Morocho
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Daisy Vega-Ojeda
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Fernando Gordillo
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Alírica I Suárez
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja, Ecuador.,Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
98
|
Qiu Y, Huang X, He W. The regulatory role of HIF-1 in tubular epithelial cells in response to kidney injury. Histol Histopathol 2019; 35:321-330. [PMID: 31691948 DOI: 10.14670/hh-18-182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The high sensitivity to changes in oxygen tension makes kidney vulnerable to hypoxia. Both acute kidney injury and chronic kidney disease are almost always accompanied by hypoxia. Tubular epithelial cells (TECs), the dominant intrinsic cells in kidney tissue, are believed to be not only a victim in the pathological process of various kidney diseases, but also a major contributor to kidney damage. Hypoxia inducible factor-1 (HIF-1) is the main regulator of adaptive response of cells to hypoxia. Under various clinical and experimental kidney disease conditions, HIF-1 plays a pivotal role in modulating multiple cellular processes in TECs, including apoptosis, autophagy, inflammation, metabolic pattern alteration, and cell cycle arrest. A comprehensive understanding of the mechanisms by which HIF-1 regulates these cellular processes in TECs may help identify potential therapeutic targets to improve the outcome of acute kidney injury and delay the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowen Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
99
|
Yu H, Wu CL, Wang X, Ban Q, Quan C, Liu M, Dong H, Li J, Kim GY, Choi YH, Wang Z, Jin CY. SP600125 enhances C-2-induced cell death by the switch from autophagy to apoptosis in bladder cancer cells. J Exp Clin Cancer Res 2019; 38:448. [PMID: 31685029 PMCID: PMC6829950 DOI: 10.1186/s13046-019-1467-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/23/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A natural compound Jaspine B and its derivative possess potential anti-cancer activities; However, little is known about the underlying mechanism. Here, the role of a new autophagy inducer Jaspine B derivative C-2 in suppressing bladder cancer cells was researched in vitro and in vivo. METHODS The underlying mechanisms and anticancer effect of C-2 in bladder cancer cells were investigated by MTT, western blotting, immunoprecipitation and immunofluorescence assays. The key signaling components were investigated by using pharmacological inhibitors or specific siRNAs. In vivo, we designed a C-2 and SP600125 combination experiment to verify the effectiveness of compound. RESULTS C-2 exhibits cytotoxic effect on bladder cancer cells, and JNK activated by C-2 triggers autophagy and up-regulates SQSTM1/p62 proteins, contributing to activation of Nrf2 pathway. Utilization of JNK inhibitor SP600125 or knockdown of JNK by siRNA potentiate the cytotoxicity of C-2 through down-regulation of p62 and LC3II proteins and up-regulation of active-Caspase3 proteins, enhance the cell death effect, facilitating the switch from autophagy to apoptosis. In vivo study, C-2 suppresses tumor growth in a xenograft mouse model of EJ cells without observed toxicity. Combined treatment with SP600125 further enhances tumor inhibition of C-2 associated with enhanced activation of caspase3 and reduction of autophagy. CONCLUSIONS It reveals a series of molecular mechanisms about SP600125 potentiate the cytotoxicity and tumor inhibition of C-2 in bladder cancer cells through promoting C-2-induced apoptosis, expecting it provides research basis and theoretical support for new drugs development.
Collapse
Affiliation(s)
- Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193 China
| | - Chun-Li Wu
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Xiangyu Wang
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Qianhong Ban
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Chunhua Quan
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Mengbo Liu
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Hangqi Dong
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Jinfeng Li
- Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450001 Henan China
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243 Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227 Republic of Korea
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| |
Collapse
|
100
|
Yang B, Liu Q, Bi Y. Autophagy and apoptosis are regulated by stress on Bcl2 by AMBRA1 in the endoplasmic reticulum and mitochondria. Theor Biol Med Model 2019; 16:18. [PMID: 31665034 PMCID: PMC6819422 DOI: 10.1186/s12976-019-0113-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autophagy and apoptosis are two important physiological processes that determine cell survival or death in response to different stress signals. The regulatory mechanisms of these two processes share B-cell lymphoma-2 family proteins and AMBRA1, which are present in both the endoplasmic reticulum and mitochondria. B-cell lymphoma-2 family proteins sense different stresses and interact with AMBRA1 to regulate autophagy and apoptosis, which are respectively mediated by Beclin1 and Caspases. Therefore, we investigated how different levels of stress on B-cell lymphoma-2 family proteins that bind to AMBRA1 in the endoplasmic reticulum and mitochondria regulate the switch from autophagy to apoptosis. METHODS In this paper, we considered the responses of B-cell lymphoma-2 family proteins, which bind to AMBRA1 in both the endoplasmic reticulum and mitochondria, to two different levels of stress in a model originally proposed by Kapuy et al. We investigated how these two stress levels affect the transition from autophagy to apoptosis and their effects on apoptosis activation over time. Additionally, we analyzed how the feedback regulation in this model affects the bifurcation diagrams of two levels of stress and cell fate decisions between autophagy and apoptosis. RESULTS Autophagy is activated for minor stress in mitochondria regardless of endoplasmic reticulum stress, while apoptosis is activated for only significant stress in mitochondria. Apoptosis is only sensitive to mitochondria stress. The time duration before apoptosis activation is longer in the presence of high AMBRA1 levels with high endoplasmic reticulum and mitochondria stress. AMBRA1 can compete with B-cell lymphoma-2 family proteins to bind and activate Beclin1 and thus promote the autophagy process for a long time before apoptosis. Furthermore, apoptosis is prone to occur with increasing activation of Caspases, inactivation of Beclin1-A and the Michaelis constant of Caspases. CONCLUSION A novel mathematical model has been developed to understand the complex regulatory mechanisms of autophagy and apoptosis. Our model may be applied to further autophagy-apoptosis dynamic modeling experiments and simulations.
Collapse
Affiliation(s)
- Bojie Yang
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Quansheng Liu
- School of Mathematical Sciences, Inner Mongolia University, Hohhot, 010021, China.
| | - Yuanhong Bi
- School of Statistics and Mathematics, Inner Mongolia, University of Finance and Economics, Hohhot, 010070, China
- Inner Mongolia Key Laboratory of Economic Data Analysis and Mining, Hohhot, 010070, China
| |
Collapse
|