51
|
Amazonas JN, Cosentino-Gomes D, Werneck-Lacerda A, de Sá Pinheiro AA, Lanfredi-Rangel A, Souza WD, Meyer-Fernandes JR. Giardia lamblia: Characterization of ecto-phosphatase activities. Exp Parasitol 2009; 121:15-21. [DOI: 10.1016/j.exppara.2008.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 11/29/2022]
|
52
|
Novel role of sphingolipid synthesis genes in regulating giardial encystation. Infect Immun 2008; 76:2939-49. [PMID: 18426892 DOI: 10.1128/iai.00116-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although encystation (cyst formation) is important for the survival of Giardia lamblia outside its human host, the molecular events that prompt encystation have not been fully elucidated. Here, we demonstrate that sphingolipids (SLs), which are important for the growth and differentiation of many eukaryotes, play key roles in giardial encystation. Transcriptional analyses showed that only three genes in the SL biosynthesis pathways are expressed and transcribed differentially in nonencysting and encysting Giardia trophozoites. While the putative homologues of giardial serine palmitoyltransferase (gSPT) subunit genes (gspt-1 and -2) are differentially expressed in nonencysting and encysting trophozoites, the giardial ceramide glucosyltransferase 1 gene (gglct-1) is transcribed only in encysting cells. l-Cycloserine, an inhibitor of gSPT, inhibited the endocytosis and endoplasmic reticulum/perinuclear targeting of bodipy-ceramide in trophozoites, and this could be reversed by 3-ketosphinganine. On the other hand, D-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP), an inhibitor of glucosylceramide synthesis, blocked karyokinesis and reduced cyst production in culture. PPMP also altered the expression of cyst wall protein transcripts in encysting cells. Phylogenetic analyses revealed that the gspt genes are paralogs derived from an ancestral spt sequence that underwent gene duplication early in eukaryotic history. This ancestral sequence, in turn, was probably derived from prokaryotic aminoacyl transferases. In contrast, gglct-1 is found in both prokaryotes and eukaryotes without any evidence of gene duplication. These studies indicate that SL synthesis genes are involved in key events in giardial biology and could serve as potential targets for developing new therapies against giardiasis.
Collapse
|
53
|
A sphingolipid inhibitor induces a cytokinesis arrest and blocks stage differentiation in Giardia lamblia. Antimicrob Agents Chemother 2007; 52:563-9. [PMID: 18086854 DOI: 10.1128/aac.01105-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingolipid biosynthesis pathways have recently emerged as a promising target for therapeutic intervention against pathogens, including parasites. A key step in the synthesis of complex sphingolipids is the glucosylation of ceramide, mediated by glucosylceramide (GlcCer) synthase, whose activity can be inhibited by PPMP (1-phenyl-2-palmitoylamino-3-morpholino-1-propanol). In this study, we investigated whether PPMP inhibits the proliferation and differentiation of the pathogenic parasite Giardia lamblia, the major cause of parasite-induced diarrhea worldwide. PPMP was found to block in vitro parasite replication in a dose-dependent manner, with a 50% inhibitory concentration of 3.5 muM. The inhibition of parasite replication was irreversible at 10 muM PPMP, a concentration that did not affect mammalian cell metabolism. Importantly, PPMP inhibited the completion of cell division at a specific stage in late cytokinesis. Microscopic analysis of cells incubated with PPMP revealed the aberrant accumulation of cellular membranes belonging to the endoplasmic reticulum network in the caudal area of the parasites. Finally, PPMP induced a 90% reduction in G. lamblia differentiation into cysts, the parasite stage responsible for the transmission of the disease. These results show that PPMP is a powerful inhibitor of G. lamblia in vitro and that as-yet-uncharacterized sphingolipid biosynthetic pathways are potential targets for the development of anti-G. lamblia agents.
Collapse
|
54
|
Gaechter V, Schraner E, Wild P, Hehl AB. The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic 2007; 9:57-71. [PMID: 17892527 DOI: 10.1111/j.1600-0854.2007.00657.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamins are universally conserved large guanosine triphosphatases, which function as mechanoenzymes in membrane scission. The primitive protozoan Giardia lamblia has a single dynamin-related protein (GlDRP) with an unusual domain structure. Giardia lacks a Golgi apparatus but generates transient Golgi-like delay compartments dubbed encystation-specific vesicles (ESVs), which serve to accumulate and mature cyst wall proteins during differentiation to infectious cyst forms. Here, we analyze the function of GlDRP during growth and encystation and demonstrate that it relocalizes from peripheral endosomal-lysosomal compartments to nascent ESVs. We show that GlDRP is necessary for secretion of the cyst wall material and ESV homeostasis. Expression of a dominant-negative GlDRP variant does not interfere with ESV formation but blocks cyst formation completely prior to regulated exocytosis. GlDRP colocalizes with clathrin at the cell periphery and is necessary for endocytosis of surface proteins to endosomal-lysosomal organelles in trophozoites. Electron microscopy and live cell imaging reveal gross morphological changes as well as functional impairment of the endocytic system in cells expressing the dominant-negative GlDRP. Thus, giardial DRP plays a key role in two distinct trafficking pathways and in organelle homeostasis, both essential functions for the proliferation of the parasite in the gut and its transmission to a new host.
Collapse
Affiliation(s)
- Verena Gaechter
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
55
|
Su LH, Lee GA, Huang YC, Chen YH, Sun CH. Neomycin and puromycin affect gene expression in Giardia lamblia stable transfection. Mol Biochem Parasitol 2007; 156:124-35. [PMID: 17765984 DOI: 10.1016/j.molbiopara.2007.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 07/17/2007] [Accepted: 07/24/2007] [Indexed: 11/28/2022]
Abstract
Two systems for stable transfection of Giardia have been established using selection either by neomycin or by puromycin. We asked if these selection systems themselves influenced expression of endogenous giardial genes. Northern blot analysis showed a approximately 1.4 to approximately 7-fold increase in the encystation-induced cyst wall protein 1 (cwp1), cwp2, and gmyb2 gene transcripts in the drug selected cell lines during vegetative growth, compared with untransfected cells. However, the levels of the constitutive ran, lrp3, or alpha2-tubulin gene transcripts decreased slightly or did not change in these stably transfected cell lines. Part of the effect could be due to drug selection, since treatment of untransfected cells with G418 or puromycin also had similar effects. Nuclear run-on assays showed that part of the effect comes from an increase in transcription initiation rate. The levels of CWP and cyst formation during vegetative growth also increased in the transfected cell lines. Using proteomic technologies, we identified eight genes whose expression is upregulated in neomycin selected cell lines, including phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, ornithine carbamoyltransferase, carbamate kinase, orf 16424, cyclophilin, co-chaperone-like p21, and bip. Six of these are also upregulated in puromycin selected cell lines. Our results indicate that transfection and drug selection, per se, can alter expression of genes involved in metabolism, protein folding, and differentiation status in Giardia.
Collapse
Affiliation(s)
- Li-Hsin Su
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | | | | | | | | |
Collapse
|
56
|
Hernandez Y, Castillo C, Roychowdhury S, Hehl A, Aley SB, Das S. Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a parasitic protozoan, Giardia lamblia. Int J Parasitol 2007; 37:21-32. [PMID: 17087963 PMCID: PMC1831817 DOI: 10.1016/j.ijpara.2006.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/07/2006] [Accepted: 09/11/2006] [Indexed: 11/16/2022]
Abstract
Although identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are involved in this process. In this investigation, we tested the hypothesis that highly regulated and selective lipid transport machinery is present in Giardia and necessary for the efficient internalization and intracellular targeting of ceramide molecules, the major sphingolipid precursor. Using metabolic and pathway inhibitors, we demonstrate that ceramide is internalized through endocytic pathways and is primarily targeted into perinuclear/endoplasmic reticulum membranes. Further investigations suggested that Giardia uses both clathrin-dependent pathways and the actin cytoskeleton for ceramide uptake, as well as microtubule filaments for intracellular localization and targeting. We speculate that this parasitic protozoan has evolved cytoskeletal and clathrin-dependent endocytic mechanisms for importing ceramide molecules from the cell exterior for the synthesis of membranes and vesicles during growth and differentiation.
Collapse
Affiliation(s)
- Yunuen Hernandez
- Infectious Diseases/Immunology, University of Texas at El Paso, TX 79968-0519, USA
| | | | | | | | | | | |
Collapse
|
57
|
Tůmová P, Hofstetrová K, Nohýnková E, Hovorka O, Král J. Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia. Chromosoma 2006; 116:65-78. [PMID: 17086421 DOI: 10.1007/s00412-006-0082-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/16/2006] [Accepted: 09/07/2006] [Indexed: 12/01/2022]
Abstract
Giardia intestinalis is an ancient protist that causes the most commonly reported human diarrheal disease of parasitic origin worldwide. An intriguing feature of the Giardia cell is the presence of two morphologically similar nuclei, generally considered equivalent, in spite of the fact that their karyotypes are unknown. We found that within a single cell, the two nuclei differ both in the number and the size of chromosomes and that representatives of two major genetic groups of G. intestinalis possess different karyotypes. Odd chromosome numbers indicate aneuploidy of Giardia nuclei, and their stable occurrence is suggestive of a long-term asexuality. A semi-open type of Giardia mitosis excludes a chromosome interfusion between the nuclei. Differences in karyotype and DNA content, and cell cycle-dependent asynchrony are indicative of diversity of the two Giardia nuclei.
Collapse
Affiliation(s)
- Pavla Tůmová
- Department of Tropical Medicine, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
58
|
Hausen MA, Freitas JCM, Monteiro-Leal LH. The effects of metronidazole and furazolidone during Giardia differentiation into cysts. Exp Parasitol 2006; 113:135-41. [PMID: 16473351 DOI: 10.1016/j.exppara.2005.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
The protozoon Giardia lamblia infects millions of people worldwide, most of them in underdeveloped countries, where it is frequently a hyperendemic disease. The search for an effective anti-Giardia treatment has been intense, but recurrent infections, virulence factors, and drug resistance imposed obstacles in the achievement of an efficient medication. Most papers about drug effects in Giardia are related to the trophozoite form, although viable cysts, the infective forms, are continuously eliminated in the stools during the treatment. Supported by this knowledge, we analyzed the inhibitory effects of metronidazole (MZ) and furazolidone (FZ) on the differentiation of Giardia into cysts and its viability. The presence of cavities, lamellar bodies and thread-like structures were the most frequent morphological alterations. The results showed also that FZ was more effective by 50% than MZ in inhibiting in vitro cyst differentiation.
Collapse
Affiliation(s)
- Moema A Hausen
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia, Departamento de Histologia e Embriologia, Lab. de Microscopia e Processamento de Imagens, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
59
|
Stefanic S, Palm D, Svärd SG, Hehl AB. Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J Biol Chem 2006; 281:7595-604. [PMID: 16407213 DOI: 10.1074/jbc.m510940200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During encystation Giardia trophozoites secrete a fibrillar extracellular matrix of glycans and cyst wall proteins on the cell surface. The cyst wall material is accumulated in encystation-specific vesicles (ESVs), specialized Golgi-like compartments generated de novo, after export from the endoplasmic reticulum (ER) and before secretion. These large post-ER vesicles neither have the morphological characteristics of Golgi cisternae nor sorting functions, but may represent an evolutionary early form of the Golgi-like maturation compartment. Because little is known about the genesis and maturation of ESVs, we used a limited proteomics approach to discover novel proteins that are specific for developing ESVs or associated peripherally with these organelles. Unexpectedly, we identified cytoplasmic and luminal factors of the ER quality control system on two-dimensional electrophoresis gels, i.e. several proteasome subunits and HSP70-BiP. We show that BiP is exported to ESVs and retrieved via its C-terminal KDEL signal from ESVs. In contrast, cytoplasmic proteasome complexes undergo a developmentally regulated re-localization to ESVs during encystation. This suggests that maturation of bulk exported cyst wall material in the Golgi-like ESVs involves both continuous activity of ER-associated quality control mechanisms and retrograde Golgi to ER transport.
Collapse
Affiliation(s)
- Sasa Stefanic
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
60
|
Corrêa G, Benchimol M. Giardia lamblia behavior under cytochalasins treatment. Parasitol Res 2005; 98:250-6. [PMID: 16344997 DOI: 10.1007/s00436-005-0065-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 10/06/2005] [Indexed: 10/25/2022]
Abstract
Giardia lamblia, a flagellated protist, is the parasite most commonly found in the intestinal tract of humans and other mammals causing a disease known as giardiasis. This parasite presents several cytoskeletal structures whose major components are microtubules, namely: the ventral adhesive disk, eight flagella axonemes, the median body, and funis. However, the cytoskeletal filamentous structures are poorly understood, and therefore, less studied. In the present work, we used actin-interacting drugs such as cytochalasin B and D to investigate their effects on Giardia ultrastructure. Axenically grown G. lamblia trophozoites were treated with these drugs and analyzed by fluorescence microscopy and scanning and transmission electron microscopy. It was observed that trophozoites became completely misshapen, detached from the glass surface, and failed to complete cell division. The main alterations observed included: (1) disk fragmentation, (2) presence of large vacuoles, (3) alterations in flagella number and flagella internalization, (4) blocked cytokinesis but not the karyokinesis, and (5) presence of membrane undulations and blebs. These findings are discussed.
Collapse
Affiliation(s)
- Gladys Corrêa
- Laboratório de Ultraestrutura Celular, Universidade Santa Ursula, Rio de Janeiro, Brazil.
| | | |
Collapse
|
61
|
Benchimol M. The nuclei of Giardia lamblia?new ultrastructural observations. Arch Microbiol 2005; 183:160-8. [PMID: 15703885 DOI: 10.1007/s00203-004-0751-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 11/21/2004] [Accepted: 12/01/2004] [Indexed: 11/24/2022]
Abstract
Giardia lamblia is a parasite possessing a complex cytoskeleton and an unusual morphology of bearing two nuclei. Here, the interphasic nuclei of trophozoites, using field emission scanning electron microscopy, routine scanning and transmission electron microscopy, immunocytochemistry, and 3D reconstruction, are presented. An approach using plasma-membrane extraction allowed the observation of the two nuclei still attached in their original positions. The observations are as follows: (1) Giardia nuclei and cytoskeleton were studied in demembranated cells by routine scanning electron microscopy and field emission; (2) both nuclei are anchored to basal bodies of the anterior flagella and to the descending posterior-lateral and ventral flagella, at the right and left nuclei, respectively, in cells attached by its ventral disc; (3) this attachment occurs by proteinaceous links, which were labeled by anti-actin and anti-centrin but not by anti-dynein or anti-tubulin antibodies; (4) fibrilar connections between the nuclei and the disc were also observed; and (5) nuclei exhibited a pendular movement when living cells were treated with cytochalasin, although the nuclei were still connected by their anterior region. Our analysis indicated that the nuclei have a defined position, and fibrils perform an anchoring system. This raises the possibility of a mechanism for nuclei-fidelity migration during mitosis.
Collapse
Affiliation(s)
- Marlene Benchimol
- Laboratòrio de Ultraestrutura Celular, Universidade Santa Ursula, Rua Jornalista Orlando Dantas, 59, CEP 222-31-010, Botafogo, Rio de Janeiro, Brazil.
| |
Collapse
|
62
|
Benchimol M, Piva B, Campanati L, de Souza W. Visualization of the funis of Giardia lamblia by high-resolution field emission scanning electron microscopy--new insights. J Struct Biol 2005; 147:102-15. [PMID: 15193639 DOI: 10.1016/j.jsb.2004.01.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2003] [Revised: 12/05/2003] [Indexed: 10/26/2022]
Abstract
Giardia lamblia is a multiflagellar parasite and one of the earliest diverging eukaryotic cells. It possesses a cytoskeleton made of several microtubular structures-an adhesive disc, four pairs of flagella, median body, and funis. This protozoan displays different types of movements, including a lateral and dorso-ventral dislocation of its posterior region, which has not been completely elucidated. In the present study, high-resolution field emission scanning electron microscopy was used to analyze the funis structure of G. lamblia trophozoites. It was shown that the funis is made of short arrays of microtubules emanating from the axonemes of the caudal flagella, which are anchored to dense rods that run parallel to the posterior-lateral flagella. After emergence of the posterior-lateral flagella, funis microtubules are anchored to the epiplasm, a fibrous layer that underlies the portion of membrane that presents tail contractility. Based on these observations a model for the tail flexion of G. lamblia is proposed.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade Santa Ursula, Laboratório de Ultraestrutura Celular--Universidade Santa Ursula, R. Jornalista Orlando Dantas, 59, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
63
|
Abstract
Giardia Lamblia is a flagellar parasite possessing the unusual morphology of bearing two nuclei. New morphological observations on trophozoites and encysting Giardia nuclei using routine transmission electron microscopy, freeze fracture and cytochemistry are presented. Nuclear pores of both nuclei in the same cells were assessed on freeze-fracture replicas from different cell cycle phases, and compared. These techniques showed that (1) both nuclei in the same cell are distinct in nuclear pore number and distribution; (2) nuclear pore complexes are frequently clustered in nuclear envelope domains; (3) dividing nuclei display very few nuclear pores; (4) few ribosomes are found on the outer nuclear envelope of the trophozoite form; (5) nuclear membranes present spots of closely apposed membranes, which are different from the typical diaphragm nuclear pore complexes; (6) in addition to the nuclear pores, membrane blebs are also present in the nuclear envelope; (7) encysting cells show intranuclear inclusions, morphologically similar to the ESV (encystation-specific vesicles) and to the ER membranes, which may be the result of nuclear envelope folding. It is proposed that the two nuclei in Giardia are dissimilar in morphology and activity.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade Santa Ursula, Rua Jornalista Orlando Dantas 59, CEP 222-31-010 Botafogo, Rio de Janeiro, Brazil.
| |
Collapse
|
64
|
|
65
|
Chávez-Munguía B, Cedillo-Rivera R, Martínez-Palomo A. The Ultrastructure of the Cyst Wall of Giardia lamblia. J Eukaryot Microbiol 2004; 51:220-6. [PMID: 15134259 DOI: 10.1111/j.1550-7408.2004.tb00549.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Giardiasis is the most common human protozoal infection. In their cystic phase, giardias are protected from the environment by a filamentous cyst wall made up of carbohydrates, proteins, and by two outer membranes separated from the plasma membrane of the parasite by a peripheral space. The present transmission electron microscope observations of G. lamblia cysts of human origin suggest that the extracellular peritrophic space originates from the growth, elongation, and fusion of large cytoplasmic vacuoles. As the large clear vacuoles grew in size, flattening against the inner face of the plasma membrane, they formed a single vacuole that surrounded the body of the parasite, eventually forming two outer membranes. In mature Giardia cysts, the original plasma membrane of the trophozoite becomes the outermost membrane of the cyst wall (CM1). The large vacuoles form a second membrane surrounding the cyst (CM2), and also form a third membrane (CM3), that becomes the new plasma membrane of the trophozoite. During excystation CM1 and CM2 attach to each other and fragment, leaving abundant membrane residues in the peritrophic space. Knowledge of the biochemical composition and functional properties of the complex outer membranous system of G. lamblia cysts here described will be of use to understand the survival of Giardia cysts in the environment, a major factor responsible for the high prevalence of giardiasis worldwide.
Collapse
Affiliation(s)
- Bibiana Chávez-Munguía
- Department of Experimental Pathology, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, 07360 Mexico City, Mexico
| | | | | |
Collapse
|
66
|
Davis-Hayman SR, Hayman JR, Nash TE. Encystation-specific regulation of the cyst wall protein 2 gene in Giardia lamblia by multiple cis-acting elements. Int J Parasitol 2003; 33:1005-12. [PMID: 13129521 DOI: 10.1016/s0020-7519(03)00177-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Giardia lamblia, a worldwide cause of diarrhoea, must differentiate into environmentally resistant cysts for dissemination and completion of its life cycle. Although G. lamblia is an early diverging eukaryote, encystation involves many complex cellular changes including formation of the cyst wall that contains at least two cyst wall proteins, cyst wall proteins 1 and 2. Cwp genes are transcribed only during encystation. In this study, we examine the regulatory elements for the encystation-specific gene cwp2. The 64 bp immediately upstream of the cwp2 open reading frame (-64 to -1 relative to ATG) was shown to be sufficient for the encystation-specific expression of luciferase. To determine which region(s) within this 64 bp contributed to encystation-specific expression in vivo, a series of deletions were cloned into a Giardia luciferase expression vector and their ability to control encystation-specific expression of luciferase was assessed. Deletion of elements in the -64 to -23 region of the cwp2 promoter significantly increased expression of luciferase in vegetative trophozoites, suggesting that this area contains a negative cis-acting element. Deletions of elements from -23 to -10 led to decreased expression in encysting cells, suggesting that this region may contain positive cis-acting elements. When the A/T-rich initiator was deleted but the cis-acting elements (-64 to -10) were retained, encystation-specific expression of luciferase was maintained but an aberrant transcriptional start site was utilised. These results indicate that Giardia has developed a classic repressor mechanism(s) that allows tight, encystation-specific control by the cwp2 promoter.
Collapse
Affiliation(s)
- Sara R Davis-Hayman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | |
Collapse
|
67
|
Abstract
Giardia lamblia is a ubiquitous intestinal pathogen of mammals. Evolutionary studies have also defined it as a member of one of the earliest diverging eukaryotic lineages that we are able to cultivate and study in the laboratory. Despite early recognition of its striking structure resembling a half pear endowed with eight flagella and a unique ventral disk, a molecular understanding of the cytoskeleton of Giardia has been slow to emerge. Perhaps most importantly, although the association of Giardia with diarrhoeal disease has been known for several hundred years, little is known of the mechanism by which Giardia exacts such a toll on its host. What is clear, however, is that the flagella and disk are essential for parasite motility and attachment to host intestinal epithelial cells. Because peristaltic flow expels intestinal contents, attachment is necessary for parasites to remain in the small intestine and cause diarrhoea, underscoring the essential role of the cytoskeleton in virulence. This review presents current day knowledge of the cytoskeleton, focusing on its role in motility and attachment. As the advent of new molecular technologies in Giardia sets the stage for a renewed focus on the cytoskeleton and its role in Giardia virulence, we discuss future research directions in cytoskeletal function and regulation.
Collapse
Affiliation(s)
- Heidi G Elmendorf
- Department of Biology, Georgetown University, 348 Reiss Building 37th and O Sts. NW, Washington, DC 20057, USA.
| | | | | |
Collapse
|
68
|
Abstract
In the present study it was demonstrated the existence of a new set of membrane-bounded vesicles in Giardia lamblia. They were found in dividing and non-dividing trophozoites studied by routine transmission electron microscopy, freeze-fracture and Thiéry's technique. Encysting cells were not studied. These vesicles appear different to the previously reported components of the Giardia endomembranous system, such as the endoplasmic reticulum (ER), lysosome-like peripheral vesicles (PV), and the encystation-specific vesicles (ESV) that appear during trophozoite differentiation into cysts. They measure 100-150 nm in diameter, and thus are smaller than the peripheral vesicles, and the encystation-specific vesicles (ESV). They were found in clusters, scattered throughout the cytoplasm, but preferentially located close to the nuclei, axonemes, median bodies, and ER profiles. These internal vesicles are roughly spherical, and their contents present different electron densities and are more electrondense than those of the peripheral vesicles. They appeared to be budding from the outer nuclear membrane envelope. These cytoplasmic vesicles were found only in cells with very good fixation. Only few cells in the same preparation exhibited these vesicles.
Collapse
|
69
|
Clark CG, Diamond LS. Methods for cultivation of luminal parasitic protists of clinical importance. Clin Microbiol Rev 2002; 15:329-41. [PMID: 12097242 PMCID: PMC118080 DOI: 10.1128/cmr.15.3.329-341.2002] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cultivation of luminal protistan parasites has a long history. In this review we discuss the methods and media that are most widely used for the establishment and maintenance of the following organisms in culture: Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, Dientamoeba fragilis, Blastocystis hominis, and Balantidium coli. While cultivation is of limited importance in the diagnostic laboratory, it is essential to most research laboratories, and it is toward the latter that this review is primarily aimed.
Collapse
Affiliation(s)
- C Graham Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, Great Britain.
| | | |
Collapse
|
70
|
Linder M, Winiecka-Krusnell J, Linder E. Use of recombinant cellulose-binding domains of Trichoderma reesei cellulase as a selective immunocytochemical marker for cellulose in protozoa. Appl Environ Microbiol 2002; 68:2503-8. [PMID: 11976127 PMCID: PMC127560 DOI: 10.1128/aem.68.5.2503-2508.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2001] [Accepted: 11/29/2001] [Indexed: 11/20/2022] Open
Abstract
Some unicellular organisms are able to encyst as a protective response to a harmful environment. The cyst wall usually contains chitin as its main structural constituent, but in some cases, as in Acanthamoeba, it consists of cellulose instead. Specific cytochemical differentiation between cellulose and chitin by microscopy has not been possible, due to the similarity of their constituent beta-1,4-linked hexose backbones. Thus, various fluorescent brightening agents and lectins bind to both cellulose and chitin. We have used a recombinant cellulose-binding protein consisting of two cellulose-binding domains (CBDs) from Trichoderma reesei cellulases linked together in combination with monoclonal anticellulase antibodies and anti-mouse immunoglobulin fluorescein conjugate to specifically stain cellulose in the cysts of Acanthamoeba strains for fluorescence microscopy imaging. Staining was observed in ruptured cysts and frozen sections of cysts but not in intact mature cysts. No staining reaction was observed with the chitin-containing cyst walls of Giardia intestinalis, Entamoeba dispar, or Pneumocystis carinii. Thus, the recombinant CBD can be used as a marker to distinguish between cellulose and chitin. Thirteen of 25 environmental or clinical isolates of amoebae reacted in the CBD binding assay. All 13 isolates were identified as Acanthamoeba spp. Five isolates of Hartmannella and seven isolates of Naegleria tested negative in the CBD binding assay. Whether cyst wall cellulose really is a unique property of Acanthamoeba spp. among free-living amoebae, as suggested by our findings, remains to be shown in more extensive studies.
Collapse
|
71
|
Pérez PF, Minnaard J, Rouvet M, Knabenhans C, Brassart D, De Antoni GL, Schiffrin EJ. Inhibition of Giardia intestinalis by extracellular factors from Lactobacilli: an in vitro study. Appl Environ Microbiol 2001; 67:5037-42. [PMID: 11679323 PMCID: PMC93268 DOI: 10.1128/aem.67.11.5037-5042.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present work was to evaluate the effect of spent culture supernatants of different strains of lactobacilli on giardia trophozoites. The growth of Giardia intestinalis strain WB, as well as the attachment to the human intestinal epithelial cell line Caco-2, was evaluated by using proliferation and adhesion assays with radiolabeled parasites. In addition, scanning electron microscopy and flow cytometric analysis were performed. The effect of spent culture supernatants from lactobacilli was strain dependent. Lactobacillus johnsonii La1 significantly inhibited the proliferation of G. intestinalis trophozoites. Although the effect was strongly pH dependent, it was not simply due to lactic acid. According to flow cytometric analysis, trophozoites were arrested in G(1) phase but neither significant necrosis nor apoptosis could be detected. Bacterial cells or their spent culture supernatants were unable to modify trophozoite attachment to Caco-2 cells. However, trophozoites treated with spent culture supernatants had little, if any, proliferative capacity. These results suggest that La1 produces some substance(s) able to inhibit proliferation of Giardia trophozoites. Partial characterization of the factors involved in the antigiardiasic action showed that they have a low molecular mass and are inactivated by heating. On this basis, it seems worthwhile to explore how colonization of the proximal small bowel with these lactic acid bacteria could interfere with giardiasis in vivo.
Collapse
Affiliation(s)
- P F Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | | | | | | | | | | | | |
Collapse
|
72
|
Zangenberg NH, Müllertz A, Kristensen HG, Hovgaard L. A dynamic in vitro lipolysis model. II: Evaluation of the model. Eur J Pharm Sci 2001; 14:237-44. [PMID: 11576829 DOI: 10.1016/s0928-0987(01)00182-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A lipolysis model was characterised and evaluated by investigating the composition of the aqueous phase and the concentration of probucol and danazol in the aqueous phase. Effects of bile salt levels at 5, 10, 20, and 30 mM were investigated. Samples were taken at 0%, 50%, 75% and 95% hydrolysis of the triglycerides, and the aqueous phases were isolated by ultra-centrifugation, whereby the concentrations of bile salts, fatty acids, mono-, di-, triglycerides, and drug substances were measured. At high Ca(2+)-concentrations, bile salts were believed to precipitate with Ca(2+). The concentration of lipolytic products (fatty acids + monoglycerides) was dependent on the bile salt concentration. The ratio between lipolytic product and bile salts was 1.55+/-0.09 (S.D.). This ratio is equivalent to mixed bile salt micelles and vesicles in equilibrium. The aqueous solubility of probucol and danazol was increased in the presence of bile salts. The concentration of danazol in the aqueous phase was dependent on the solubilisation capacity of the aqueous phase. In the case of probucol, the concentration in the aqueous phase was dependent on the partition of probucol between the aqueous phase and the remaining triglyceride phase. This difference between danazol and probucol was attributed to the effect of different lipophilicity.
Collapse
Affiliation(s)
- N H Zangenberg
- Department of Pharmaceutics, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | | | | | | |
Collapse
|
73
|
Disinfection characteristics of waterborne pathogenic protozoaGiardia lamblia. BIOTECHNOL BIOPROC E 2001. [DOI: 10.1007/bf02931953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
74
|
Subramanian AB, Navarro S, Carrasco RA, Marti M, Das S. Role of exogenous inositol and phosphatidylinositol in glycosylphosphatidylinositol anchor synthesis of GP49 by Giardia lamblia. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:69-80. [PMID: 10601696 DOI: 10.1016/s1388-1981(99)00171-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although Giardia lamblia trophozoites are unable to carry out de novo phospholipid synthesis, they can assemble complex glycophospholipids from simple lipids and fatty acids acquired from the host. Previously, we have reported that G. lamblia synthesizes GP49, an invariant surface antigen with a glycosylphosphatidylinositol (GPI) anchor. It is therefore possible that myo-inositol (Ins), phosphatidylinositol (PI) and other GPI precursors are obtained from the dietary products of the human small intestine, where the trophozoites colonize. In this report, we have investigated the role of exogenous Ins and PI on GPI anchor synthesis by G. lamblia. The results demonstrate that [(3)H]Ins and PI internalized by trophozoites, metabolically transformed into GlcN(acyl)-PI and downstream GPI molecules. Further investigations suggest that G. lamblia expresses cytidine monophosphate (CMP)-dependent (Mg(2+)-stimulated) and independent (Mn(2+)-stimulated) inositol headgroup exchange enzymes, which are responsible for exchanging free Ins with cellular PI. We observed that 3-deoxy-3-fluoro-D-myo-inositol (3-F-Ins) and 1-deoxy-1-F-scyllo-Ins (1-F-scyllo-Ins), which are considered potent inhibitors of Mn(2+)-stimulated headgroup exchange enzyme, inhibited the incorporation of [(3)H]Ins into PI and GPI molecules significantly, suggesting that CMP-independent (Mn(2+)-stimulated) exchange enzyme may be important for these reactions. However, 3-F-Ins and 1-F-scyllo-Ins were not effective in blocking the incorporation of exogenously supplied [(3)H]PI into GPI glycolipids. Thus, it can be concluded that G. lamblia can use exogenously supplied [(3)H]PI and [(3)H]Ins to synthesize GPI glycolipids of GP49; while PI is directly incorporated into GPI molecules, free Ins is first converted into PI by headgroup exchange enzymes, and this newly formed PI participates in GPI anchor synthesis.
Collapse
Affiliation(s)
- A B Subramanian
- Department of Biological Sciences, University of Texas, El Paso, TX 79968-0519, USA
| | | | | | | | | |
Collapse
|
75
|
Abstract
The protozoan parasite Giardia lamblia is transmitted as an environmentally resistant cyst. The encystation process is attracting attention not only from the viewpoint of disease transmission, but also as a model for differentiation. Here, Hugo Luján, Michael Mowatt and Theodore Nash discuss molecular events underlying this process, including the induction of expression and transport of cyst wall proteins and the induction of Golgi-like activity. They also propose that the signal for encystation derives from cholesterol deprivation in the lower small intestine.
Collapse
Affiliation(s)
- H D Luján
- Cátedra de Quı́mica Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
76
|
Winiecka-Krusnell J, Linder E. Cysticidal effect of chlorine dioxide on Giardia intestinalis cysts. Acta Trop 1998; 70:369-72. [PMID: 9777721 DOI: 10.1016/s0001-706x(98)00036-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- J Winiecka-Krusnell
- Swedish Institute for Infectious Disease Control and Department of Clinical Parasitology, Karolinska Institute, Stockholm.
| | | |
Collapse
|
77
|
Hetsko ML, McCaffery JM, Svärd SG, Meng TC, Que X, Gillin FD. Cellular and transcriptional changes during excystation of Giardia lamblia in vitro. Exp Parasitol 1998; 88:172-83. [PMID: 9562420 DOI: 10.1006/expr.1998.4246] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excystation of Giardia lamblia entails differentiation of dormant cysts into parasitic trophozoites. Despite its importance for infection, this transformation is not understood at the cellular or molecular levels. In these studies, we report that excystation entails detection of environmental stimuli across the tough extracellular cyst wall leading to highly coordinated physiological, structural, and molecular responses. We found that novel cytoplasmic rearrangements and changes in individual species of mRNA and in cytoplasmic pH occur within the cyst wall in the earliest stage of excystation, in response to conditions modeling cyst ingestion and passage into the human stomach. This suggests that cysts do not contain all the mRNA needed for excystation and emergence and supports our hypothesis that external stimuli, including hydrogen ions, may penetrate or be perceived across the cyst wall. In contrast, changes in cyst wall structure or proteins were detected only later in excystation, in the stage that models passage into the human small intestine, where trophozoites can emerge and survive. These findings show that excystation of G. lamblia is a highly complex and active process and provide important insights into its cellular and molecular components.
Collapse
Affiliation(s)
- M L Hetsko
- Department of Pathology, University of California at San Diego, 92103-8416, USA
| | | | | | | | | | | |
Collapse
|
78
|
Das S, Schteingart CD, Hofmann AF, Reiner DS, Aley SB, Gillin FD. Giardia lamblia: evidence for carrier-mediated uptake and release of conjugated bile acids. Exp Parasitol 1997; 87:133-41. [PMID: 9326888 DOI: 10.1006/expr.1997.4197] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Giardia lamblia trophozoites colonize the human small intestine, where they are exposed to high concentrations of conjugated bile acids. Previous work has shown that bile acids enhance trophozoite survival, multiplication, and differentiation into the cyst stage. Therefore, experiments were performed to test whether carrier-mediated uptake of conjugated bile acids is present in this primitive parasite. Uptake of both cholyltaurine (C-tau) and cholylglycine (C-gly) was increased manyfold after culturing trophozoites in medium lacking bile acids. Absence of uptake at 4 degrees C and inhibition by other conjugated bile acids provided additional evidence for carrier-mediated uptake. Uptake of C-tau was greater than that of C-gly under all experimental conditions and appeared to be mediated by a different carrier. The major evidence for different carriers is that C-tau uptake was Na(+)-dependent, while C-gly uptake was not. In addition, C-tau uptake was more strongly inhibited by DTNB and several organic anions than C-gly uptake. Radiolabeled C-tau and C-gly were each released rapidly from trophozoites at 37 degrees C but not at 4 degrees C, suggesting that release of conjugated bile acids was also carrier-mediated. These findings are consistent with the notion that multiple transporters for conjugated bile acids are present in a lower eukaryote. We speculate that intracellular bile acids may facilitate lipid trafficking and membrane biosynthesis.
Collapse
Affiliation(s)
- S Das
- Department of Biological Sciences, University of Texas, El Paso 79968, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Luján HD, Mowatt MR, Nash TE. Mechanisms of Giardia lamblia differentiation into cysts. Microbiol Mol Biol Rev 1997; 61:294-304. [PMID: 9293183 PMCID: PMC232612 DOI: 10.1128/mmbr.61.3.294-304.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microbiologists have long been intrigued by the ability of parasitic organisms to adapt to changes in the environment. Since most parasites occupy several niches during their journey between vectors and hosts, they have developed adaptive responses which allow them to survive under adverse conditions. Therefore, the life cycles of protozoan and helminthic parasites are excellent models with which to study numerous mechanisms involved in cell differentiation, such as the regulation of gene expression, signal transduction pathways, and organelle biogenesis. Unfortunately, many of these studies are very difficult because the conditions needed to elicit developmental changes in parasites remain undetermined in most cases. Recently, several interesting findings were reported on the process of differentiation of Giardia lamblia trophozoites into cysts. G. lamblia is a flagellated protozoan that inhabits the upper small intestine of its vertebrate host and is a major cause of enteric disease worldwide. It belongs to the earliest identified lineage among eukaryotes and therefore offers a unique insight into the progression from primitive to more complex eukaryotic cells. The discovery of a specific stimulus that induces trophozoites to differentiate into cysts, the identification and characterization of encystation-specific molecules, the elucidation of novel biochemical pathways, and the development of useful reagents and techniques have made this parasite an excellent model with which to study differentiation in eukaryotic cells. In this review, we summarize the most recent fundings on several aspects of Giardia differentiation and discuss the significance of these findings within the context of current knowledge in the field.
Collapse
Affiliation(s)
- H D Luján
- Department of Biological Chemistry, School of Medicine, National University of Córdoba, Argentina
| | | | | |
Collapse
|
80
|
Stevens TL, Gibson GR, Adam R, Maier J, Allison-Ennis M, Das S. Uptake and cellular localization of exogenous lipids by Giardia lamblia, a primitive eukaryote. Exp Parasitol 1997; 86:133-43. [PMID: 9207743 DOI: 10.1006/expr.1997.4162] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Giardia lamblia trophozoites are unable to carry out de novo lipid synthesis. It is therefore likely that lipids are acquired from the small intestine of the host, in which the trophozoites are exposed to free and conjugated fatty acids, various sterols, phospholipids, bile acids, and bile-lipid mixed micelles. Here we show that G. lamblia is capable of taking up exogenous phosphatidylcholine (PC), phosphatidylinositol (PI), sphingomyelin (SM), cholesterol, ceramide (Cer), and fatty acids. Results from epifluorescence and high-resolution confocal microscopy suggest that fluorescent analogs of SM and PC were accumulated in the plasma membranes, whereas palmitic acid and Cer were localized intracellularly. Interestingly, many of these analogs were also concentrated in perinuclear regions. Similar labeling patterns were observed when the fluorescent analogs were delivered to the parasite via liposomes. To test whether G. lamblia was capable of esterifying exogenous fatty acids into membrane or cellular phospholipids, trophozoites were pulse-labeled with 3H-labeled palmitic or myristic acids and the phospholipids analyzed by thin-layer chromatography. Results document that G. lamblia was able to incorporate exogenous fatty acids into various phospholipids, i.e., PI, PC, PE, and PG. Interestingly, a major portion of radiolabeled fatty acids was incorporated into PG, a phospholipid characteristic of prokaryotic membranes.
Collapse
Affiliation(s)
- T L Stevens
- Department of Biological Sciences, University of Texas, El Paso 79968-0519, USA
| | | | | | | | | | | |
Collapse
|
81
|
Affiliation(s)
- M J Farthing
- Digestive Diseases Research Centre, St. Bartholomew's, London, U.K
| |
Collapse
|
82
|
Que X, Svärd SG, Meng TC, Hetsko ML, Aley SB, Gillin FD. Developmentally regulated transcripts and evidence of differential mRNA processing in Giardia lamblia. Mol Biochem Parasitol 1996; 81:101-10. [PMID: 8892309 DOI: 10.1016/0166-6851(96)02698-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although encystation and excystation are crucial to transmission of Giardia lamblia, little is known about the regulation of these very distinct differentiation processes. Fingerprinting of giardial mRNA populations throughout the time course of differentiation demonstrated complex patterns in mRNA differential display. Certain transcripts appeared or increased, while others decreased or disappeared at specific times, in response to physiologic stimuli that mimic key stages in parasite descent through the host gastrointestinal tract. This approach has allowed the direct identification of critical stages in differentiation, as well as isolation of genes which may be crucial to the development of G. lamblia. One stage-specific single copy gene (ENC6) whose transcript is greatly upregulated during encystation was analyzed further. Partial sequence analysis revealed no correspondence with known genes. 3'-rapid amplification of cDNA ends (3'-RACE) analysis of ENC6 transcripts at various times of encystation revealed two polyadenylation sites. The more proximal site, 10 nucleotides past the single classic AGTAAA sequence, was utilized only during encystation and its transcript increased approximately 16-fold during the first 24 h of encystation. In contrast, a slightly divergent polyadenylation site 288 nucleotides downstream from the open reading frame (ORF) was used during both vegetative growth and encystation, although its transcript was present at low levels. These studies are the first evidence of differential mRNA processing in G. lamblia and suggest a potential role of the 3'-untranslated region (3'-UTR) in modulating gene expression during differentiation of this primitive eukaryote.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- DNA Primers/genetics
- DNA, Protozoan/genetics
- Gene Expression Regulation, Developmental
- Genes, Protozoan
- Giardia lamblia/genetics
- Giardia lamblia/growth & development
- Giardia lamblia/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
Collapse
Affiliation(s)
- X Que
- Department of Pathology, University of California San Diego Medical Center 92103-8416, USA
| | | | | | | | | | | |
Collapse
|
83
|
Erlandsen SL, Macechko PT, van Keulen H, Jarroll EL. Formation of the Giardia cyst wall: studies on extracellular assembly using immunogold labeling and high resolution field emission SEM. J Eukaryot Microbiol 1996; 43:416-29. [PMID: 8822813 DOI: 10.1111/j.1550-7408.1996.tb05053.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Encystment of the intestinal protozoan, Giardia, is a key step in the life cycle that enables this parasite to be transmitted from host to host via either fecal oral, waterborne, or foodborne transmission. The process of encystment was studied by localizing cyst wall specific antigens with immunofluorescence for light microscopy and immunogold staining for field emission scanning electron microscopy. Chronological sampling of Giardia cultures stimulated with endogenous bile permitted identification of an intracellular and extracellular phase in cyst wall formation, a process which required a total of 14-16 h. The intracellular phase lasted for 8-10 h, while the extracellular phase, involved the appearance of cyst wall antigen on the trophozoite membrane, and the assembly of the filamentous layer, a process requiring an additional 4-6 h for completion of mature cysts. The extracellular phase was initiated with the appearance of cyst wall antigen on small protrusions of the trophozoite membrane (approximately 15 nm), which became enlarged with time to caplike structures ranging up to 100 nm in diameter. Caplike structures involved with filament growth were detected over the entire surface of the trophozoite including the adhesive disc and flagella. Encysting cells rounded up, lost attachment to the substratum, and became enclosed in a layer of filaments. Late stages in encystment included a "tailed" cyst in which flagella were not fully retracted into the cyst. Clusters of cysts were seen in which filaments at the surface of one cyst were connected with the surface of adjacent cysts or the "tailed" processes of adjacent cysts, suggesting that the growth of cyst wall filaments may be at the terminal end. In conclusion, the process of encystment has been shown to consist of two morphologically different stages (intracellular and extracellular) which requires 16 h for completion. Further investigation of the extracellular stage with regard to assembly of the filamentous layer of the cyst wall may lead to innovative methods for interfering with production of an intact functional cyst wall, and thereby, regulation of viable Giardia cyst release from the host.
Collapse
Affiliation(s)
- S L Erlandsen
- Department of Cell Biology and Neuroanatomy, University of Minnesota School of Medicine, Minneapolis 55455, USA.
| | | | | | | |
Collapse
|
84
|
Abstract
Despite rapid progress in understanding the biology of Giardia, several questions remain unanswered. First, there is no adequate explanation for the diverse clinical spectrum of giardiasis. Second, the mechanisms by which Giardia produces diarrhea and malabsorption are poorly understood, although some progress has been made. Finally, despite extensive studies in animal models and human infections, the key immunologic determinants for clearance of acute infection and development of protective immunity remain ill defined. This article discusses the epidemiology, pathology, diagnosis, treatment, and prevention of giardiasis.
Collapse
Affiliation(s)
- M J Farthing
- Digestive Diseases Research Centre, St. Bartholomew's, London, United Kingdom
| |
Collapse
|
85
|
Luján HD, Mowatt MR, Byrd LG, Nash TE. Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia. Proc Natl Acad Sci U S A 1996; 93:7628-33. [PMID: 8755526 PMCID: PMC38797 DOI: 10.1073/pnas.93.15.7628] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Giardia lamblia, like most human intestinal parasitic protozoa, sustains fundamental morphological and biochemical changes to survive outside the small intestine of its mammalian host by differentiating into an infective cyst. However, the stimulus that triggers this differentiation remains totally undefined. In this work, we demonstrate the induction of cyst formation in vitro when trophozoites are starved for cholesterol. Expression of cyst wall proteins was detected within encystation-specific secretory vesicles 90 min after the cells were placed in lipoprotein-deficient TYI-S-33 medium. Four cloned lines derived from two independent Giardia isolates were tested, and all formed cysts similarly. Addition of cholesterol, low density or very low density lipoproteins to the lipoprotein-deficient culture medium, inhibited the expression of cyst wall proteins, the generation of encystation-specific vesicles, and cyst wall biogenesis. In contrast, high density lipoproteins, phospholipids, bile salts, or fatty acids had little or no effect. These results indicate that cholesterol starvation is necessary and sufficient for the stimulation of Giardia encystation in vitro and, likely, in the intestine of mammalian hosts.
Collapse
Affiliation(s)
- H D Luján
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | | | | | | |
Collapse
|
86
|
Meng TC, Hetsko ML, Gillin FD. Inhibition of Giardia lamblia excystation by antibodies against cyst walls and by wheat germ agglutinin. Infect Immun 1996; 64:2151-7. [PMID: 8675320 PMCID: PMC174049 DOI: 10.1128/iai.64.6.2151-2157.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although excystation is crucial to the initiation of infection by Giardia lamblia, little is known about the regulation of this important process. We have been able to reliably induce excystation in vitro by mimicking cyst passage through the stomach and upper small intestine by the exposure of in vitro-derived cysts to an acidic, reducing environment (stage I) followed by protease treatment at a slightly alkaline pH (stage II). Preexposure of cysts to polyclonal rabbit antiserum against purified cyst walls (PCWs) or to wheat germ agglutinin (WGA) inhibited excystation by > 90%. Adsorption of either ligand with PCWs eliminated inhibition, demonstrating specificity for cyst wall epitopes. Inhibition by WGA was reversed by either chitotriose or sialic acid, while inhibition by polyclonal antibodies against PCWs (anti-PCW) was reversed only by sialic acid, which also inhibited binding of both ligands to intact cysts and to cyst wall antigens in immunoblots. Binding of anti-PCW did not affect acidification of cyst cytoplasm during stage I. Exposure of cysts to anti-PCW and WGA prior to, but not after, stage II was sufficient to inhibit excystation, and inhibition could be partially reversed by increasing the protease concentration during stage II. A 7- to 10-fold higher proportion of WGA- and anti-PCW-treated cysts than control cysts remained intact after stage II. Our results suggest that these ligands, which bind cyst wall epitopes, inhibit excystation, most likely by interfering with proteolysis of cyst wall glycoproteins during stage II.
Collapse
Affiliation(s)
- T C Meng
- Division of Infectious Diseases, Department of Medicine, University of California at San Diego Medical Center, 92103-8416, USA
| | | | | |
Collapse
|
87
|
Reiner DS, Hetsko ML, Gillin FD. A lipoprotein-cholesterol-albumin serum substitute stimulates Giardia lamblia encystation vesicle formation. J Eukaryot Microbiol 1995; 42:622-7. [PMID: 7581338 DOI: 10.1111/j.1550-7408.1995.tb05917.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We found previously that the A6 clone of Giardia lamblia strain WB that did not encyst in vitro was blocked at an early stage in differentiation, as it did not form encystation secretory vesicles (ESV) efficiently or express cyst antigens, in comparison with the related clone C6. We now report that A6 formed ESV normally in the suckling mouse model. Therefore, we asked whether our serum-containing encystation media might lack a stimulus or component or contain an inhibitor of ESV formation to which A6 was especially sensitive. We found that replacing bovine serum with a lipoprotein-cholesterol solution and bovine serum albumin (LPC) in pre-encystation and encystation media increased ESV formation by both A6 and C6. The % of A6 cells with ESV increased from 8% in BS medium to 48% in LPC medium, compared with 64% and 98% for C6. Similarly, the average number of ESV/positive cell increased from 1.5 in BS medium to 7.7 in LPC medium for A6, and from 13.3 to 19.7 for C6. Moreover, in LPC encystation media, A6 expressed the cyst wall epitope recognized by monoclonal GCSA-1. Although formation of water-resistant cysts by A6 was increased > 60 fold in LPC media, the numbers of cysts remained only approximately 3-15% that of C6. This suggests that LPC may primarily affect early events in encystation and that A6 may require additional factors later in encystation.
Collapse
Affiliation(s)
- D S Reiner
- Department of Pathology, University of California at San Diego Medical Center 92103-8416, USA
| | | | | |
Collapse
|
88
|
Abstract
We have shown previously that Giardia lamblia takes up conjugated bile salt in vitro, and have now investigated the mechanism by which this occurs. Uptake of sodium taurocholate (TC) and glycocholate (GC) with respect to time had an initial exponential component followed by a linear component, consistent with a combination of both active and passive transport processes. The presence of an active transport process was further supported by experiments which showed that bile salt uptake: (i) was concentration dependent (apparent Km's for TC and GC were 0.21 and 0.63 mM, respectively); (ii) was competitively inhibitable; (iii) was reduced by the metabolic inhibitor sodium fluoride (50 mM) and low temperature (4 degrees C). Bile salt was not taken up by glutaraldehyde-fixed parasites, indicating that bile salt was not merely being adsorbed on to the parasite surface. Differential centrifugation of lyzed parasites following exposure to radiolabelled GC, showed that the majority of bile salt was located in the cytosol fraction (76%) with a relatively minor component associated with cell membrane, indicating that bile salt had been internalized. Bile salt analysis of extracts of parasites and culture medium indicated that GC had not been metabolized by Giardia. Thus, like the mammalian ileum, Giardia appears to take up conjugated bile salts by active and passive transport processes. Conjugated bile salts are known to promote encystation and thus these uptake mechanisms may constitute an important survival mechanism for the parasite enabling it to complete its life cycle.
Collapse
Affiliation(s)
- C E Halliday
- Digestive Diseases Research Centre, Medical College of St Bartholomew's Hospital, London, U.K
| | | | | |
Collapse
|
89
|
Mowatt MR, Luján HD, Cotten DB, Bowers B, Yee J, Nash TE, Stibbs HH. Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol Microbiol 1995; 15:955-63. [PMID: 7596296 DOI: 10.1111/j.1365-2958.1995.tb02364.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The protozoan Giardia lamblia is an obligate parasite of the mammalian small intestine. We studied the expression of a gene that encodes a protein component of the cyst wall, a complex structure assembled during the differentiation of trophozoites to cysts and which is critical to survival of the parasite outside its mammalian host. Transcripts from the cyst wall protein gene increase more than 100-fold during encystation, reaching a maximum between 5 and 24 hours after induction. Cyst wall protein expression also increases dramatically during encystation, and, prior to its incorporation into the nascent cyst wall, the protein is contained within the encystation-specific vesicles of encysting trophozoites. The sequence of the cloned gene predicts an acidic, leucine-rich polypeptide of M(r) 26,000 that contains 5.3 tandemly arranged copies of a degenerate 24-amino-acid repeat. A hydrophobic amino-terminal peptide probably serves as the initial signal that targets this protein to a secretory pathway involving vesicular localization during encystation and, ultimately, secretion to form the cyst wall.
Collapse
Affiliation(s)
- M R Mowatt
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Winiecka-Krusnell J, Linder E. Detection of Giardia lamblia cysts in stool samples by immunofluorescence using monoclonal antibody. Eur J Clin Microbiol Infect Dis 1995; 14:218-22. [PMID: 7614963 DOI: 10.1007/bf02310359] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The diagnostic potential of indirect immunofluorescence to detect Giardia cysts in stool samples using a cyst-specific anti-Giardia lamblia monoclonal antibody was evaluated in comparison to conventional light microscopy. One hundred fifty specimens from clinically suspected Giardia infections and 50 control samples from microscopically proved Giardia infections were tested. Giardia cysts were found in 15 of 150 (10%) samples tested by light microscopy, whereas immunofluorescence microscopy detected 35 of 150 (23%) positive samples. Forty-six of the 50 reference samples previously shown to contain Giardia cysts were positive. Apparently, the four discrepant samples contained very low numbers of parasites, as none could be detected by conventional microscopy. The results show that Giardia lamblia cysts are detected significantly more frequently using the antibody marker. The doubled number of positive stool specimens and detection of as little as four cysts per sample suggest that microscopical examination of samples can be improved by immunofluorescent staining of Giardia lamblia cysts.
Collapse
Affiliation(s)
- J Winiecka-Krusnell
- Parasitology-Laboratory, Swedish Institute for Infectious Disease Control, Stockholm
| | | |
Collapse
|
91
|
Aley SB, Zimmerman M, Hetsko M, Selsted ME, Gillin FD. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect Immun 1994; 62:5397-403. [PMID: 7960119 PMCID: PMC303280 DOI: 10.1128/iai.62.12.5397-5403.1994] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial polypeptides such as the defensins kill a wide range of organisms, including bacteria, fungi, viruses, and tumor cells. Because of the recent finding that intestinal defensins, also known as cryptdins, are synthesized by the Paneth cells of the small intestinal crypts and released into the lumen, we asked whether defensins and other small cationic antimicrobial peptides could kill the trophozoites of Giardia lamblia, which colonize the small intestine. Four mouse cryptdins, two neutrophil defensins (HNP-1 [human] and NP-2 [rabbit]), and the unique tryptophan-rich bovine neutrophil polypeptide indolicidin each had some antigiardial activity against trophozoites in vitro. Cryptdins 2 and 3, indolicidin, and NP-2 each reduced viability by more than 3 log units in 2 h, and killing by all peptides was dose and time dependent. Exposure of trophozoites to peptides frequently resulted in cell aggregation and dramatic changes in morphology. The mechanism of binding and lysis appeared to involve charge interactions, since 150 mM NaCl as well as millimolar levels of Ca2+ and Mg2+ inhibited killing by most of the peptides. Our studies show that G. lamblia is sensitive to defensins and indolicidin and suggest that these small polypeptides could play a role in nonimmune host defenses.
Collapse
Affiliation(s)
- S B Aley
- Department of Pathology, University of California at San Diego 92103-8416
| | | | | | | | | |
Collapse
|
92
|
Campbell JD, Faubert GM. Recognition of Giardia lamblia cyst-specific antigens by monoclonal antibodies. Parasite Immunol 1994; 16:211-9. [PMID: 7520152 DOI: 10.1111/j.1365-3024.1994.tb00342.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Immunization of BALB/c mice with a sonicated extract of in vitro-generated Giardia lamblia cysts produced six cyst-specific monoclonal antibodies (MoAbs). Two MoAbs (8C5.C11 and 5A4.G6), which recognize proteinaceous cyst antigens, were selected for further study. In indirect immunofluorescence (IFA), MoAb 8C5.C11 reacted with encystation-specific vesicles in trophozoites beginning 3 h after the induction of encystation in vitro. This MoAb also recognized cysts which began to appear at 12 h. In contrast, MoAb 5A4.G6 stained only cyst walls. In Western blots, both MoAbs also reacted with cyst antigens, but not trophozoite antigens. MoAb 8C5.C11 first recognized cyst antigen from 3 h encysting cultures, reacting with 26, 28, 42 and 46 kD bands. MoAb 5A4.G6 reacted with a 38 kD band, beginning with 12 h encysting cultures. When added to G. lamblia encysting cultures before the appearance of cysts (0 to 9 h) and in the presence of a source of complement, MoAb 8C5.C11 caused a significant reduction in the numbers of water-resistant cysts produced in vitro compared to the control. MoAb 5A4.G6 did not affect in vitro encystation. These findings confirm the heterogeneity of cyst antigens, and also indicate that the process of encystation in vitro can be interrupted by antibodies and complement.
Collapse
Affiliation(s)
- J D Campbell
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Québec, Canada
| | | |
Collapse
|
93
|
Meng TC, Hetsko ML, Gillin FD. Antigenic switching of TSA 417, a trophozoite variable surface protein, following completion of the life cycle of Giardia lamblia. Infect Immun 1993; 61:5394-7. [PMID: 8225614 PMCID: PMC281329 DOI: 10.1128/iai.61.12.5394-5397.1993] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Expression of TSA 417, the predominant cysteine-rich variable surface protein of Giardia lamblia WB clone C6 trophozoites, did not change during encystation in vitro. However, in vitro excystation of cysts derived in vitro or in vivo consistently produced TSA 417 nonexpressing trophozoite populations, suggesting that completion of the life cycle leads to antigenic switching.
Collapse
Affiliation(s)
- T C Meng
- Department of Medicine, University of California, San Diego Medical Center 92103-8416
| | | | | |
Collapse
|
94
|
|
95
|
Reiner DS, Shinnick TM, Ardeshir F, Gillin FD. Encystation of Giardia lamblia leads to expression of antigens recognized by antibodies against conserved heat shock proteins. Infect Immun 1992; 60:5312-5. [PMID: 1452366 PMCID: PMC258313 DOI: 10.1128/iai.60.12.5312-5315.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During in vitro encystation, Giardia lamblia expresses several stage-specific proteins which are recognized in immunoblots by antisera raised against antigens from three different pathogens. The antigens belong to two different families of conserved stress proteins: (i) HSP60 purified from Legionella pneumophila and recombinant HSP60 from Mycobacterium bovis BCG and (ii) recombinant HSP70 from Plasmodium falciparum.
Collapse
Affiliation(s)
- D S Reiner
- Department of Pathology, University of California, San Diego 92103
| | | | | | | |
Collapse
|
96
|
Affiliation(s)
- P H Katelaris
- Department of Gastroenterology, St Bartholomew's Hospital, West Smithfield, London
| | | |
Collapse
|
97
|
Reiner DS, Gillin FD. Human secretory and serum antibodies recognize environmentally induced antigens of Giardia lamblia. Infect Immun 1992; 60:637-43. [PMID: 1730497 PMCID: PMC257677 DOI: 10.1128/iai.60.2.637-643.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The variability in duration and severity of infection with Giardia lamblia is likely to be due to trophozoite interactions with immune and nonimmune components of the small intestinal milieu. Despite its potential importance, nothing is known of the isotype or the specificity of the secretory antibody response to G. lamblia. In the present study, we show that serum and secretory antibodies recognize many Giardia antigens whose expression is induced by exposure to selected intestinal conditions. Isotype-specific immunoblots of antigens from trophozoites grown at pH 7.0 without bile or at the intestinal pH of 7.8 with bile were reacted with milk or serum antibodies from subjects with or without histories of giardiasis. While the results were complex, several key observations emerged. Serum and secretory immunoglobulin A (IgA), IgM, and IgG antibodies reacted with many regulated antigens. Antigen recognition patterns varied with isotype and between milk and serum antibodies of the same isotype. Antigen recognition also differed among subjects. Antibodies from virtually every patient recognized some G. lamblia antigens. Furthermore, milk and/or serum samples from putative controls without histories of giardiasis were positive more frequently than would be predicted from published prevalence studies, suggesting either that these antibodies may be cross-reactive or that undiagnosed infections with G. lamblia may be more common than previously thought. Thus, recognition of neoantigens induced by host conditions may be due to conserved or cross-reactive epitopes which could constitute a form of immune evasion by G. lamblia.
Collapse
Affiliation(s)
- D S Reiner
- Department of Pathology, University of California San Diego Medical Center 92103-8416
| | | |
Collapse
|
98
|
Abstract
Gardia spp. are flagellated protozoans that parasitize the small intestines of mammals, birds, reptiles, and amphibians. The infectious cysts begin excysting in the acidic environment of the stomach and become trophozoites (the vegetative form). The trophozoites attach to the intestinal mucosa through the suction generated by a ventral disk and cause diarrhea and malabsorption by mechanisms that are not well understood. Giardia spp. have a number of unique features, including a predominantly anaerobic metabolism, complete dependence on salvage of exogenous nucleotides, a limited ability to synthesize and degrade carbohydrates and lipids, and two nuclei that are equal by all criteria that have been tested. The small size and unique sequence of G. lamblia rRNA molecules have led to the proposal that Giardia is the most primitive eukaryotic organism. Three Giardia spp. have been identified by light lamblia, G. muris, and G. agilis, but electron microscopy has allowed further species to be described within the G. lamblia group, some of which have been substantiated by differences in the rDNA. Animal models and human infections have led to the conclusion that intestinal infection is controlled primarily through the humoral immune system (T-cell dependent in the mouse model). A major immunogenic cysteine-rich surface antigen is able to vary in vitro and in vivo in the course of an infection and may provide a means of evading the host immune response or perhaps a means of adapting to different intestinal environments.
Collapse
Affiliation(s)
- R D Adam
- Department of Internal Medicine, University of Arizona, Tucson 85724
| |
Collapse
|
99
|
Das S, Traynor-Kaplan A, Reiner D, Meng T, Gillin F. A surface antigen of Giardia lamblia with a glycosylphosphatidylinositol anchor. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54858-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
100
|
Faubert G, Reiner DS, Gillin FD. Giardia lamblia: regulation of secretory vesicle formation and loss of ability to reattach during encystation in vitro. Exp Parasitol 1991; 72:345-54. [PMID: 2026212 DOI: 10.1016/0014-4894(91)90080-g] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Encystation of Giardia lamblia is required for survival outside the host, as well as for initiation of new infections. Previously, we induced cultured G. lamblia trophozoites to encyst in vitro for the first time. During encystation, we observed the appearance of a new class of large secretory vesicle (encystation-specific vesicle; ESV) within which cyst antigens are concentrated and transported to the nascent wall. The present kinetic and physiologic studies now show that ESV are the earliest morphologic change observed in encystation. Expression of ESV, as well as subsequent encystation, are regulated by exposure to bile at the slightly alkaline pH which is typical of the human intestinal tract. ESV formation appears to be less stringently regulated than formation of water-resistant cysts because omission of either encystation stimuli or alkaline pH preferentially inhibits encystation. Since cysts do not attach, we asked when in encystation this physiologic transition occurs. We found that most encysting trophozoites remain attached until they begin to round up (greater than 24 hr). However, if they are made to detach, as early as 12 hr in encystation, well before they round up, they are defective in the ability to reattach. If trophozoites also become less able to reattach to the intestinal epithelium early in encystation in vivo, this would increase their exposure to lumenal encystation stimuli and promote encystation. These studies have provided new insights into the complex sequence of morphologic and physiologic alterations which occur during encystation of G. lamblia in vitro and their regulation by host intestinal factors.
Collapse
Affiliation(s)
- G Faubert
- Department of Pathology, University of California, San Diego Medical Center 92103
| | | | | |
Collapse
|