51
|
Shen S, Davidson GA, Yang K, Zhuang Z. Photo-activatable Ub-PCNA probes reveal new structural features of the Saccharomyces cerevisiae Polη/PCNA complex. Nucleic Acids Res 2021; 49:9374-9388. [PMID: 34390346 PMCID: PMC8450101 DOI: 10.1093/nar/gkab646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/02/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
The Y-family DNA polymerase η (Polη) is critical for the synthesis past damaged DNA nucleotides in yeast through translesion DNA synthesis (TLS). TLS is initiated by monoubiquitination of proliferating cell nuclear antigen (PCNA) and the subsequent recruitment of TLS polymerases. Although individual structures of the Polη catalytic core and PCNA have been solved, a high-resolution structure of the complex of Polη/PCNA or Polη/monoubiquitinated PCNA (Ub-PCNA) still remains elusive, partly due to the disordered Polη C-terminal region and the flexibility of ubiquitin on PCNA. To circumvent these obstacles and obtain structural insights into this important TLS polymerase complex, we developed photo-activatable PCNA and Ub-PCNA probes containing a p-benzoyl-L-phenylalanine (pBpa) crosslinker at selected positions on PCNA. By photo-crosslinking the probes with full-length Polη, specific crosslinking sites were identified following tryptic digestion and tandem mass spectrometry analysis. We discovered direct interactions of the Polη catalytic core and its C-terminal region with both sides of the PCNA ring. Model building using the crosslinking site information as a restraint revealed multiple conformations of Polη in the polymerase complex. Availability of the photo-activatable PCNA and Ub-PCNA probes will also facilitate investigations into other PCNA-containing complexes important for DNA replication, repair and damage tolerance.
Collapse
Affiliation(s)
- Siqi Shen
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| | - Gregory A Davidson
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| | - Kun Yang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| |
Collapse
|
52
|
Synthesis, LC-MS/MS analysis, and biological evaluation of two vaccine candidates against ticks based on the antigenic P0 peptide from R. sanguineus linked to the p64K carrier protein from Neisseria meningitidis. Anal Bioanal Chem 2021; 413:5885-5900. [PMID: 34341841 PMCID: PMC8328535 DOI: 10.1007/s00216-021-03569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022]
Abstract
A peptide from the P0 acidic ribosomal protein (pP0) of ticks conjugated to keyhole limpet hemocyanin from Megathura crenulata has shown to be effective against different tick species when used in host vaccination. Turning this peptide into a commercial anti-tick vaccine will depend on finding the appropriate, technically and economically feasible way to present it to the host immune system. Two conjugates (p64K-Cys1pP0 and p64K-βAla1pP0) were synthesized using the p64K carrier protein from Neisseria meningitidis produced in Escherichia coli, the same cross-linking reagent, and two analogues of pP0. The SDS-PAGE analysis of p64K-Cys1pP0 showed a heterogeneous conjugate compared to p64K-βAla1pP0 that was detected as a protein band at 91kDa. The pP0/p64K ratio determined by MALDI-MS for p64K-Cys1pP0 ranged from 1 to 8, being 3-5 the predominant ratio, while in the case of p64K-βAla1pP0 this ratio was 5-7. Cys1pP0 was partially linked to 35 out of 39 Lys residues and the N-terminal end, while βAla1pP0 was mostly linked to the six free cysteine residues, to the N-terminal end, and, in a lesser extent, to Lys residues. The assignment of the conjugation sites and side reactions were based on the identification of type 2 peptides. Rabbit immunizations showed the best anti-pP0 titers and the highest efficacy against Rhipicephalus sanguineus ticks when the p64K-Cys1pP0 was used as vaccine antigen. The presence of high molecular mass aggregates observed in the SDS-PAGE analysis of p64K-Cys1pP0 could be responsible for a better immune response against pP0 and consequently for its better efficacy as an anti-tick vaccine. Graphical abstract ![]()
Collapse
|
53
|
14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Commun Biol 2021; 4:899. [PMID: 34294877 PMCID: PMC8298602 DOI: 10.1038/s42003-021-02419-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Neural precursor cell expressed developmentally down-regulated 4 ligase (Nedd4-2) is an E3 ubiquitin ligase that targets proteins for ubiquitination and endocytosis, thereby regulating numerous ion channels, membrane receptors and tumor suppressors. Nedd4-2 activity is regulated by autoinhibition, calcium binding, oxidative stress, substrate binding, phosphorylation and 14-3-3 protein binding. However, the structural basis of 14-3-3-mediated Nedd4-2 regulation remains poorly understood. Here, we combined several techniques of integrative structural biology to characterize Nedd4-2 and its complex with 14-3-3. We demonstrate that phosphorylated Ser342 and Ser448 are the key residues that facilitate 14-3-3 protein binding to Nedd4-2 and that 14-3-3 protein binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Overall, our findings provide the structural glimpse into the 14-3-3-mediated Nedd4-2 regulation and highlight the potential of the Nedd4-2:14-3-3 complex as a pharmacological target for Nedd4-2-associated diseases such as hypertension, epilepsy, kidney disease and cancer. Pohl et al. investigated the structural basis of Nedd4-2 regulation by 14-3-3 and found that phosphorylated Ser342 and Ser448 are the main residues that facilitate 14-3-3 binding to Nedd4-2. The authors propose that the Nedd4-2:14-3-3 complex then stimulates a structural rearrangement of Nedd4-2 through inhibiting interaction of its structured domains.
Collapse
|
54
|
Chavez JD, Wippel HH, Tang X, Keller A, Bruce JE. In-Cell Labeling and Mass Spectrometry for Systems-Level Structural Biology. Chem Rev 2021; 122:7647-7689. [PMID: 34232610 PMCID: PMC8966414 DOI: 10.1021/acs.chemrev.1c00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological systems have evolved to utilize proteins to accomplish nearly all functional roles needed to sustain life. A majority of biological functions occur within the crowded environment inside cells and subcellular compartments where proteins exist in a densely packed complex network of protein-protein interactions. The structural biology field has experienced a renaissance with recent advances in crystallography, NMR, and CryoEM that now produce stunning models of large and complex structures previously unimaginable. Nevertheless, measurements of such structural detail within cellular environments remain elusive. This review will highlight how advances in mass spectrometry, chemical labeling, and informatics capabilities are merging to provide structural insights on proteins, complexes, and networks that exist inside cells. Because of the molecular detection specificity provided by mass spectrometry and proteomics, these approaches provide systems-level information that not only benefits from conventional structural analysis, but also is highly complementary. Although far from comprehensive in their current form, these approaches are currently providing systems structural biology information that can uniquely reveal how conformations and interactions involving many proteins change inside cells with perturbations such as disease, drug treatment, or phenotypic differences. With continued advancements and more widespread adaptation, systems structural biology based on in-cell labeling and mass spectrometry will provide an even greater wealth of structural knowledge.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
55
|
New insights into the mechanisms of age-related protein-protein crosslinking in the human lens. Exp Eye Res 2021; 209:108679. [PMID: 34147508 DOI: 10.1016/j.exer.2021.108679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Although protein crosslinking is often linked with aging as well as some age-related diseases, very few molecular details are available on the nature of the amino acids involved, or mechanisms that are responsible for crosslinking. Recent research has shown that several amino acids are able to generate reactive intermediates that ultimately lead to covalent crosslinking through multiple non-enzymatic mechanisms. This information has been derived from proteomic investigations on aged human lenses and the mechanisms of crosslinking, in each case, have been elucidated using model peptides. Residues involved in spontaneous protein-protein crosslinking include aspartic acid, asparagine, cysteine, lysine, phosphoserine, phosphothreonine, glutamic acid and glutamine. It has become clear, therefore, that several amino acids can act as potential sites for crosslinking in the long-lived proteins that are present in aged individuals. Moreover, the lens has been an invaluable model tissue and source of crosslinked proteins from which to determine crosslinking mechanisms that may lead to crosslinking in other human tissues.
Collapse
|
56
|
Galindo A, Planelles-Herrero VJ, Degliesposti G, Munro S. Cryo-EM structure of metazoan TRAPPIII, the multi-subunit complex that activates the GTPase Rab1. EMBO J 2021; 40:e107608. [PMID: 34018214 PMCID: PMC8204870 DOI: 10.15252/embj.2020107608] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/19/2022] Open
Abstract
The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo‐EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII‐specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease‐causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur‐TRAPP.
Collapse
Affiliation(s)
| | | | | | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
57
|
Piróg A, Cantini F, Nierzwicki Ł, Obuchowski I, Tomiczek B, Czub J, Liberek K. Two Bacterial Small Heat Shock Proteins, IbpA and IbpB, Form a Functional Heterodimer. J Mol Biol 2021; 433:167054. [PMID: 34022209 DOI: 10.1016/j.jmb.2021.167054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 01/29/2023]
Abstract
Small heat shock proteins (sHsps) are a conserved class of ATP-independent chaperones which in stress conditions bind to unfolded protein substrates and prevent their irreversible aggregation. Substrates trapped in sHsps-containing aggregates are efficiently refolded into native structures by ATP-dependent Hsp70 and Hsp100 chaperones. Most γ-proteobacteria possess a single sHsp (IbpA), while in a subset of Enterobacterales, as a consequence of ibpA gene duplication event, a two-protein sHsp (IbpA and IbpB) system has evolved. IbpA and IbpB are functionally divergent. Purified IbpA, but not IbpB, stably interacts with aggregated substrates, yet both sHsps are required to be present at the substrate denaturation step for subsequent efficient Hsp70-Hsp100-dependent substrate refolding. IbpA and IbpB interact with each other, influence each other's expression levels and degradation rates. However, the crucial information on how these two sHsps interact and what is the basic building block required for proper sHsps functioning was missing. Here, based on NMR, mass spectrometry and crosslinking studies, we show that IbpA-IbpB heterodimer is a dominating functional unit of the two sHsp system in Enterobacterales. The principle of heterodimer formation is similar to one described for homodimers of single bacterial sHsps. β-hairpins formed by strands β5 and β7 of IbpA or IbpB crystallin domains associate with the other one's β-sandwich in the heterodimer structure. Relying on crosslinking and molecular dynamics studies, we also propose the orientation of two IbpA-IbpB heterodimers in a higher order tetrameric structure.
Collapse
Affiliation(s)
- Artur Piróg
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Łukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Igor Obuchowski
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Bartłomiej Tomiczek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Krzysztof Liberek
- Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
58
|
Cantrell LS, Schey KL. Proteomic characterization of the human lens and Cataractogenesis. Expert Rev Proteomics 2021; 18:119-135. [PMID: 33849365 DOI: 10.1080/14789450.2021.1913062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The goal of this review is to highlight the triumphs and frontiers in measurement of the lens proteome as it relates to onset of age-related nuclear cataract. As global life expectancy increases, so too does the frequency of age-related nuclear cataracts. Molecular therapeutics do not exist for delay or relief of cataract onset in humans. Since lens fiber cells are incapable of protein synthesis after initial maturation, age-related changes in proteome composition and post-translational modification accumulation can be measured with various techniques. Several of these modifications have been associated with cataract onset. AREAS COVERED We discuss the impact of long-lived proteins on the lens proteome and lens homeostasis as well as proteomic techniques that may be used to measure proteomes at various levels of proteomic specificity and spatial resolution. EXPERT OPINION There is clear evidence that several proteome modifications are correlated with cataract formation. Past studies should be enhanced with cutting-edge, spatially resolved mass spectrometry techniques to enhance the specificity and sensitivity of modification detection as it relates to cataract formation.
Collapse
Affiliation(s)
- Lee S Cantrell
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
59
|
Mendes ML, Dittmar G. Analysis of the Dynamic Proteasome Structure by Cross-Linking Mass Spectrometry. Biomolecules 2021; 11:biom11040505. [PMID: 33801594 PMCID: PMC8067131 DOI: 10.3390/biom11040505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
The 26S proteasome is a macromolecular complex that degrades proteins maintaining cell homeostasis; thus, determining its structure is a priority to understand its function. Although the 20S proteasome's structure has been known for some years, the highly dynamic nature of the 19S regulatory particle has presented a challenge to structural biologists. Advances in cryo-electron microscopy (cryo-EM) made it possible to determine the structure of the 19S regulatory particle and showed at least seven different conformational states of the proteasome. However, there are still many questions to be answered. Cross-linking mass spectrometry (CLMS) is now routinely used in integrative structural biology studies, and it promises to take integrative structural biology to the next level, answering some of these questions.
Collapse
|
60
|
The box C/D snoRNP assembly factor Bcd1 interacts with the histone chaperone Rtt106 and controls its transcription dependent activity. Nat Commun 2021; 12:1859. [PMID: 33767140 PMCID: PMC7994586 DOI: 10.1038/s41467-021-22077-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic interactions between the Rsa1p-encoding gene and genes involved in chromatin organization including RTT106 that codes for the H3-H4 histone chaperone Rtt106p controlling H3K56ac deposition. We show that Bcd1p binds Rtt106p and controls its transcription-dependent recruitment by reducing its association with RNA polymerase II, modulating H3K56ac levels at gene body. We reveal the 3D structures of the free and Rtt106p-bound forms of Bcd1p using nuclear magnetic resonance and X-ray crystallography. The interaction is also studied by a combination of biophysical and proteomic techniques. Bcd1p interacts with a region that is distinct from the interaction interface between the histone chaperone and histone H3. Our results are evidence for a protein interaction interface for Rtt106p that controls its transcription-associated activity. Biogenesis of small nucleolar RNAs ribonucleoproteins (snoRNPs) requires dedicated assembly machinery. Here, the authors show that a subset of snoRNP assembly factors interacts, genetically or directly, with factors modulating chromatin architecture, suggesting a link between ribosome formation and chromatin functions.
Collapse
|
61
|
Del Amo-Maestro L, Sagar A, Pompach P, Goulas T, Scavenius C, Ferrero DS, Castrillo-Briceño M, Taulés M, Enghild JJ, Bernadó P, Gomis-Rüth FX. An Integrative Structural Biology Analysis of Von Willebrand Factor Binding and Processing by ADAMTS-13 in Solution. J Mol Biol 2021; 433:166954. [PMID: 33771572 DOI: 10.1016/j.jmb.2021.166954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Von Willebrand Factor (vWF), a 300-kDa plasma protein key to homeostasis, is cleaved at a single site by multi-domain metallopeptidase ADAMTS-13. vWF is the only known substrate of this peptidase, which circulates in a latent form and becomes allosterically activated by substrate binding. Herein, we characterised the complex formed by a competent peptidase construct (AD13-MDTCS) comprising metallopeptidase (M), disintegrin-like (D), thrombospondin (T), cysteine-rich (C), and spacer (S) domains, with a 73-residue functionally relevant vWF-peptide, using nine complementary techniques. Pull-down assays, gel electrophoresis, and surface plasmon resonance revealed tight binding with sub-micromolar affinity. Cross-linking mass spectrometry with four reagents showed that, within the peptidase, domain D approaches M, C, and S. S is positioned close to M and C, and the peptide contacts all domains. Hydrogen/deuterium exchange mass spectrometry revealed strong and weak protection for C/D and M/S, respectively. Structural analysis by multi-angle laser light scattering and small-angle X-ray scattering in solution revealed that the enzyme adopted highly flexible unbound, latent structures and peptide-bound, active structures that differed from the AD13-MDTCS crystal structure. Moreover, the peptide behaved like a self-avoiding random chain. We integrated the results with computational approaches, derived an ensemble of structures that collectively satisfied all experimental restraints, and discussed the functional implications. The interaction conforms to a 'fuzzy complex' that follows a 'dynamic zipper' mechanism involving numerous reversible, weak but additive interactions that result in strong binding and cleavage. Our findings contribute to illuminating the biochemistry of the vWF:ADAMTS-13 axis.
Collapse
Affiliation(s)
- Laura Del Amo-Maestro
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Amin Sagar
- Centre de Biochimie Structurale, INSERM, CNRS and Université de Montpellier, 34090 Montpellier, France
| | - Petr Pompach
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czechia; Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czechia
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Diego S Ferrero
- Laboratory for Viruses and Large Biological Complexes, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Mariana Castrillo-Briceño
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Marta Taulés
- Scientific and Technological Centers (CCiTUB), University of Barcelona, Lluís Solé i Sabaris, 1-3, 08028 Barcelona, Catalonia, Spain
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS and Université de Montpellier, 34090 Montpellier, France.
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
62
|
First 3D-Structural Data of Full-Length Guanylyl Cyclase 1 in Rod-Outer-Segment Preparations of Bovine Retina by Cross-Linking/Mass Spectrometry. J Mol Biol 2021; 433:166947. [PMID: 33744315 DOI: 10.1016/j.jmb.2021.166947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.
Collapse
|
63
|
Abstract
The stereotype of ROS produced by NADPH oxidases as cause of malignant diseases persists in a generalized manner. In fact, high levels of ROS formation could be harmful in the context of a disease process. This study demonstrates that loss of the NADPH oxidase Nox4, as a constitutive source of ROS, promotes cancerogen-induced formation of solid tumors. Accordingly, a certain tonic, constitutive low level of Nox4-derived hydrogen peroxide appears to reduce the risk of cancerogen-induced tumor formation. Reactive oxygen species (ROS) can cause cellular damage and promote cancer development. Besides such harmful consequences of overproduction of ROS, all cells utilize ROS for signaling purposes and stabilization of cell homeostasis. In particular, the latter is supported by the NADPH oxidase 4 (Nox4) that constitutively produces low amounts of H2O2. By that mechanism, Nox4 forces differentiation of cells and prevents inflammation. We hypothesize a constitutive low level of H2O2 maintains basal activity of cellular surveillance systems and is unlikely to be cancerogenic. Utilizing two different murine models of cancerogen-induced solid tumors, we found that deletion of Nox4 promotes tumor formation and lowers recognition of DNA damage. Nox4 supports phosphorylation of H2AX (γH2AX), a prerequisite of DNA damage recognition, by retaining a sufficiently low abundance of the phosphatase PP2A in the nucleus. The underlying mechanism is continuous oxidation of AKT by Nox4. Interaction of oxidized AKT and PP2A captures the phosphatase in the cytosol. Absence of Nox4 facilitates nuclear PP2A translocation and dephosphorylation of γH2AX. Simultaneously AKT is left phosphorylated. Thus, in the absence of Nox4, DNA damage is not recognized and the increased activity of AKT supports proliferation. The combination of both events results in genomic instability and promotes tumor formation. By identifying Nox4 as a protective source of ROS in cancerogen-induced cancer, we provide a piece of knowledge for understanding the role of moderate production of ROS in preventing the initiation of malignancies.
Collapse
|
64
|
Kukačka Z, Rosůlek M, Jelínek J, Slavata L, Kavan D, Novák P. LinX: A Software Tool for Uncommon Cross-Linking Chemistry. J Proteome Res 2021; 20:2021-2027. [PMID: 33657806 DOI: 10.1021/acs.jproteome.0c00858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical cross-linking mass spectrometry has become a popular tool in structural biology. Although several algorithms exist that efficiently analyze data-dependent mass spectrometric data, the algorithm to identify and quantify intermolecular cross-links located at the interaction interface of homodimer molecules was missing. The algorithm in LinX utilizes high mass accuracy for ion identification. In contrast with standard data-dependent analysis, LinX enables the elucidation of cross-linked peptides originating from the interaction interface of homodimers labeled by 14N/15N, including their ratio or cross-links from protein-nucleic acid complexes. The software is written in Java language, and its source code and a detailed user's guide are freely available at https://github.com/KukackaZ/LinX or https://ms-utils.org/LinX. Data are accessible via the ProteomeXchange server with the data set identifier PXD023522.
Collapse
Affiliation(s)
- Zdeněk Kukačka
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Michal Rosůlek
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Jan Jelínek
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12000 Prague 2, Czech Republic
| | - Lukáš Slavata
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Petr Novák
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| |
Collapse
|
65
|
Rey M, Dhenin J, Kong Y, Nouchikian L, Filella I, Duchateau M, Dupré M, Pellarin R, Duménil G, Chamot-Rooke J. Advanced In Vivo Cross-Linking Mass Spectrometry Platform to Characterize Proteome-Wide Protein Interactions. Anal Chem 2021; 93:4166-4174. [DOI: 10.1021/acs.analchem.0c04430] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Martial Rey
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Jonathan Dhenin
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Youxin Kong
- Pathogenesis of Vascular Infections, Department of Cell Biology and Infection, Institut Pasteur, INSERM U1225, 28 rue du Docteur Roux, 75015 Paris France
| | - Lucienne Nouchikian
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Isaac Filella
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28 rue du Docteur Roux, 75015 Paris, France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Mathieu Dupré
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28 rue du Docteur Roux, 75015 Paris, France
| | - Guillaume Duménil
- Pathogenesis of Vascular Infections, Department of Cell Biology and Infection, Institut Pasteur, INSERM U1225, 28 rue du Docteur Roux, 75015 Paris France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS USR 2000, 28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
66
|
Sinclair JKL, Robertson WE, Mozumdar D, Quach K, Schepartz A. Allosteric Inhibition of the Epidermal Growth Factor Receptor. Biochemistry 2021; 60:500-512. [PMID: 33557518 DOI: 10.1021/acs.biochem.0c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously reported a family of hydrocarbon-stapled peptides designed to interact with the epidermal growth factor receptor (EGFR) juxtamembrane (JM) segment, blocking its ability to form a coiled coil dimer that is essential for receptor activation. These hydrocarbon-stapled peptides, most notably E1S, decreased the proliferation of cell lines that express wild-type EGFR (H2030 and A431) as well as those expressing the oncogenic mutants EGFR L858R (H3255) and L858R/T790M (H1975). Although our previous investigations provided evidence that E1S interacted with EGFR directly, the location and details of these interactions were not established. Here we apply biochemical and cross-linking mass spectrometry tools to better define the interactions between E1S and EGFR. Taken with previously reported structure-activity relationships, our results support a model in which E1S interacts simultaneously with both the JM and the C-lobe of the activator kinase, effectively displacing the JM of the receiver kinase. Our results also reveal potential interactions between E1S and the N-terminal region of the C-terminal tail. We propose a model in which E1S inhibits EGFR by both mimicking and inhibiting JM coiled coil formation. This model could be used to design novel, allosteric (and perhaps nonpeptidic) EGFR inhibitors.
Collapse
Affiliation(s)
- Julie K L Sinclair
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Wesley E Robertson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Deepto Mozumdar
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, University of California, Berkeley, California 94705, United States
| | - Kim Quach
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, California 94705, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94705, United States
| |
Collapse
|
67
|
Beard HA, Korovesis D, Chen S, Verhelst SHL. Cleavable linkers and their application in MS-based target identification. Mol Omics 2021; 17:197-209. [PMID: 33507200 DOI: 10.1039/d0mo00181c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent chemical probes are important tools in chemical biology. They range from post-translational modification (PTM)-derived metabolic probes, to activity-based probes and photoaffinity labels. Identification of the probe targets is often performed by tandem mass spectrometry-based proteomics methods. In the past fifteen years, cleavable linker technologies have been implemented in these workflows in order to identify probe targets with lower background and higher confidence. In addition, the linkers have enabled identification of modification sites. Overall, this has led to an increased knowledge of PTMs, enzyme function and drug action. This review gives an overview of the different types of cleavable linkers, and their benefits and limitations. Their applicability in target identification is also illustrated by several specific examples.
Collapse
Affiliation(s)
- Hester A Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49 box 802, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
68
|
Abstract
Cross-linking, in general, involves the covalent linkage of two amino acid residues of proteins or protein complexes in close proximity. Mass spectrometry and computational analysis are then applied to identify the formed linkage and deduce structural information such as distance restraints. Quantitative cross-linking coupled with mass spectrometry is well suited to study protein dynamics and conformations of protein complexes. The quantitative cross-linking workflow described here is based on the application of isotope labelled cross-linkers. Proteins or protein complexes present in different structural states are differentially cross-linked using a "light" and a "heavy" cross-linker. The intensity ratios of cross-links (i.e., light/heavy or heavy/light) indicate structural changes or interactions that are maintained in the different states. These structural insights lead to a better understanding of the function of the proteins or protein complexes investigated. The described workflow is applicable to a wide range of research questions including, for instance, protein dynamics or structural changes upon ligand binding.
Collapse
Affiliation(s)
- Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
69
|
Filandrová R, Vališ K, Černý J, Chmelík J, Slavata L, Fiala J, Rosůlek M, Kavan D, Man P, Chum T, Cebecauer M, Fabris D, Novák P. Motif orientation matters: Structural characterization of TEAD1 recognition of genomic DNA. Structure 2020; 29:345-356.e8. [PMID: 33333006 DOI: 10.1016/j.str.2020.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/09/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
TEAD transcription factors regulate gene expression through interactions with DNA and other proteins. They are crucial for the development of eukaryotic organisms and to control the expression of genes involved mostly in cell proliferation and differentiation; however, their deregulation can lead to tumorigenesis. To study the interactions of TEAD1 with M-CAT motifs and their inverted versions, the KD of each complex was determined, and H/D exchange, quantitative chemical cross-linking, molecular docking, and smFRET were utilized for structural characterization. ChIP-qPCR was employed to correlate the results with a cell line model. The results obtained showed that although the inverted motif has 10× higher KD, the same residues were affected by the presence of M-CAT in both orientations. Molecular docking and smFRET revealed that TEAD1 binds the inverted motif rotated 180°. In addition, the inverted motif was proven to be occupied by TEAD1 in Jurkat cells, suggesting that the low-affinity binding sites present in the human genome may possess biological relevance.
Collapse
Affiliation(s)
- Růžena Filandrová
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Karel Vališ
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic
| | - Jiří Černý
- Institute of Biotechnology, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Josef Chmelík
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Lukáš Slavata
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Jan Fiala
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Michal Rosůlek
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Petr Man
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic
| | - Tomáš Chum
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague 182 00, Czech Republic
| | - Marek Cebecauer
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Prague 182 00, Czech Republic
| | - Daniele Fabris
- University of Connecticut, Department of Chemistry, 55 N. Eagleville Road, Storrs, CT 06269, USA
| | - Petr Novák
- Institute of Microbiology, Czech Academy of Sciences, Prague 142 20, Czech Republic; Faculty of Science, Charles University, Prague 128 43, Czech Republic.
| |
Collapse
|
70
|
Netz E, Dijkstra TMH, Sachsenberg T, Zimmermann L, Walzer M, Monecke T, Ficner R, Dybkov O, Urlaub H, Kohlbacher O. OpenPepXL: An Open-Source Tool for Sensitive Identification of Cross-Linked Peptides in XL-MS. Mol Cell Proteomics 2020; 19:2157-2168. [PMID: 33067342 PMCID: PMC7710140 DOI: 10.1074/mcp.tir120.002186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/15/2020] [Indexed: 11/06/2022] Open
Abstract
Cross-linking MS (XL-MS) has been recognized as an effective source of information about protein structures and interactions. In contrast to regular peptide identification, XL-MS has to deal with a quadratic search space, where peptides from every protein could potentially be cross-linked to any other protein. To cope with this search space, most tools apply different heuristics for search space reduction. We introduce a new open-source XL-MS database search algorithm, OpenPepXL, which offers increased sensitivity compared with other tools. OpenPepXL searches the full search space of an XL-MS experiment without using heuristics to reduce it. Because of efficient data structures and built-in parallelization OpenPepXL achieves excellent runtimes and can also be deployed on large compute clusters and cloud services while maintaining a slim memory footprint. We compared OpenPepXL to several other commonly used tools for identification of noncleavable labeled and label-free cross-linkers on a diverse set of XL-MS experiments. In our first comparison, we used a data set from a fraction of a cell lysate with a protein database of 128 targets and 128 decoys. At 5% FDR, OpenPepXL finds from 7% to over 50% more unique residue pairs (URPs) than other tools. On data sets with available high-resolution structures for cross-link validation OpenPepXL reports from 7% to over 40% more structurally validated URPs than other tools. Additionally, we used a synthetic peptide data set that allows objective validation of cross-links without relying on structural information and found that OpenPepXL reports at least 12% more validated URPs than other tools. It has been built as part of the OpenMS suite of tools and supports Windows, macOS, and Linux operating systems. OpenPepXL also supports the MzIdentML 1.2 format for XL-MS identification results. It is freely available under a three-clause BSD license at https://openms.org/openpepxl.
Collapse
Affiliation(s)
- Eugen Netz
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany; Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany.
| | - Tjeerd M H Dijkstra
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany; Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany; Center for Women's Health, University Clinic Tübingen, Tübingen, Germany
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany; Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany
| | - Lukas Zimmermann
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany; Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Mathias Walzer
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Thomas Monecke
- X-Ray Crystallography Facility, Institute of Pharmaceutical Biotechnology, University of Ulm, Ulm, Germany; Department of Molecular Structural BiologyInstitute for Microbiology and GeneticsGZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural BiologyInstitute for Microbiology and GeneticsGZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Olexandr Dybkov
- Department for Cellular BiochemistryMax Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass SpectrometryMax Planck Institute for Biophysical Chemistry, Göttingen, Germany; BioanalyticsInstitute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Oliver Kohlbacher
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany; Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany; Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany; Quantitative Biology Center, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
71
|
Jiang HK, Kurkute P, Li CL, Wang YH, Chen PJ, Lin SY, Wang YS. Revealing USP7 Deubiquitinase Substrate Specificity by Unbiased Synthesis of Ubiquitin Tagged SUMO2. Biochemistry 2020; 59:3796-3801. [PMID: 33006472 DOI: 10.1021/acs.biochem.0c00701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitination and SUMOylation of protein are crucial for various biological responses. The recent unraveling of cross-talk between SUMO and ubiquitin (Ub) has shown the pressing needs to develop the platform for the synthesis of Ub tagged SUMO2 dimers to decipher its biological functions. Still, the platforms for facile synthesis of dimers under native condition are less explored and remain major challenges. Here, we have developed the platform that can expeditiously synthesize all eight Ub tagged SUMO2 and SUMOylated proteins under native condition. Expanding genetic code (EGC) method was employed to incorporate Se-alkylselenocysteine at lysine positions. Oxidative selenoxide elimination generates the electrophilic center, dehydroalanine, which upon Michael addition with C-terminal modified ubiquitin, a nucleophile, yield Ub tagged SUMO2. The dimers were further interrogated with USP7, a SUMO2 deubiquitinase, which is involved in DNA repair, to understand specificity toward the Ub tagged SUMO2 dimer. Our results have shown that the C-terminal domain of USP7 is crucial for USP7 efficiency and selectivity for the Ub tagged SUMO2 dimer.
Collapse
Affiliation(s)
- Han-Kai Jiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Prashant Kurkute
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Lung Li
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hui Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Jung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
72
|
Interaction Interface of Mason-Pfizer Monkey Virus Matrix and Envelope Proteins. J Virol 2020; 94:JVI.01146-20. [PMID: 32796061 DOI: 10.1128/jvi.01146-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Retroviral envelope glycoprotein (Env) is essential for the specific recognition of the host cell and the initial phase of infection. As reported for human immunodeficiency virus (HIV), the recruitment of Env into a retroviral membrane envelope is mediated through its interaction with a Gag polyprotein precursor of structural proteins. This interaction, occurring between the matrix domain (MA) of Gag and the cytoplasmic tail (CT) of the transmembrane domain of Env, takes place at the host cell plasma membrane. To determine whether the MA of Mason-Pfizer monkey virus (M-PMV) also interacts directly with the CT of Env, we mimicked the in vivo conditions in an in vitro experiment by using a CT in its physiological trimeric conformation mediated by the trimerization motif of the GCN4 yeast transcription factor. The MA protein was used at the concentration shifting the equilibrium to its trimeric form. The direct interaction between MA and CT was confirmed by a pulldown assay. Through the combination of nuclear magnetic resonance (NMR) spectroscopy and protein cross-linking followed by mass spectrometry analysis, the residues involved in mutual interactions were determined. NMR has shown that the C terminus of the CT is bound to the C-terminal part of MA. In addition, protein cross-linking confirmed the close proximity of the N-terminal part of CT and the N terminus of MA, which is enabled in vivo by their location at the membrane. These results are in agreement with the previously determined orientation of MA on the membrane and support the already observed mechanisms of M-PMV virus-like particle transport and budding.IMPORTANCE By a combination of nuclear magnetic resonance (NMR) and mass spectroscopy of cross-linked peptides, we show that in contrast to human immunodeficiency virus type 1 (HIV-1), the C-terminal residues of the unstructured cytoplasmic tail of Mason-Pfizer monkey virus (M-PMV) Env interact with the matrix domain (MA). Based on biochemical data and molecular modeling, we propose that individual cytoplasmic tail (CT) monomers of a trimeric complex bind MA molecules belonging to different neighboring trimers, which may stabilize the MA orientation at the membrane by the formation of a membrane-bound net of interlinked Gag and CT trimers. This also corresponds with the concept that the membrane-bound MA of Gag recruits Env through interaction with the full-length CT, while CT truncation during maturation attenuates the interaction to facilitate uncoating. We propose a model suggesting different arrangements of MA-CT complexes between a D-type and C-type retroviruses with short and long CTs, respectively.
Collapse
|
73
|
Cardon T, Franck J, Coyaud E, Laurent EMN, Damato M, Maffia M, Vergara D, Fournier I, Salzet M. Alternative proteins are functional regulators in cell reprogramming by PKA activation. Nucleic Acids Res 2020; 48:7864-7882. [PMID: 32324228 PMCID: PMC7641301 DOI: 10.1093/nar/gkaa277] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022] Open
Abstract
It has been recently shown that many proteins are lacking from reference databases used in mass spectrometry analysis, due to their translation templated on alternative open reading frames. This questions our current understanding of gene annotation and drastically expands the theoretical proteome complexity. The functions of these alternative proteins (AltProts) still remain largely unknown. We have developed a large-scale and unsupervised approach based on cross-linking mass spectrometry (XL-MS) followed by shotgun proteomics to gather information on the functional role of AltProts by mapping them back into known signalling pathways through the identification of their reference protein (RefProt) interactors. We have identified and profiled AltProts in a cancer cell reprogramming system: NCH82 human glioma cells after 0, 16, 24 and 48 h Forskolin stimulation. Forskolin is a protein kinase A activator inducing cell differentiation and epithelial–mesenchymal transition. Our data show that AltMAP2, AltTRNAU1AP and AltEPHA5 interactions with tropomyosin 4 are downregulated under Forskolin treatment. In a wider perspective, Gene Ontology and pathway enrichment analysis (STRING) revealed that RefProts associated with AltProts are enriched in cellular mobility and transfer RNA regulation. This study strongly suggests novel roles of AltProts in multiple essential cellular functions and supports the importance of considering them in future biological studies.
Collapse
Affiliation(s)
- Tristan Cardon
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Julien Franck
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Etienne Coyaud
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Estelle M N Laurent
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France
| | - Marina Damato
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Isabelle Fournier
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Institut Universitaire de France (IUF),75005 Paris, France
| | - Michel Salzet
- Univ. Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), F-59000 Lille, France.,Institut Universitaire de France (IUF),75005 Paris, France
| |
Collapse
|
74
|
Iacobucci I, Monaco V, Cozzolino F, Monti M. From classical to new generation approaches: An excursus of -omics methods for investigation of protein-protein interaction networks. J Proteomics 2020; 230:103990. [PMID: 32961344 DOI: 10.1016/j.jprot.2020.103990] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Functional Proteomics aims to the identification of in vivo protein-protein interaction (PPI) in order to piece together protein complexes, and therefore, cell pathways involved in biological processes of interest. Over the years, proteomic approaches used for protein-protein interaction investigation have relied on classical biochemical protocols adapted to a global overview of protein-protein interactions, within so-called "interactomics" investigation. In particular, their coupling with advanced mass spectrometry instruments and innovative analytical methods led to make great strides in the PPIs investigation in proteomics. In this review, an overview of protein complexes purification strategies, from affinity purification approaches, including proximity-dependent labeling techniques and cross-linking strategy for the identification of transient interactions, to Blue Native Gel Electrophoresis (BN-PAGE) and Size Exclusion Chromatography (SEC) employed in the "complexome profiling", has been reported, giving a look to their developments, strengths and weakness and providing to readers several recent applications of each strategy. Moreover, a section dedicated to bioinformatic databases and platforms employed for protein networks analyses was also included.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy; CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy; CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy; CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.
| |
Collapse
|
75
|
Bender J, Schmidt C. The CroCo cross-link converter: a user-centred tool to convert results from cross-linking mass spectrometry experiments. Bioinformatics 2020; 36:1296-1297. [PMID: 31562766 PMCID: PMC7703748 DOI: 10.1093/bioinformatics/btz732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION A variety of search engines exists for the identification of peptide spectrum matches after cross-linking mass spectrometry experiments. The resulting diversity in output formats complicates data validation and visualization as well as exchange with collaborators, particularly from other research areas. RESULTS Here, we present CroCo, a user-friendly standalone executable to convert cross-linking results to a comprehensive spreadsheet format. Using this format, CroCo can be employed to generate input files for a selection of the commonly utilized validation and visualization tools. AVAILABILITY AND IMPLEMENTATION The source-code is freely available under a GNU general public license at https://github.com/cschmidtlab/croco. The standalone executable is available and documented at https://cschmidtlab.github.io/CroCo. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Julian Bender
- Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, 06120 Halle (Saale), Germany
| | - Carla Schmidt
- Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, 06120 Halle (Saale), Germany
| |
Collapse
|
76
|
Dehling E, Rüschenbaum J, Diecker J, Dörner W, Mootz HD. Photo-crosslink analysis in nonribosomal peptide synthetases reveals aberrant gel migration of branched crosslink isomers and spatial proximity between non-neighboring domains. Chem Sci 2020; 11:8945-8954. [PMID: 34123148 PMCID: PMC8163358 DOI: 10.1039/d0sc01969k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are large, multi-modular enzyme templates for the biosynthesis of important peptide natural products. Modules are composed of a set of semi-autonomous domains that facilitate the individual reaction steps. Only little is known about the existence and relevance of a higher-order architecture in these mega-enzymes, for which contacts between non-neighboring domains in three-dimensional space would be characteristic. Similarly poorly understood is the structure of communication-mediating (COM) domains that facilitate NRPS subunit docking at the boundaries between epimerization and condensation domains. We investigated a COM domain pair in a minimal two module NRPS using genetically encoded photo-crosslinking moieties in the N-terminal acceptor COM domain. Crosslinks into the C-terminal donor COM domain of the partner module resulted in protein products with the expected migration behavior on SDS-PAGE gels corresponding to the added molecular weight of the proteins. Additionally, an unexpected apparent high-molecular weight crosslink product was revealed by mass spectrometric analysis to represent a T-form isomer with branched connectivity of the two polypeptide chains. Synthesis of the linear L-form and branched T-form isomers by click chemistry confirmed this designation. Our data revealed a surprising spatial proximity between the acceptor COM domain and the functionally unrelated small subdomain of the preceding adenylation domain. These findings provide an insight into three-dimensional domain arrangements in NRPSs in solution and suggest the described photo-crosslinking approach as a promising tool for the systematic investigation of their higher-order architecture. Photo-crosslink analysis reveals unexpected insights into the higher-order architecture of NRPS and the nature of crosslink isomers.![]()
Collapse
Affiliation(s)
- Eva Dehling
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster D-48149 Münster Germany
| | - Jennifer Rüschenbaum
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster D-48149 Münster Germany
| | - Julia Diecker
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster D-48149 Münster Germany
| | - Wolfgang Dörner
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster D-48149 Münster Germany
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster D-48149 Münster Germany
| |
Collapse
|
77
|
Addressing the Molecular Mechanism of Longitudinal Lamin Assembly Using Chimeric Fusions. Cells 2020; 9:cells9071633. [PMID: 32645958 PMCID: PMC7407374 DOI: 10.3390/cells9071633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022] Open
Abstract
The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains. We aimed to investigate the longitudinal 'head-to-tail' interaction of lamin dimers (the so-called ACN interaction), which is crucial for filament assembly. To this end, we prepared a series of recombinant fragments of human lamin A centred around the N- and C-termini of the rod. The fragments were stabilized by fusions to heterologous capping motifs which provide for a correct formation of parallel, in-register coiled-coil dimers. As a result, we established crystal structures of two N-terminal fragments one of which highlights the propensity of the coiled-coil to open up, and one C-terminal rod fragment. Additional studies highlighted the capacity of such N- and C-terminal fragments to form specific complexes in solution, which were further characterized using chemical cross-linking. These data yielded a molecular model of the ACN complex which features a 6.5 nm overlap of the rod ends.
Collapse
|
78
|
Xu Y, Kirk NS, Venugopal H, Margetts MB, Croll TI, Sandow JJ, Webb AI, Delaine CA, Forbes BE, Lawrence MC. How IGF-II Binds to the Human Type 1 Insulin-like Growth Factor Receptor. Structure 2020; 28:786-798.e6. [PMID: 32459985 PMCID: PMC7343240 DOI: 10.1016/j.str.2020.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Human type 1 insulin-like growth factor receptor (IGF-1R) signals chiefly in response to the binding of insulin-like growth factor I. Relatively little is known about the role of insulin-like growth factor II signaling via IGF-1R, despite the affinity of insulin-like growth factor II for IGF-1R being within an order of magnitude of that of insulin-like growth factor I. Here, we describe the cryoelectron microscopy structure of insulin-like growth factor II bound to a leucine-zipper-stabilized IGF-1R ectodomain, determined in two conformations to a maximum average resolution of 3.2 Å. The two conformations differ in the relative separation of their respective points of membrane entry, and comparison with the structure of insulin-like growth factor I bound to IGF-1R reveals long-suspected differences in the way in which the critical C domain of the respective growth factors interact with IGF-1R.
Collapse
Affiliation(s)
- Yibin Xu
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Nicholas S Kirk
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Mai B Margetts
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Andrew I Webb
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia
| | - Carlie A Delaine
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA 5042, Australia
| | - Briony E Forbes
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, SA 5042, Australia
| | - Michael C Lawrence
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
79
|
Allosteric interactions in the parathyroid hormone GPCR-arrestin complex formation. Nat Chem Biol 2020; 16:1096-1104. [PMID: 32632293 PMCID: PMC7502484 DOI: 10.1038/s41589-020-0567-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022]
Abstract
Peptide ligands of class B G-protein-coupled receptors act via a two-step binding process, but the essential mechanisms that link their extracellular binding to intracellular receptor-arrestin interactions are not fully understood. Using NMR, crosslinking coupled to mass spectrometry, signaling experiments and computational approaches on the parathyroid hormone (PTH) type 1 receptor (PTHR), we show that initial binding of the PTH C-terminal part constrains the conformation of the flexible PTH N-terminal signaling epitope before a second binding event occurs. A 'hot-spot' PTH residue, His9, that inserts into the PTHR transmembrane domain at this second step allosterically engages receptor-arrestin coupling. A conformational change in PTHR intracellular loop 3 permits favorable interactions with β-arrestin's finger loop. These results unveil structural determinants for PTHR-arrestin complex formation and reveal that the two-step binding mechanism proceeds via cooperative fluctuations between ligand and receptor, which extend to other class B G-protein-coupled receptors.
Collapse
|
80
|
Rodríguez Mallón A, Javier González L, Encinosa Guzmán PE, Bechara GH, Sanches GS, Pousa S, Cabrera G, Cabrales A, Garay H, Mejías R, López Álvarez JR, Bello Soto Y, Almeida F, Guirola O, Rodríguez Fernández R, Fuentes Castillo A, Méndez L, Jiménez S, Licea-Navarro A, Portela M, Durán R, Estrada MP. Functional and Mass Spectrometric Evaluation of an Anti-Tick Antigen Based on the P0 Peptide Conjugated to Bm86 Protein. Pathogens 2020; 9:pathogens9060513. [PMID: 32630414 PMCID: PMC7350365 DOI: 10.3390/pathogens9060513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 11/16/2022] Open
Abstract
A synthetic 20 amino acid peptide of the ribosomal protein P0 from ticks, when conjugated to keyhole limpet hemocyanin from Megathura crenulata and used as an immunogen against Rhipicephalus microplus and Rhipicephalus sanguineus s.l. species, has shown efficacies of around 90%. There is also experimental evidence of a high efficacy of this conjugate against Amblyomma mixtum and Ixodes ricinus species, which suggest that this antigen could be a good broad-spectrum anti-tick vaccine candidate. In this study, the P0 peptide (pP0) was chemically conjugated to Bm86 as a carrier protein. SDS-PAGE analysis of this conjugate demonstrated that it is highly heterogeneous in size, carrying from 1 to 18 molecules of pP0 per molecule of Bm86. Forty-nine out of the 54 lysine residues and the N-terminal end of Bm86 were found partially linked to pP0 by using LC-MS/MS analysis and the combination of four different softwares. Several post-translational modifications of Bm86 protein were also identified by mass spectrometry. High immunogenicity and efficacy were achieved when dogs and cattle were vaccinated with the pP0-Bm86 conjugate and challenged with R. sanguineus s.l. and R. microplus, respectively. These results encourage the development of this antigen with promising possibilities as an anti-tick vaccine.
Collapse
Affiliation(s)
- Alina Rodríguez Mallón
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (P.E.E.G.); (Y.B.S.); (M.P.E.)
- Correspondence: ; Tel.: +53-72504407
| | - Luis Javier González
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, CIGB, Havana 10600, Cuba; (L.J.G.); (S.P.); (G.C.); (F.A.)
| | - Pedro Enrique Encinosa Guzmán
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (P.E.E.G.); (Y.B.S.); (M.P.E.)
| | - Gervasio Henrique Bechara
- Programa de Pós-graduação em Ciência Animal, Pontifícia Universidade Católica do Paraná (PUCPR), Paraná 80215-901, Brazil; (G.H.B.); (G.S.S.)
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV-UNESP), São Paulo 14884-900, Brazil
| | - Gustavo Seron Sanches
- Programa de Pós-graduação em Ciência Animal, Pontifícia Universidade Católica do Paraná (PUCPR), Paraná 80215-901, Brazil; (G.H.B.); (G.S.S.)
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (FCAV-UNESP), São Paulo 14884-900, Brazil
| | - Satomy Pousa
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, CIGB, Havana 10600, Cuba; (L.J.G.); (S.P.); (G.C.); (F.A.)
| | - Gleysin Cabrera
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, CIGB, Havana 10600, Cuba; (L.J.G.); (S.P.); (G.C.); (F.A.)
| | - Ania Cabrales
- Synthetic Peptides Group, CIGB, Havana 10600, Cuba; (A.C.); (H.G.)
| | - Hilda Garay
- Synthetic Peptides Group, CIGB, Havana 10600, Cuba; (A.C.); (H.G.)
| | - Raúl Mejías
- Instituto de Ciencia Animal (ICA), San José de las Lajas 32700, Cuba; (R.M.); (J.R.L.Á.)
| | | | - Yamil Bello Soto
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (P.E.E.G.); (Y.B.S.); (M.P.E.)
| | - Fabiola Almeida
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, CIGB, Havana 10600, Cuba; (L.J.G.); (S.P.); (G.C.); (F.A.)
| | | | | | - Alier Fuentes Castillo
- National Laboratory for Parasitology, San Antonio de los Banos 32500, Cuba; (R.R.F.); (A.F.C.); (L.M.)
| | - Luis Méndez
- National Laboratory for Parasitology, San Antonio de los Banos 32500, Cuba; (R.R.F.); (A.F.C.); (L.M.)
| | - Samanta Jiménez
- Departamento de Innovación Biomédica, CICESE, Ensenada 22860, Mexico; (S.J.); (A.L.-N.)
| | - Alexei Licea-Navarro
- Departamento de Innovación Biomédica, CICESE, Ensenada 22860, Mexico; (S.J.); (A.L.-N.)
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.P.); (R.D.)
- Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analítica, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (M.P.); (R.D.)
- Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (P.E.E.G.); (Y.B.S.); (M.P.E.)
| |
Collapse
|
81
|
Zhao B, Reilly CP, Davis C, Matouschek A, Reilly JP. Use of Multiple Ion Fragmentation Methods to Identify Protein Cross-Links and Facilitate Comparison of Data Interpretation Algorithms. J Proteome Res 2020; 19:2758-2771. [PMID: 32496805 DOI: 10.1021/acs.jproteome.0c00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple ion fragmentation methods involving collision-induced dissociation (CID), higher-energy collisional dissociation (HCD) with regular and very high energy settings, and electron-transfer dissociation with supplementary HCD (EThcD) are implemented to improve the confidence of cross-link identifications. Three different S. cerevisiae proteasome samples cross-linked by diethyl suberthioimidate (DEST) or bis(sulfosuccinimidyl)suberate (BS3) are analyzed. Two approaches are introduced to combine interpretations from the above four methods. Working with cleavable cross-linkers such as DEST, the first approach searches for cross-link diagnostic ions and consistency among the best interpretations derived from all four MS2 spectra associated with each precursor ion. Better agreement leads to a more definitive identification. Compatible with both cleavable and noncleavable cross-linkers such as BS3, the second approach multiplies scoring metrics from a number of fragmentation experiments to derive an overall best match. This significantly increases the scoring gap between the target and decoy matches. The validity of cross-links fragmented by HCD alone and identified by Kojak, MeroX, pLink, and Xi was evaluated using multiple fragmentation data. Possible ways to improve the identification credibility are discussed. Data are available via ProteomeXchange with identifier PXD018310.
Collapse
Affiliation(s)
- Bingqing Zhao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Colin P Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Caroline Davis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James P Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
82
|
Cross-linking/mass spectrometry to get a closer view on protein interaction networks. Curr Opin Biotechnol 2020; 63:48-53. [DOI: 10.1016/j.copbio.2019.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
|
83
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
84
|
Bendifallah M, Redeker V, Monsellier E, Bousset L, Bellande T, Melki R. Interaction of the chaperones alpha B-crystallin and CHIP with fibrillar alpha-synuclein: Effects on internalization by cells and identification of interacting interfaces. Biochem Biophys Res Commun 2020; 527:760-769. [PMID: 32430178 DOI: 10.1016/j.bbrc.2020.04.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
The spread of fibrillar alpha-synuclein from affected to naïve neuronal cells is thought to contribute to the progression of synucleinopathies. The binding of fibrillar alpha-synuclein to the plasma membrane is key in this process. We and others previously showed that coating fibrillar alpha-synuclein by the molecular chaperone Hsc70 affects fibrils properties. Here we assessed the effect of the two molecular chaperones alpha B-crystallin and CHIP on alpha-synuclein fibrils uptake by Neuro-2a cells. We demonstrate that both chaperones diminish fibrils take up by cells. We identify through a cross-linking and mass spectrometry strategy the interaction interfaces between alpha-synuclein fibrils and alpha B-crystallin or CHIP. Our results open the way for designing chaperone-derived polypeptide binders that interfere with the propagation of pathogenic alpha-synuclein assemblies.
Collapse
Affiliation(s)
- Maya Bendifallah
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Virginie Redeker
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Elodie Monsellier
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Luc Bousset
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Tracy Bellande
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| | - Ronald Melki
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| |
Collapse
|
85
|
Yu C, Novitsky EJ, Cheng NW, Rychnovsky SD, Huang L. Exploring Spacer Arm Structures for Designs of Asymmetric Sulfoxide-Containing MS-Cleavable Cross-Linkers. Anal Chem 2020; 92:6026-6033. [PMID: 32202417 PMCID: PMC7363200 DOI: 10.1021/acs.analchem.0c00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cross-linking mass spectrometry (XL-MS) has become a powerful structural tool for defining protein-protein interactions (PPIs) and elucidating architectures of large protein assemblies. To advance XL-MS studies, we have previously developed a series of sulfoxide-containing MS-cleavable cross-linkers to facilitate the detection and identification of cross-linked peptides using multistage mass spectrometry (MSn). While current sulfoxide-based cross-linkers are effective for in vivo and in vitro XL-MS studies at the systems-level, new reagents are still needed to help expand PPI coverage. To this end, we have designed and synthesized six variable-length derivatives of disuccinimidyl sulfoxide (DSSO) to better understand the effects of spacer arm modulation on MS-cleavability, fragmentation characteristics, and MS identification of cross-linked peptides. In addition, the impact on cross-linking reactivity was evaluated. Moreover, alternative MS2-based workflows were explored to determine their feasibility for analyzing new sulfoxide-containing cross-linked products. Based on the results of synthetic peptides and a model protein, we have further demonstrated the robustness and predictability of sulfoxide chemistry in designing MS-cleavable cross-linkers. Importantly, we have identified a unique asymmetric design that exhibits preferential fragmentation of cross-links over peptide backbones, a desired feature for MSn analysis. This work has established a solid foundation for further development of sulfoxide-containing MS-cleavable cross-linkers with new functionalities.
Collapse
Affiliation(s)
- Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Eric J. Novitsky
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Nicholas W. Cheng
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | | | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
86
|
Influence of cross-linker polarity on selectivity towards lysine side chains. J Proteomics 2020; 218:103716. [DOI: 10.1016/j.jprot.2020.103716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/02/2020] [Accepted: 02/19/2020] [Indexed: 11/19/2022]
|
87
|
Identifying transglutaminase reaction products via mass spectrometry as exemplified by the MUC2 mucin - Pitfalls and traps. Anal Biochem 2020; 597:113668. [PMID: 32222540 PMCID: PMC7184670 DOI: 10.1016/j.ab.2020.113668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/15/2020] [Accepted: 02/27/2020] [Indexed: 12/26/2022]
Abstract
In order to demonstrate transglutaminase activity in biological samples immunological as well as glutamine- and amine-donor based assays are commonly used. However, the identification of the transglutaminase reaction product, i. e. the isopeptide cross-linked peptides/proteins or the deamidated protein/peptide are often neglected. This article describes a workflow for the detection of the products of transglutaminase-catalyzed reactions. In particular, possible pitfalls and traps that can arise during the mass spectrometry-based identification of isopeptide cross-links are addressed and characterised on actual samples.
Collapse
|
88
|
Morris AK, Wang Z, Ivey AL, Xie Y, Hill PS, Schey KL, Ren Y. Cellular mRNA export factor UAP56 recognizes nucleic acid binding site of influenza virus NP protein. Biochem Biophys Res Commun 2020; 525:259-264. [PMID: 32085897 DOI: 10.1016/j.bbrc.2020.02.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Influenza A virus nucleoprotein (NP) is a structural component that encapsulates the viral genome into the form of ribonucleoprotein complexes (vRNPs). Efficient assembly of vRNPs is critical for the virus life cycle. The assembly route from RNA-free NP to the NP-RNA polymer in vRNPs has been suggested to require a cellular factor UAP56, but the mechanism is poorly understood. Here, we characterized the interaction between NP and UAP56 using recombinant proteins and showed that UAP56 features two NP binding sites. In addition to the UAP56 core comprised of two RecA domains, we identified the N-terminal extension (NTE) of UAP56 as a previously unknown NP binding site. In particular, UAP56-NTE recognizes the nucleic acid binding region of NP. This corroborates our observation that binding of UAP56-NTE and RNA to NP is mutually exclusive. Collectively, our results reveal the molecular basis for how UAP56 acts on RNA-free NP, and provide new insights into NP-mediated influenza genome packaging.
Collapse
Affiliation(s)
- Andrew K Morris
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Austin L Ivey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Yihu Xie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Pate S Hill
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Yi Ren
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
89
|
Bender J, Schmidt C. Mass spectrometry of membrane protein complexes. Biol Chem 2020; 400:813-829. [PMID: 30956223 DOI: 10.1515/hsz-2018-0443] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
Abstract
Membrane proteins are key players in the cell. Due to their hydrophobic nature they require solubilising agents such as detergents or membrane mimetics during purification and, consequently, are challenging targets in structural biology. In addition, their natural lipid environment is crucial for their structure and function further hampering their analysis. Alternative approaches are therefore required when the analysis by conventional techniques proves difficult. In this review, we highlight the broad application of mass spectrometry (MS) for the characterisation of membrane proteins and their interactions with lipids. We show that MS unambiguously identifies the protein and lipid components of membrane protein complexes, unravels their three-dimensional arrangements and further provides clues of protein-lipid interactions.
Collapse
Affiliation(s)
- Julian Bender
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| |
Collapse
|
90
|
Beveridge R, Stadlmann J, Penninger JM, Mechtler K. A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes. Nat Commun 2020; 11:742. [PMID: 32029734 PMCID: PMC7005041 DOI: 10.1038/s41467-020-14608-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/21/2020] [Indexed: 01/06/2023] Open
Abstract
Crosslinking-mass spectrometry (XL-MS) serves to identify interaction sites between proteins. Numerous search engines for crosslink identification exist, but lack of ground truth samples containing known crosslinks has precluded their systematic validation. Here we report on XL-MS data arising from measuring synthetic peptide libraries that provide the unique benefit of knowing which identified crosslinks are true and which are false. The data are analysed with the most frequently used search engines and the results filtered to an estimated false discovery rate of 5%. We find that the actual false crosslink identification rates range from 2.4 to 32%, depending on the analysis strategy employed. Furthermore, the use of MS-cleavable crosslinkers does not reduce the false discovery rate compared to non-cleavable crosslinkers. We anticipate that the datasets acquired during this research will further drive optimisation and development of XL-MS search engines, thereby advancing our understanding of vital biological interactions.
Collapse
Affiliation(s)
- Rebecca Beveridge
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Johannes Stadlmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Department of medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver Campus, 2350 Health Sciences Mall, Vancouver, BCV6T 1Z3, Canada
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
91
|
Chakrabarty JK, Sadananda SC, Bhat A, Naik AJ, Ostwal DV, Chowdhury SM. High Confidence Identification of Cross-Linked Peptides by an Enrichment-Based Dual Cleavable Cross-Linking Technology and Data Analysis tool Cleave-XL. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:173-182. [PMID: 32031390 DOI: 10.1021/jasms.9b00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cleavable cross-linking technology requires further MS/MS of the cleavable fragments for unambiguous identification of cross-linked peptides. These spectra are sometimes very ambiguous due to the sensitivity and complex fragmentation pattern of the peptides with the cross-linked residues. We recently reported a dual cleavable cross-linking technology (DUCCT), which can enhance the confidence in the identification of cross-linked peptides. The heart of this strategy is a novel dual mass spectrometry cleavable cross linker that can be cleaved preferentially by two differential tandem mass spectrometry methods, collision induced dissociation and electron transfer dissociation (CID and ETD). Different signature ions from two different mass spectra for the same cross-linked peptide helped identify the cross-linked peptides with high confidence. In this study, we developed an enrichment-based photocleavable DUCCT (PC-DUCCT-biotin), where cross-linked products were enriched from biological samples using affinity purification, and subsequently, two sequential tandem (CID and ETD) mass spectrometry processes were utilized. Furthermore, we developed a prototype software called Cleave-XL to analyze cross-linked products generated by DUCCT. Photocleavable DUCCT was demonstrated in standard peptides and proteins. Efficiency of the software tools to search and compare CID and ETD data of photocleavable DUCCT biotin in standard peptides and proteins as well as regular DUCCT in protein complexes from immune cells were tested. The software is efficient in pinpointing cross-linked sites using CID and ETD cross-linking data. We believe this new DUCCT and associated software tool Cleave-XL will advance high confidence identification of protein cross-linking sites and automated identification of low-resolution protein structures.
Collapse
Affiliation(s)
- Jayanta K Chakrabarty
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Sandhya C Sadananda
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Apeksha Bhat
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Aishwarya J Naik
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Dhanashri V Ostwal
- Department of Computer Science , University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry , University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
92
|
Dao HT, Dul BE, Dann GP, Liszczak GP, Muir TW. A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Nat Chem Biol 2020; 16:134-142. [PMID: 31819269 PMCID: PMC6982587 DOI: 10.1038/s41589-019-0413-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Recent studies have implicated the nucleosome acidic patch in the activity of ATP-dependent chromatin remodeling machines. We used a photocrosslinking-based nucleosome profiling technology (photoscanning) to identify a conserved basic motif within the catalytic subunit of ISWI remodelers, SNF2h, which engages this nucleosomal epitope. This region of SNF2h is essential for chromatin remodeling activity in a reconstituted biochemical system and in cells. Our studies suggest that the basic motif in SNF2h plays a critical role in anchoring the remodeler to the nucleosomal surface. We also examine the functional consequences of several cancer-associated histone mutations that map to the nucleosome acidic patch. Kinetic studies using physiologically relevant heterotypic nucleosomal substrates ('Janus' nucleosomes) indicate that these cancer-associated mutations can disrupt regularly spaced chromatin structure by inducing ISWI-mediated unidirectional nucleosome sliding. These results indicate a potential mechanistic link between oncogenic histones and alterations to the chromatin landscape.
Collapse
Affiliation(s)
- Hai T Dao
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Barbara E Dul
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Geoffrey P Dann
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Glen P Liszczak
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
93
|
Piotrowski C, Moretti R, Ihling CH, Haedicke A, Liepold T, Lipstein N, Meiler J, Jahn O, Sinz A. Delineating the Molecular Basis of the Calmodulin‒bMunc13-2 Interaction by Cross-Linking/Mass Spectrometry-Evidence for a Novel CaM Binding Motif in bMunc13-2. Cells 2020; 9:cells9010136. [PMID: 31936129 PMCID: PMC7017353 DOI: 10.3390/cells9010136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 01/20/2023] Open
Abstract
Exploring the interactions between the Ca2+ binding protein calmodulin (CaM) and its target proteins remains a challenging task. Members of the Munc13 protein family play an essential role in short-term synaptic plasticity, modulated via the interaction with CaM at the presynaptic compartment. In this study, we focus on the bMunc13-2 isoform expressed in the brain, as strong changes in synaptic transmission were observed upon its mutagenesis or deletion. The CaM–bMunc13-2 interaction was previously characterized at the molecular level using short bMunc13-2-derived peptides only, revealing a classical 1–5–10 CaM binding motif. Using larger protein constructs, we have now identified for the first time a novel and unique CaM binding site in bMunc13-2 that contains an N-terminal extension of a classical 1–5–10 CaM binding motif. We characterize this motif using a range of biochemical and biophysical methods and highlight its importance for the CaM–bMunc13-2 interaction.
Collapse
Affiliation(s)
- Christine Piotrowski
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany
| | - Rocco Moretti
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, TN 37221, USA
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany
| | - André Haedicke
- Biophysical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany
| | - Thomas Liepold
- Proteomics Group, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany
| | - Jens Meiler
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, Nashville, TN 37221, USA
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, D-37075 Göttingen, Germany
- Correspondence: (O.J.); (A.S.); Tel.: +49-551-3899-313 (O.J.); +49-345-5525170 (A.S.)
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, D-06120 Halle/Saale, Germany
- Correspondence: (O.J.); (A.S.); Tel.: +49-551-3899-313 (O.J.); +49-345-5525170 (A.S.)
| |
Collapse
|
94
|
Johnston JR, Landim-Vieira M, Marques MA, de Oliveira GAP, Gonzalez-Martinez D, Moraes AH, He H, Iqbal A, Wilnai Y, Birk E, Zucker N, Silva JL, Chase PB, Pinto JR. The intrinsically disordered C terminus of troponin T binds to troponin C to modulate myocardial force generation. J Biol Chem 2019; 294:20054-20069. [PMID: 31748410 PMCID: PMC6937556 DOI: 10.1074/jbc.ra119.011177] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Aberrant regulation of myocardial force production represents an early biomechanical defect associated with sarcomeric cardiomyopathies, but the molecular mechanisms remain poorly defined. Here, we evaluated the pathogenicity of a previously unreported sarcomeric gene variant identified in a pediatric patient with sporadic dilated cardiomyopathy, and we determined a molecular mechanism. Trio whole-exome sequencing revealed a de novo missense variant in TNNC1 that encodes a p.I4M substitution in the N-terminal helix of cardiac troponin C (cTnC). Reconstitution of this human cTnC variant into permeabilized porcine cardiac muscle preparations significantly decreases the magnitude and rate of isometric force generation at physiological Ca2+-activation levels. Computational modeling suggests that this inhibitory effect can be explained by a decrease in the rates of cross-bridge attachment and detachment. For the first time, we show that cardiac troponin T (cTnT), in part through its intrinsically disordered C terminus, directly binds to WT cTnC, and we find that this cardiomyopathic variant displays tighter binding to cTnT. Steady-state fluorescence and NMR spectroscopy studies suggest that this variant propagates perturbations in cTnC structural dynamics to distal regions of the molecule. We propose that the intrinsically disordered C terminus of cTnT directly interacts with the regulatory N-domain of cTnC to allosterically modulate Ca2+ activation of force, perhaps by controlling the troponin I switching mechanism of striated muscle contraction. Alterations in cTnC-cTnT binding may compromise contractile performance and trigger pathological remodeling of the myocardium.
Collapse
Affiliation(s)
- Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Mayra A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - David Gonzalez-Martinez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Anwar Iqbal
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yael Wilnai
- Department of Pediatrics, Dana-Dwek ChildrenγÇÖs Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel 6423906
| | - Einat Birk
- Department of Cardiology, Schneider ChildrenγÇÖs Medical Center, Tel Aviv University, Petah Tikva, Israel 4920235
| | - Nili Zucker
- Department of Cardiology, Schneider ChildrenγÇÖs Medical Center, Tel Aviv University, Petah Tikva, Israel 4920235
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Jose Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
95
|
Schmelzer CEH, Hedtke T, Heinz A. Unique molecular networks: Formation and role of elastin cross-links. IUBMB Life 2019; 72:842-854. [PMID: 31834666 DOI: 10.1002/iub.2213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/30/2019] [Indexed: 01/11/2023]
Abstract
Elastic fibers are essential assemblies of vertebrates and confer elasticity and resilience to various organs including blood vessels, lungs, skin, and ligaments. Mature fibers, which comprise a dense and insoluble elastin core and a microfibrillar mantle, are extremely resistant toward intrinsic and extrinsic influences and maintain elastic function over the human lifespan in healthy conditions. The oxidative deamination of peptidyl lysine to peptidyl allysine in elastin's precursor tropoelastin is a crucial posttranslational step in their formation. The modification is catalyzed by members of the family of lysyl oxidases and the starting point for subsequent manifold condensation reactions that eventually lead to the highly cross-linked elastomer. This review summarizes the current understanding of the formation of cross-links within and between the monomer molecules, the molecular sites, and cross-link types involved and the pathological consequences of abnormalities in the cross-linking process.
Collapse
Affiliation(s)
- Christian E H Schmelzer
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tobias Hedtke
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
96
|
Zeman J, Itoh Y, Kukačka Z, Rosůlek M, Kavan D, Kouba T, Jansen ME, Mohammad MP, Novák P, Valášek LS. Binding of eIF3 in complex with eIF5 and eIF1 to the 40S ribosomal subunit is accompanied by dramatic structural changes. Nucleic Acids Res 2019; 47:8282-8300. [PMID: 31291455 PMCID: PMC6735954 DOI: 10.1093/nar/gkz570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022] Open
Abstract
eIF3 is a large multiprotein complex serving as an essential scaffold promoting binding of other eIFs to the 40S subunit, where it coordinates their actions during translation initiation. Perhaps due to a high degree of flexibility of multiple eIF3 subunits, a high-resolution structure of free eIF3 from any organism has never been solved. Employing genetics and biochemistry, we previously built a 2D interaction map of all five yeast eIF3 subunits. Here we further improved the previously reported in vitro reconstitution protocol of yeast eIF3, which we cross-linked and trypsin-digested to determine its overall shape in 3D by advanced mass-spectrometry. The obtained cross-links support our 2D subunit interaction map and reveal that eIF3 is tightly packed with its WD40 and RRM domains exposed. This contrasts with reported cryo-EM structures depicting eIF3 as a molecular embracer of the 40S subunit. Since the binding of eIF1 and eIF5 further fortified the compact architecture of eIF3, we suggest that its initial contact with the 40S solvent-exposed side makes eIF3 to open up and wrap around the 40S head with its extended arms. In addition, we mapped the position of eIF5 to the region below the P- and E-sites of the 40S subunit.
Collapse
Affiliation(s)
- Jakub Zeman
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Yuzuru Itoh
- Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104, INSERM UMR964, Illkirch, France
| | - Zdeněk Kukačka
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Michal Rosůlek
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Daniel Kavan
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Tomáš Kouba
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Myrte E Jansen
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Mahabub P Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| | - Leoš S Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Videnska 1083, 142 20, The Czech Republic
| |
Collapse
|
97
|
Gimenez M, Veríssimo-Filho S, Wittig I, Schickling BM, Hahner F, Schürmann C, Netto LES, Rosa JC, Brandes RP, Sartoretto S, De Lucca Camargo L, Abdulkader F, Miller FJ, Lopes LR. Redox Activation of Nox1 (NADPH Oxidase 1) Involves an Intermolecular Disulfide Bond Between Protein Disulfide Isomerase and p47 phox in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2019; 39:224-236. [PMID: 30580571 DOI: 10.1161/atvbaha.118.311038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- PDI (protein disulfide isomerase A1) was reported to support Nox1 (NADPH oxidase) activation mediated by growth factors in vascular smooth muscle cells. Our aim was to investigate the molecular mechanism by which PDI activates Nox1 and the functional implications of PDI in Nox1 activation in vascular disease. Approach and Results- Using recombinant proteins, we identified a redox interaction between PDI and the cytosolic subunit p47phox in vitro. Mass spectrometry of crosslinked peptides confirmed redox-dependent disulfide bonds between cysteines of p47phox and PDI and an intramolecular bond between Cys 196 and 378 in p47phox. PDI catalytic Cys 400 and p47phox Cys 196 were essential for the activation of Nox1 by PDI in vascular smooth muscle cells. Transfection of PDI resulted in the rapid oxidation of a redox-sensitive protein linked to p47phox, whereas PDI mutant did not promote this effect. Mutation of p47phox Cys 196, or the redox active cysteines of PDI, prevented Nox1 complex assembly and vascular smooth muscle cell migration. Proximity ligation assay confirmed the interaction of PDI and p47phox in murine carotid arteries after wire injury. Moreover, in human atheroma plaques, a positive correlation between the expression of PDI and p47phox occurred only in PDI family members with the a' redox active site. Conclusions- PDI redox cysteines facilitate Nox1 complex assembly, thus identifying a new mechanism through which PDI regulates Nox activity in vascular disease.
Collapse
Affiliation(s)
- Marcela Gimenez
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil.,Department of Medicine, University of Iowa, Iowa City (M.G., B.M.S., F.J.M.)
| | - Sidney Veríssimo-Filho
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil
| | - Ilka Wittig
- Functional Proteomics Core Unit (I.W.), Goethe-Universität, Frankfurt, Germany
| | - Brandon M Schickling
- Department of Medicine, University of Iowa, Iowa City (M.G., B.M.S., F.J.M.).,Department of Medicine, Duke University, Durham, NC (B.M.S., S.S., F.J.M.)
| | - Fabian Hahner
- Institute for Cardiovascular Physiology (F.H., C.S., R.P.B.), Goethe-Universität, Frankfurt, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology (F.H., C.S., R.P.B.), Goethe-Universität, Frankfurt, Germany
| | - Luis E S Netto
- Institute of Biomedical Sciences, Department of Genetics and Evolutionary Biology, Institute of Biosciences (L.E.S.N.), University of São Paulo, Brazil
| | - José César Rosa
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School (J.C.R.), University of São Paulo, Brazil
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology (F.H., C.S., R.P.B.), Goethe-Universität, Frankfurt, Germany
| | - Simone Sartoretto
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil.,Department of Medicine, Duke University, Durham, NC (B.M.S., S.S., F.J.M.)
| | - Lívia De Lucca Camargo
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil
| | - Fernando Abdulkader
- Department of Physiology and Biophysics (F.A.), University of São Paulo, Brazil
| | - Francis J Miller
- Department of Medicine, University of Iowa, Iowa City (M.G., B.M.S., F.J.M.).,Department of Medicine, Duke University, Durham, NC (B.M.S., S.S., F.J.M.).,Department of Medicine, Veterans Affairs Medical Center, Durham, NC (F.J.M.)
| | - Lucia Rossetti Lopes
- From the Department of Pharmacology (M.G., S.V.-F., S.S., L.D.L.C., L.R.L.), University of São Paulo, Brazil
| |
Collapse
|
98
|
Esch P, Fischer M, Heiles S, Schäfer M. Olefinic reagents tested for peptide derivatization with switchable properties: Stable upon collision induced dissociation and cleavable by in-source Paternò-Büchi reactions. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:976-986. [PMID: 31729095 DOI: 10.1002/jms.4474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
This contribution is part of our ongoing efforts to develop innovative cross-linking (XL) reagents and protocols for facilitated peptide mixture analysis and efficient assignment of cross-linked peptide products. In this report, we combine in-source Paternò-Büchi (PB) photo-chemistry with a tandem mass spectrometry approach to selectively address the fragmentation of a tailor-made cross-linking reagent. The PB photochemistry, so far exclusively used for the identification of unsaturation sites in lipids and in lipidomics, is now introduced to the field of chemical cross-linking. Based on trans-3-hexenedioic acid, an olefinic homo bifunctional amine reactive XL reagent was designed and synthesized for this proof-of-principle study. Condensation products of the olefinic reagent with a set of exemplary peptides are used to test the feasibility of the concept. Benzophenone is photochemically reacted in the nano-electrospray ion source and forms oxetane PB reaction products. Subsequent CID-MS triggered retro-PB reaction of the respective isobaric oxetane molecular ions and delivers reliably and predictably two sets of characteristic fragment ions of the cross-linker. Based on these signature ion sets, a straightforward identification of covalently interconnected peptides in complex digests is proposed. Furthermore, CID-MSn experiments of the retro-PB reaction products deliver peptide backbone characteristic fragment ions. Additionally, the olefinic XL reagents exhibit a pronounced robustness upon CID-activation, without previous UV-excitation. These experiments document that a complete backbone fragmentation is possible, while the linker-moiety remains intact. This feature renders the new olefinic linkers switchable between a stable, noncleavable cross-linking mode and an in-source PB cleavable mode.
Collapse
Affiliation(s)
- Patrick Esch
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, D-35392 Giessen, Germany
| | - Moritz Fischer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Greinstraße 4, D-50939, Cologne, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, D-35392 Giessen, Germany
| | - Mathias Schäfer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Greinstraße 4, D-50939, Cologne, Germany
| |
Collapse
|
99
|
Zhang MM, Beno BR, Huang RYC, Adhikari J, Deyanova EG, Li J, Chen G, Gross ML. An Integrated Approach for Determining a Protein-Protein Binding Interface in Solution and an Evaluation of Hydrogen-Deuterium Exchange Kinetics for Adjudicating Candidate Docking Models. Anal Chem 2019; 91:15709-15717. [PMID: 31710208 DOI: 10.1021/acs.analchem.9b03879] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe an integrated approach of using hydrogen-deuterium exchange mass spectrometry (HDX-MS), chemical cross-linking mass spectrometry (XL-MS), and molecular docking to characterize the binding interface and to predict the three-dimensional quaternary structure of a protein-protein complex in solution. Interleukin 7 (IL-7) and its α-receptor, IL-7Rα, serving as essential mediators in the immune system, are the model system. HDX kinetics reports widespread protection on IL-7Rα but shows no differential evidence of binding-induced protection or remote conformational change. Cross-linking with reagents that differ in spacer lengths and targeting residues increases the spatial resolution. Using five cross-links as distance restraints for protein-protein docking, we generated a high-confidence model of the IL-7/IL-7Rα complex. Both the predicted binding interface and regions with direct contacts agree well with those in the solid-state structure, as confirmed by previous X-ray crystallography. An additional binding region was revealed to be the C-terminus of helix B of IL-7, highlighting the value of solution-based characterization. To generalize the integrated approach, protein-protein docking was executed with a different number of cross-links. Combining cluster analysis and HDX kinetics adjudication, we found that two intermolecular cross-link-derived restraints are sufficient to generate a high-confidence model with root-mean-square distance (rmsd) value of all alpha carbons below 2.0 Å relative to the crystal structure. The remarkable results of binding-interface determination and quaternary structure prediction highlight the effectiveness and capability of the integrated approach, which will allow more efficient and comprehensive analysis of interprotein interactions with broad applications in the multiple stages of design, implementation, and evaluation for protein therapeutics.
Collapse
Affiliation(s)
- Mengru Mira Zhang
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| | - Brett R Beno
- Molecular Structure & Design, Molecular Discovery Technologies, Research and Development , Bristol-Myers Squibb , Princeton , New Jersey 08540 , United States
| | - Richard Y-C Huang
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Jagat Adhikari
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| | - Ekaterina G Deyanova
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Jing Li
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Guodong Chen
- Pharmaceutical Candidate Optimization, Research and Development , Bristol-Myers Squibb Company , Princeton , New Jersey 08540 , United States
| | - Michael L Gross
- Department of Chemistry , Washington University , St. Louis , Missouri 63130 , United States
| |
Collapse
|
100
|
Tzakoniati F, Xu H, Li T, Garcia N, Kugel C, Payandeh J, Koth CM, Tate EW. Development of Photocrosslinking Probes Based on Huwentoxin-IV to Map the Site of Interaction on Nav1.7. Cell Chem Biol 2019; 27:306-313.e4. [PMID: 31732432 PMCID: PMC7083225 DOI: 10.1016/j.chembiol.2019.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/31/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Voltage-gated sodium (Nav) channels respond to changes in the membrane potential of excitable cells through the concerted action of four voltage-sensor domains (VSDs). Subtype Nav1.7 plays an important role in the propagation of signals in pain-sensing neurons and is a target for the clinical development of novel analgesics. Certain inhibitory cystine knot (ICK) peptides produced by venomous animals potently modulate Nav1.7; however, the molecular mechanisms underlying their selective binding and activity remain elusive. This study reports on the design of a library of photoprobes based on the potent spider toxin Huwentoxin-IV and the determination of the toxin binding interface on VSD2 of Nav1.7 through a photocrosslinking and tandem mass spectrometry approach. Our Huwentoxin-IV probes selectively crosslink to extracellular loop S1-S2 and helix S3 of VSD2 in a chimeric channel system. Our results provide a strategy that will enable mapping of sites of interaction of other ICK peptides on Nav channels. Development of six potent diazirine-containing photoprobes based on Huwentoxin-IV Photoprobes specifically photolabel purified bacterial-Nav1.7 VSD2 chimeric channels Proteomic mass spectrometry identifies binding site on S1-S2 loop and S3 helix Proposed model of HwTx-IV binding reveals importance of K27 and R29
Collapse
Affiliation(s)
| | - Hui Xu
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Tianbo Li
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA 94080, USA
| | - Natalie Garcia
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Christine Kugel
- Department of Biomolecular Resources, Genentech, South San Francisco, CA 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Christopher M Koth
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|