51
|
Sharon G, Raboy B, Parag H, Dimitrovsky D, Kulka R. RAD6 gene product of Saccharomyces cerevisiae requires a putative ubiquitin protein ligase (E3) for the ubiquitination of certain proteins. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98492-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
52
|
Morgan BA, Mittman BA, Smith MM. The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression. Mol Cell Biol 1991; 11:4111-20. [PMID: 2072911 PMCID: PMC361224 DOI: 10.1128/mcb.11.8.4111-4120.1991] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The N-terminal domains of the histones H3 and H4 are highly conserved throughout evolution. Mutant alleles deleted for these N-terminal domains were constructed in vitro and examined for function in vivo in Saccharomyces cerevisiae. Cells containing a single deletion allele of either histone H3 or histone H4 were viable. Deletion of the N-terminal domain of histone H4 caused cells to become sterile and temperature sensitive for growth. The normal cell cycle progression of these cells was also altered, as revealed by a major delay in progression through the G2 + M periods. Deletion of the N-terminal domain of histone H3 had only minor effects on mating and the temperature-sensitive growth of mutant cells. However, like the H4 mutant, the H3 mutants had a significant delay in completing the G2 + M periods of the division cycle. Double mutants containing N-terminal domain deletions of both histone H3 and histone H4 were inviable. The phenotypes of cells subject to this synthetic lethality suggest that the N-terminal domains are required for functions essential throughout the cell division cycle and provide genetic evidence that histones are randomly distributed during chromosome replication.
Collapse
Affiliation(s)
- B A Morgan
- Department of Microbiology, School of Medicine, University of Virginia, Charlottesville 22908
| | | | | |
Collapse
|
53
|
Durrin LK, Mann RK, Kayne PS, Grunstein M. Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 1991; 65:1023-31. [PMID: 2044150 DOI: 10.1016/0092-8674(91)90554-c] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To search for histone domains that may regulate transcription in vivo, we made deletions and amino acid substitutions in the histone N-termini of S. cerevisiae. Histone H4 N-terminal residues 4-23, which include the extremely conserved, reversibly acetylated lysines (at positions 5, 8, 12, and 16), were found to encompass a region required for the activation of the GAL1 promoter. Deletions in the H4 N-terminus reduce GAL1 activation 20-fold. This effect is specific to histone H4 in that large deletions in the N-termini of H2A, H2B, and H3 do not similarly decrease induction. Activation of the PHO5 promoter is reduced approximately 4- to 5-fold by these H4 deletions. Mutations in histone H4 acetylation sites and surrounding residues can cause comparable and, in some cases, even greater effects on induction of these two promoters. We postulate that the H4 N-terminus may interact with a component of the transcription initiation complex, allowing nucleosome unfolding and subsequent initiation.
Collapse
Affiliation(s)
- L K Durrin
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|
54
|
Abstract
The past year has seen major advances in our understanding of histone and nucleosome structure and function. Direct DNA mapping and thermodynamic experiments have finally provided conclusive evidence that the histones impose an altered helical pitch on the DNA as it is wrapped on the surface of the core histone octamer. Further, it is now clear that lysine acetylation in the amino-terminal domains of histones H3 and H4 can alter the topology of the DNA in chromatin and probably influence its higher-order folding. Genetic experiments reported in the past year have provided a wealth of new information on histone structure and function, including the identification of the peptide domain of histone H4 that is necessary for permanent gene repression, the confirmation that nucleosome structure is critical for centromere function, and evidence that histone acetylation plays a significant role in chromosome dynamics.
Collapse
Affiliation(s)
- M M Smith
- Department of Microbiology, School of Medicine, University of Virginia, Charlottesville 22908
| |
Collapse
|
55
|
|
56
|
Affiliation(s)
- M M Smith
- Department of Microbiology, School of Medicine, University of Virginia, Charlottesville 22908
| |
Collapse
|
57
|
Pfeffer U, Vidali G. Histone acetylation: recent approaches to a basic mechanism of genome organization. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1991; 23:277-85. [PMID: 2044835 DOI: 10.1016/0020-711x(91)90107-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- U Pfeffer
- Istituto Nazionale per la Ricerca sul Cancro, Laboratory of Molecular Biology, Genova, Italia
| | | |
Collapse
|
58
|
Srikantha T, Dhar R, Bustin M. Expression of human chromosomal proteins HMG-14 and HMG-17 in Saccharomyces cerevisiae. Exp Cell Res 1990; 191:71-5. [PMID: 2226652 DOI: 10.1016/0014-4827(90)90037-b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cDNAs coding for human chromosomal proteins HMG-14 and HMG-17 were cloned into yeast expression vector pBM150, under the control of the Gal10 promoter. Northern analysis of transformed yeast cells revealed that both cDNAs were efficiently transcribed. Western analysis indicated that the mRNAs were translated into authentic proteins. Expression of human HMG proteins in yeast cell did not produce detectable phenotypic changes, as measured by the growth rate of the yeast cells under a variety of conditions. The antibiotic resistance of the transfected cells was similar to that of control cells, suggesting that the presence of HMG did not affect the expression of actively transcribed genes. However, examination of the protein profile on two-dimensional polyacrylamide gel electrophoresis revealed differences between control and HMG-transfected cells.
Collapse
Affiliation(s)
- T Srikantha
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
59
|
Norton VG, Marvin KW, Yau P, Bradbury EM. Nucleosome linking number change controlled by acetylation of histones H3 and H4. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45450-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
60
|
Abstract
A basic tenet of the molecular clock hypothesis is that the rate of sequence drift for a protein depends on the number of amino acid residues that are critical for its function. However, recent experiments have determined that, although core histone sequences are highly conserved among eukaryotes, large regions of the proteins are dispensable for growth in yeast.
Collapse
Affiliation(s)
- M J Behe
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
61
|
A conserved sequence in histone H2A which is a ubiquitination site in higher eucaryotes is not required for growth in Saccharomyces cerevisiae. Mol Cell Biol 1990. [PMID: 2201907 DOI: 10.1128/mcb.10.9.4905] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histones H2A and H2B are modified by ubiquitination of specific lysine residues in higher and lower eucaryotes. To identify functions of ubiquitinated histone H2A, we studied an organism in which genetic analysis of histones is feasible, the yeast Saccharomyces cerevisiae. Surprisingly, immunoblotting experiments using both anti-ubiquitin and anti-H2A antibodies gave no evidence that S. cerevisiae contains ubiquitinated histone H2A. The immunoblot detected a variety of other ubiquitinated species. A sequence of five residues in S. cerevisiae histone H2A that is identical to the site of H2A ubiquitination in higher eucaryotes was mutated to substitute arginines for lysines. Any ubiquitination at this site would be prevented by these mutations. Yeast organisms carrying this mutation were indistinguishable from the wild type under a variety of conditions. Thus, despite the existence in S. cerevisiae of several gene products, such as RAD6 and CDC34, which are capable of ubiquitinating histone H2A in vitro, ubiquitinated histone H2A is either scarce in or absent from S. cerevisiae. Furthermore, the histone H2A sequence which serves as a ubiquitination site in higher eucaryotes is not essential for yeast growth, sporulation, or resistance to either heat stress or UV radiation.
Collapse
|
62
|
Swerdlow PS, Schuster T, Finley D. A conserved sequence in histone H2A which is a ubiquitination site in higher eucaryotes is not required for growth in Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:4905-11. [PMID: 2201907 PMCID: PMC361106 DOI: 10.1128/mcb.10.9.4905-4911.1990] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Histones H2A and H2B are modified by ubiquitination of specific lysine residues in higher and lower eucaryotes. To identify functions of ubiquitinated histone H2A, we studied an organism in which genetic analysis of histones is feasible, the yeast Saccharomyces cerevisiae. Surprisingly, immunoblotting experiments using both anti-ubiquitin and anti-H2A antibodies gave no evidence that S. cerevisiae contains ubiquitinated histone H2A. The immunoblot detected a variety of other ubiquitinated species. A sequence of five residues in S. cerevisiae histone H2A that is identical to the site of H2A ubiquitination in higher eucaryotes was mutated to substitute arginines for lysines. Any ubiquitination at this site would be prevented by these mutations. Yeast organisms carrying this mutation were indistinguishable from the wild type under a variety of conditions. Thus, despite the existence in S. cerevisiae of several gene products, such as RAD6 and CDC34, which are capable of ubiquitinating histone H2A in vitro, ubiquitinated histone H2A is either scarce in or absent from S. cerevisiae. Furthermore, the histone H2A sequence which serves as a ubiquitination site in higher eucaryotes is not essential for yeast growth, sporulation, or resistance to either heat stress or UV radiation.
Collapse
Affiliation(s)
- P S Swerdlow
- Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298
| | | | | |
Collapse
|
63
|
|
64
|
Affiliation(s)
- J E Pérez-Ortin
- Departamento de Bioquímica y Biología Molecular, Facultades de Ciencias, Universitat de València, Burjassot, Spain
| | | | | |
Collapse
|
65
|
Kayne PS, Kim UJ, Han M, Mullen JR, Yoshizaki F, Grunstein M. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 1988; 55:27-39. [PMID: 3048701 DOI: 10.1016/0092-8674(88)90006-2] [Citation(s) in RCA: 369] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Yeast histone H4 function was probed in vivo by deleting segments of this extremely conserved 102 amino acid protein. Deletions in the hydrophobic core of H4 are lethal and block chromosomal segregation. In contrast, deletions at the hydrophilic N terminus (residues 4-28) and C terminus (residues 100-102) are viable. However, N-terminal deletion alters normal chromatin structure and lengthens the cell cycle, especially G2. Surprisingly, removal of the H4 N terminus also derepresses the silent mating type loci, HML alpha and HMRa, disrupting mating. This activation is specific since other regulated genes (GAL10, PHO5, CUP1) are repressed and induced normally in these cells. Deletions of the hydrophilic N termini of H2A or H2B do not show this effect on mating. These experiments allow us to define a unique H4 function that is not shared by other histones (H2A and H2B).
Collapse
Affiliation(s)
- P S Kayne
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Histone-beta-galactosidase protein fusions were used to identify the domain of yeast histone 2B, which targets this protein to the nucleus. Amino acids 28 to 33 in H2B were required for nuclear localization of such fusion proteins and thus constitute a nuclear localization sequence. The amino acid sequence in this region (Gly-29 Lys Lys Arg Ser Lys Ala) is similar to the nuclear location signal in simian virus 40 large T antigen (Pro-126 Lys Lys Lys Arg Lys Val) (D. Kalderon, B.L. Roberts, W.D. Richardson, and A.E. Smith, Cell 39:499-509, 1984). A point mutation changing lysine 31 to methionine abolished nuclear localization of an H2B-beta-galactosidase fusion protein containing amino acids 1 to 33 of H2B. However, an H2B-beta-galactosidase fusion protein containing both this point mutation and the H2A interaction domain of H2B was nuclear localized. These results suggest that H2A and H2B may be cotransported to the nucleus as a heterodimer.
Collapse
|
67
|
Moreland RB, Langevin GL, Singer RH, Garcea RL, Hereford LM. Amino acid sequences that determine the nuclear localization of yeast histone 2B. Mol Cell Biol 1987; 7:4048-57. [PMID: 3123916 PMCID: PMC368075 DOI: 10.1128/mcb.7.11.4048-4057.1987] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Histone-beta-galactosidase protein fusions were used to identify the domain of yeast histone 2B, which targets this protein to the nucleus. Amino acids 28 to 33 in H2B were required for nuclear localization of such fusion proteins and thus constitute a nuclear localization sequence. The amino acid sequence in this region (Gly-29 Lys Lys Arg Ser Lys Ala) is similar to the nuclear location signal in simian virus 40 large T antigen (Pro-126 Lys Lys Lys Arg Lys Val) (D. Kalderon, B.L. Roberts, W.D. Richardson, and A.E. Smith, Cell 39:499-509, 1984). A point mutation changing lysine 31 to methionine abolished nuclear localization of an H2B-beta-galactosidase fusion protein containing amino acids 1 to 33 of H2B. However, an H2B-beta-galactosidase fusion protein containing both this point mutation and the H2A interaction domain of H2B was nuclear localized. These results suggest that H2A and H2B may be cotransported to the nucleus as a heterodimer.
Collapse
Affiliation(s)
- R B Moreland
- Laboratory of Gene Regulation, Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|