51
|
Sheng SH, Zhao CM, Sun GG. BTG1 expression correlates with the pathogenesis and progression of breast carcinomas. Tumour Biol 2013; 35:3317-26. [PMID: 24272202 DOI: 10.1007/s13277-013-1437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022] Open
Abstract
This study aimed to analyze the expression, clinical significance of B cell translocation gene 1 (BTG1) in breast carcinoma and the biological effect in its cell line by BTG1 overexpression. Immunohistochemistry and western blot were used to analyze BTG1 protein expression in 72 cases of breast cancer and 36 cases of normal tissues to study the relationship between BTG1 expression and clinical factors. Recombinant lentiviral vector was constructed to over-express EMP-1 and then infect breast cancer MCF-7 cell line. Quantitative real-time RT-PCR (qRT-PCR) and western blot were used to detect the mRNA level and protein of BTG1. MTT assay, cell apoptosis, cell cycles, migration and invasion assays were also conducted as to the influence of the upregulated expression of BTG1 that might be found on MCF-7 cells biological effect. The level of BTG1 protein expression was found to be significantly lower in breast cancer tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with tumor invasion, lymph node metastasis, clinic stage and histological grade of patients with breast cancer (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function shown that MCF-7 cell transfected BTG1 had a lower survival fraction, higher percentage of the G0/G1 phases, higher cell apoptosis, significant decrease in migration and invasion, and lower CyclinD1, Bcl-2, and MMP-9 protein expression compared with MCF-7 cell untransfected BTG1 (P < 0.05). BTG1 expression decreased in breast cancer and correlated significantly lymph node metastasis, clinic stage, histological grade, poor overall survival, proliferation, and metastasis in breast cancer cell by regulating CyclinD1, Bcl-2, and MMP-9 protein expression, suggesting that BTG1 may play important roles as a negative regulator to breast cancer cell.
Collapse
Affiliation(s)
- S H Sheng
- Department of Breast Surgery, Tangshan Workers Hospital, Tangshan, 063000, China
| | | | | |
Collapse
|
52
|
The expression of BTG1 is downregulated in NSCLC and possibly associated with tumor metastasis. Tumour Biol 2013; 35:2949-57. [PMID: 24264312 DOI: 10.1007/s13277-013-1379-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 01/05/2023] Open
Abstract
This study aimed to analyze the expression, clinical significance of B cell translocation gene 1 (BTG1) in nonsmall cell lung cancer (NSCLC) and the biological effect in its cell line by BTG1 overexpression. Immunohistochemistry and western blot were used to analyze BTG1 protein expression in 82 cases of NSCLC and 38 cases of normal tissues to study the relationship between BTG1 expression and clinical factors. Recombinant lentiviral vector was constructed to overexpress EMP-1 and then infect NSCLC H1299 cell line. Quantitative real-time RT-PCR and western blot were used to detect the mRNA level and protein of BTG1. 3-[4,5-dimethylthiazol -2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, cell apoptosis, cell cycles, and migration and invasion assays were also conducted as to the influence of the upregulated expression of BTG1 that might be found on H1299 cells biological effect. The level of BTG1 protein expression was found to be significantly lower in NSCLC tissue than normal tissues (P < 0.05). Decreased expression of BTG1 was significantly correlated with lymph node metastasis, clinic stage, and histological grade of patients with NSCLC (P < 0.05). Meanwhile, loss of BTG1 expression correlated significantly with poor overall survival time by Kaplan-Meier analysis (P < 0.05). The result of biological function show that H1299 cell transfected BTG1 had a lower survival fraction; higher percentage of the G0/G1 phases; higher cell apoptosis; significant decrease in migration and invasion; and lower CyclinD1, Bcl-2, and MMP-9 protein expression compared with H1299 cell untransfected BTG1 (P < 0.05). BTG1 expression decreased in NSCLC and correlated significantly with lymph node metastasis; clinical stage; histological grade; poor overall survival; cell proliferation; cell cycles; cell apoptosis; and migration and invasion in NSCLC cell by regulating CyclinD1, Bcl-2, and MMP-9 protein expression, suggesting that BTG1 may play important roles as a negative regulator to NSCLC cell.
Collapse
|
53
|
Campaner S, Viale A, De Fazio S, Doni M, De Franco F, D'Artista L, Sardella D, Pelicci PG, Amati B. A non-redundant function of cyclin E1 in hematopoietic stem cells. Cell Cycle 2013; 12:3663-72. [PMID: 24091730 PMCID: PMC3903717 DOI: 10.4161/cc.26584] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A precise balance between quiescence and proliferation is crucial for the lifelong function of hematopoietic stem cells (HSCs). Cyclins E1 and E2 regulate exit from quiescence in fibroblasts, but their role in HSCs remains unknown. Here, we report a non-redundant role for cyclin E1 in mouse HSCs. A long-term culture-initiating cell (LTC-IC) assay indicated that the loss of cyclin E1, but not E2, compromised the colony-forming activity of primitive hematopoietic progenitors. Ccne1−/− mice showed normal hematopoiesis in vivo under homeostatic conditions but a severe impairment following myeloablative stress induced by 5-fluorouracil (5-FU). Under these conditions, Ccne1−/− HSCs were less efficient in entering the cell cycle, resulting in decreased hematopoiesis and reduced survival of mutant mice upon weekly 5-FU treatment. The role of cyclin E1 in homeostatic conditions became apparent in aged mice, where HSC quiescence was increased in Ccne1−/− animals. On the other hand, loss of cyclin E1 provided HSCs with a competitive advantage in bone marrow serial transplantation assays, suggesting that a partial impairment of cell cycle entry may exert a protective role by preventing premature depletion of the HSC compartment. Our data support a role for cyclin E1 in controlling the exit from quiescence in HSCs. This activity, depending on the physiological context, can either jeopardize or protect the maintenance of hematopoiesis.
Collapse
Affiliation(s)
- Stefano Campaner
- Center for Genomic Science of IIT@SEMM; Istituto Italiano di Tecnologia (IIT); Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Yasutis KM, Kozminski KG. Cell cycle checkpoint regulators reach a zillion. Cell Cycle 2013; 12:1501-9. [PMID: 23598718 DOI: 10.4161/cc.24637] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered.
Collapse
|
55
|
WANG NA, LI MIN, ZANG WENQIAO, MA YUNYUN, WANG YUANYUAN, ZHAO GUOQIANG. Effects of cyclin E gene silencing on the proliferation of esophageal cancer cell lines, EC9706, Eca109 and KYSE30. Mol Med Rep 2013; 7:799-804. [DOI: 10.3892/mmr.2013.1280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/10/2013] [Indexed: 11/05/2022] Open
|
56
|
Schwender H, Selinski S, Blaszkewicz M, Marchan R, Ickstadt K, Golka K, Hengstler JG. Distinct SNP combinations confer susceptibility to urinary bladder cancer in smokers and non-smokers. PLoS One 2012; 7:e51880. [PMID: 23284801 PMCID: PMC3527453 DOI: 10.1371/journal.pone.0051880] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/12/2012] [Indexed: 12/15/2022] Open
Abstract
Recently, genome-wide association studies have identified and validated genetic variations associated with urinary bladder cancer (UBC). However, it is still unknown whether the high-risk alleles of several SNPs interact with one another, leading to an even higher disease risk. Additionally, there is no information available on how the UBC risk due to these SNPs compare to the risk of cigarette smoking and to occupational exposure to urinary bladder carcinogens, and whether the same or different SNP combinations are relevant in smokers and non-smokers. To address these questions, we analyzed the genotypes of six SNPs, previously found to be associated with UBC, together with the GSTM1 deletion, in 1,595 UBC cases and 1,760 controls, stratified for smoking habits. We identified the strongest interactions of different orders and tested the stability of their effect by bootstrapping. We found that different SNP combinations were relevant in smokers and non-smokers. In smokers, polymorphisms involved in detoxification of cigarette smoke carcinogens were most relevant (GSTM1, rs11892031), in contrast to those in non-smokers with MYC and APOBEC3A near polymorphisms (rs9642880, rs1014971) being the most influential. Stable combinations of up to three high-risk alleles resulted in higher odds ratios (OR) than the individual SNPs, although the interaction effect was less than additive. The highest stable combination effects resulted in an OR of about 2.0, which is still lower than the ORs of cigarette smoking (here, current smokers' OR: 3.28) and comparable to occupational carcinogen exposure risks which, depending on the workplace, show mostly ORs up to 2.0.
Collapse
Affiliation(s)
- Holger Schwender
- Mathematical Institute, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
57
|
Sullivan C, Liu Y, Shen J, Curtis A, Newman C, Hock JM, Li X. Novel interactions between FOXM1 and CDC25A regulate the cell cycle. PLoS One 2012; 7:e51277. [PMID: 23240008 PMCID: PMC3519786 DOI: 10.1371/journal.pone.0051277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/31/2012] [Indexed: 01/03/2023] Open
Abstract
FOXM1 is a critical regulator of the G1/S and G2/M cell cycle transitions, as well as of the mitotic spindle assembly. Previous studies have suggested that FOXM1 regulates CDC25A gene transcription, but the mechanism remains unknown. Here, we provide evidence that FOXM1 directly regulates CDC25A gene transcription via direct promoter binding and indirect activation of E2F-dependent pathways. Prior literature reported that CDC25B and CDC25C activate CDK1/cyclinB complexes in order to enable phosphorylation of FOXM1. It was unknown if CDC25A functions in a similar manner. We report that FOXM1 transcriptional activity is synergistically enhanced when co-expressed with CDC25A. The increase is dependent upon CDK1 phosphorylation of FOXM1 at T600, T611 and T620 residues. We also report a novel protein interaction between FOXM1 and CDC25A via the C-terminus of FOXM1. We demonstrate that the phosphorylation of Thr 600 and Thr 611 residues of FOXM1 enhanced this interaction, and that the interaction is dependent upon CDC25A phosphatase activity. Our work provides novel insight into the underlying mechanisms by which FOXM1 controls the cell cycle through its association with CDC25A.
Collapse
Affiliation(s)
- Con Sullivan
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
- The University of Maine, Orono, Maine, United States of America
| | - Youhong Liu
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Jingjing Shen
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
| | - Adam Curtis
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
| | - Christina Newman
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
| | - Janet M. Hock
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
| | - Xiong Li
- Maine Institute for Human Genetics and Health, Brewer, Maine, United States of America
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
58
|
Rath-Wolfson L, Bergman M, Ori Y, Goldman A, Ram E, Koren R, Salman H. Expression of cyclin E in stage III colorectal carcinoma. Oncol Lett 2012; 5:145-148. [PMID: 23255910 DOI: 10.3892/ol.2012.955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/25/2012] [Indexed: 11/06/2022] Open
Abstract
Carcinogenesis is characterized by an abnormal regulation of the cell cycle. Regulators of the cell cycle such as cyclin E play an important role in neoplasia and may be correlated with prognosis. The clinical significance of the expression of cyclin E in stage III colorectal carcinoma has not yet been investigated. The expression of cyclin E was evaluated in 49 patients. Using a multivariate analysis, the expression of cyclin E in the tumor at diagnosis was compared with various clinicopathological variables, including age, gender, tumor site, tumor size, tumor differentiation and lymph node involvement. There were more node-positive cases in the cyclin E-negative group than in the cyclin E-positive group (P=0.003). However, there was no correlation between the degree of cyclin E expression and the clinical data. In conclusion, our data suggest that overexpression of cyclin E does not predict the clinical outcome in colorectal cancer stage III. Negative cyclin E staining may be associated with lymph node involvement.
Collapse
Affiliation(s)
- Lea Rath-Wolfson
- Departments of Pathology ; Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
59
|
Expression of cyclins in high-density cultured cells and in vivo tumor cells. Cytometry A 2012; 81:874-82. [DOI: 10.1002/cyto.a.22105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/17/2012] [Accepted: 06/27/2012] [Indexed: 11/07/2022]
|
60
|
Liu HT, Wang N, Li M, Zang WQ, Wu R, Zhao GQ. RNAi-mediated silencing of the Cyclin E gene inhibits the proliferation and invasion of HepG2, SMMC-7721 and BEL-7402 cells. Shijie Huaren Xiaohua Zazhi 2012; 20:2086-2091. [DOI: 10.11569/wcjd.v20.i22.2086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of RNAi-mediated silencing of the Cyclin E gene on the proliferation and invasion of HepG2, SMMC-7721 and BEL-7402 cells.
METHODS: Two vectors carrying siRNA targeting the Cyclin E gene were constructed and transfected into HepG2, SMMC-7721 and BEL-7402 cells. The mRNA and protein expression of Cyclin E were measured by RT-PCR and Western blot, respectively. CCK-8 assay and colony formation assay were employed to assess the proliferation and colony-forming ability of transfected HepG2, SMMC-7721 and BEL-7402. Flow cytometry (FCM) and transwell migration assay were used to evaluate cell cycle progression and migration of transfected cells.
RESULTS: Compared to the blank control group and negative control group, the expression of Cyclin E mRNA and protein was significantly decreased, the proliferation, colony-forming ability, and migration were suppressed significantly, and cell cycle was arrested in G0/G1 phase in two experimental groups.
CONCLUSION: Down-regulation of Cyclin E expression significantly inhibits the proliferation and migration of HepG2, SMMC-7721 and BEL-7402 cells.
Collapse
|
61
|
Abstract
The classical genetic approach for exploring biological pathways typically begins by identifying mutations that cause a phenotype of interest. Overexpression or misexpression of a wild-type gene product, however, can also cause mutant phenotypes, providing geneticists with an alternative yet powerful tool to identify pathway components that might remain undetected using traditional loss-of-function analysis. This review describes the history of overexpression, the mechanisms that are responsible for overexpression phenotypes, tests that begin to distinguish between those mechanisms, the varied ways in which overexpression is used, the methods and reagents available in several organisms, and the relevance of overexpression to human disease.
Collapse
|
62
|
Yoon S, Kawasaki I, Shim YH. CDC-25.1 controls the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively regulating CDK-1 in Caenorhabditis elegans. Cell Cycle 2012; 11:1354-63. [PMID: 22421141 DOI: 10.4161/cc.19755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Caenorhabditis elegans, cdc-25.1 loss-of-function mutants display a lack of germline proliferation. We found that the proliferation defect of cdc-25.1 mutants was suppressed by wee-1.3 RNAi. Further, among the seven cdk and seven cyclin homologs examined, cdk-1 and cyb-3 RNAi treatment caused the most severe germline proliferation defects in an rrf-1 mutant background, which were similar to those of the cdc-25.1 mutants. In addition, while RNAi of cyd-1 and cye-1 caused significant germline proliferation defects, RNAi of cdk-2 and cdk-4 did not. Compared with the number of germ nuclei in wee-1.3(RNAi) worms, the number in wee-1.3(RNAi);cdk-1(RNAi) and wee-1.3(RNAi);cyb-3(RNAi) worms further decreased to the level of cdk-1(RNAi) and cyb-3(RNAi) worms, respectively, indicating that cdk-1 and cyb-3 are epistatic and function downstream of cdc-25.1 and wee-1.3 in the control of the cell cycle. BrdU labeling of adult worms showed that, while 100% of the wild-type germ nuclei in the mitotic region incorporated BrdU when labeled for more than 12 h at 20°C, a small fraction of the cdc-25.1 mutant germ nuclei failed to incorporate BrdU even when labeled for 68 h. These results indicate that CDC-25.1 is required for maintaining proper rate of germline mitotic cell cycle. We propose that CDC-25.1 regulates the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively controlling CDK-1, which forms a complex primarily with CYB-3, but also possibly with CYD-1 and CYE-1.
Collapse
Affiliation(s)
- Sunghee Yoon
- Department of Bioscience and Biotechnology, Institute of Functional Genomics, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|
63
|
RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells. Cancer Lett 2012; 321:80-8. [PMID: 22381696 DOI: 10.1016/j.canlet.2012.02.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/03/2012] [Accepted: 02/20/2012] [Indexed: 01/04/2023]
Abstract
Since the processes of normal embryogenesis and neoplasia share many of similar pathways, tumor development has been interpreted as an abnormal form of organogenesis. NANOG is a homeodomain-containing transcription factor that functions to maintain self-renewal and proliferation of embryonic stem cells (ESCs). Aberrant expression of NANOG has been observed in many types of human malignancies. However, its potential implication in tumorigenesis has not been fully clarified. In this study, we have employed small interference RNA (RNAi) technology to silence endogenous NANOG expression in breast cancer cells and successfully selected three independent clones with stably inhibited NANOG expression of MCF-7 cells. Functional analysis revealed that down-regulation of NANOG reduced cell proliferation, colony formation and migration ability of MCF-7 cells. Consistently, proliferation of breast cancer MDA-MB-231 cells was also significantly inhibited after the knockdown of NANOG expression. Interestingly, we found that the expression levels of cyclinD1 and c-myc were markedly down-regulated and the cell cycle were blocked at the G0/G1 phases after the knockdown of NANOG, while the expression of cyclinE and signal transducers and activators of transcription3 (STAT3) remained unaffected. In addition, the expression of NANOG and cyclinD1 can be rescued after the transfection of pcDNA3.1 (-)-NANOG expression vector into the three clones. Finally, our chromatin immunoprecipitation (ChIP) experiment showed that NANOG protein can bind to the promoter region of cyclinD1 and regulate cells cycle. Taken together, our findings may not only establish a molecular basis for the role of NANOG in modulating cell cycle progression of breast cancer cells but also suggest a potential target for the treatment of at least some subtypes of breast cancer.
Collapse
|
64
|
Qin GM, Huang XJ, Wei YS. Advances in understanding the relationship between cyclin E and human colorectal cancer. Shijie Huaren Xiaohua Zazhi 2012; 20:131-134. [DOI: 10.11569/wcjd.v20.i2.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell cycle deregulation is one of important mechanisms leading to human colorectal cancer. It has been revealed that cyclin E is the most important regulatory factor for cell cycle control and plays an important role in the occurrence and development of human colorectal cancer. Detection of cyclin E expression can be used to assess the prognosis of colorectal cancer.
Collapse
|
65
|
Siu KT, Rosner MR, Minella AC. An integrated view of cyclin E function and regulation. Cell Cycle 2012; 11:57-64. [PMID: 22186781 DOI: 10.4161/cc.11.1.18775] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cancers of diverse cell lineages express high levels of cyclin E, and in various studies, cyclin E overexpression correlates with increased tumor aggression. One way that normal control of cyclin E expression is disabled in cancer cells is via loss-of-function mutations sustained by FBXW7. This gene encodes the Fbw7 tumor suppressor protein that provides substrate specificity for a ubiquitin ligase complex that targets multiple oncoproteins for degradation. Numerous other mechanisms besides Fbw7 mutations can deregulate cyclin E expression and activity in cancer cells. Recent reports demonstrate that inappropriate cyclin E expression may have far-reaching biological consequences for cell physiology, including altering gene expression programs governing proliferation, differentiation, survival and senescence. In this review, we discuss the function of mammalian cyclin E in the context of these new data as well as the complex network that connects cyclin E functions to the cellular controls regulating its expression and activity.
Collapse
Affiliation(s)
- Ka Tat Siu
- Department of Medicine, Hematology/Oncology Division, Integrated Graduate Program in the Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
66
|
Cross FR, Buchler NE, Skotheim JM. Evolution of networks and sequences in eukaryotic cell cycle control. Philos Trans R Soc Lond B Biol Sci 2011; 366:3532-44. [PMID: 22084380 PMCID: PMC3203458 DOI: 10.1098/rstb.2011.0078] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The molecular networks regulating the G1-S transition in budding yeast and mammals are strikingly similar in network structure. However, many of the individual proteins performing similar network roles appear to have unrelated amino acid sequences, suggesting either extremely rapid sequence evolution, or true polyphyly of proteins carrying out identical network roles. A yeast/mammal comparison suggests that network topology, and its associated dynamic properties, rather than regulatory proteins themselves may be the most important elements conserved through evolution. However, recent deep phylogenetic studies show that fungal and animal lineages are relatively closely related in the opisthokont branch of eukaryotes. The presence in plants of cell cycle regulators such as Rb, E2F and cyclins A and D, that appear lost in yeast, suggests cell cycle control in the last common ancestor of the eukaryotes was implemented with this set of regulatory proteins. Forward genetics in non-opisthokonts, such as plants or their green algal relatives, will provide direct information on cell cycle control in these organisms, and may elucidate the potentially more complex cell cycle control network of the last common eukaryotic ancestor.
Collapse
Affiliation(s)
| | - Nicolas E. Buchler
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Physics, Duke University, Durham, NC 27708, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710, USA
| | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
67
|
Ouyang Y, Song Y, Lu B. dp53 Restrains ectopic neural stem cell formation in the Drosophila brain in a non-apoptotic mechanism involving Archipelago and cyclin E. PLoS One 2011; 6:e28098. [PMID: 22140513 PMCID: PMC3225381 DOI: 10.1371/journal.pone.0028098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/01/2011] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that tumor-initiating stem cells or cancer stem cells (CSCs) possibly originating from normal stem cells may be the root cause of certain malignancies. How stem cell homeostasis is impaired in tumor tissues is not well understood, although certain tumor suppressors have been implicated. In this study, we use the Drosophila neural stem cells (NSCs) called neuroblasts as a model to study this process. Loss-of-function of Numb, a key cell fate determinant with well-conserved mammalian counterparts, leads to the formation of ectopic neuroblasts and a tumor phenotype in the larval brain. Overexpression of the Drosophila tumor suppressor p53 (dp53) was able to suppress ectopic neuroblast formation caused by numb loss-of-function. This occurred in a non-apoptotic manner and was independent of Dacapo, the fly counterpart of the well-characterized mammalian p53 target p21 involved in cellular senescence. The observation that dp53 affected Edu incorporation into neuroblasts led us to test the hypothesis that dp53 acts through regulation of factors involved in cell cycle progression. Our results show that the inhibitory effect of dp53 on ectopic neuroblast formation was mediated largely through its regulation of Cyclin E (Cyc E). Overexpression of Cyc E was able to abrogate dp53's ability to rescue numb loss-of-function phenotypes. Increasing Cyc E levels by attenuating Archipelago (Ago), a recently identified transcriptional target of dp53 and a negative regulator of Cyc E, had similar effects. Conversely, reducing Cyc E activity by overexpressing Ago blocked ectopic neuroblast formation in numb mutant. Our results reveal an intimate connection between cell cycle progression and NSC self-renewal vs. differentiation control, and indicate that p53-mediated regulation of ectopic NSC self-renewal through the Ago/Cyc E axis becomes particularly important when NSC homeostasis is perturbed as in numb loss-of-function condition. This has important clinical implications.
Collapse
Affiliation(s)
- Yingshi Ouyang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yan Song
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
68
|
Foster DA, Yellen P, Xu L, Saqcena M. Regulation of G1 Cell Cycle Progression: Distinguishing the Restriction Point from a Nutrient-Sensing Cell Growth Checkpoint(s). Genes Cancer 2011; 1:1124-31. [PMID: 21779436 DOI: 10.1177/1947601910392989] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most genetic changes that promote tumorigenesis involve dysregulation of G1 cell cycle progression. A key regulatory site in G1 is a growth factor-dependent restriction point (R) where cells commit to mitosis. In addition to the growth factor-dependent "R," which maps to a site about 3.5 hours after mitosis, there is another checkpoint later in G1 that is dependent on nutritional sufficiency that has also been referred to as R. However, this second site in late G1 can be distinguished both temporally and genetically from R. We are proposing that the late G1 regulatory site be more appropriately referred to as a "cell growth" checkpoint to distinguish it from R. This checkpoint, which likely has an evolutionary relationship to the yeast cell cycle checkpoint START, is regulated by signals governed by mTOR, the mammalian target of rapamycin. This review summarizes evidence that distinguishes R from the proposed cell growth checkpoint. Since both checkpoints are dysregulated in most, if not all, human cancers, distinguishing between these 2 distinct G1 regulatory checkpoints has significance for rational therapeutic strategies targeting oncogenic signals.
Collapse
Affiliation(s)
- David A Foster
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, USA
| | | | | | | |
Collapse
|
69
|
Odajima J, Wills ZP, Ndassa YM, Terunuma M, Kretschmannova K, Deeb TZ, Geng Y, Gawrzak S, Quadros IM, Newman J, Das M, Jecrois ME, Yu Q, Li N, Bienvenu F, Moss SJ, Greenberg ME, Marto JA, Sicinski P. Cyclin E constrains Cdk5 activity to regulate synaptic plasticity and memory formation. Dev Cell 2011; 21:655-68. [PMID: 21944720 DOI: 10.1016/j.devcel.2011.08.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 07/25/2011] [Accepted: 08/09/2011] [Indexed: 12/13/2022]
Abstract
Cyclin E is a component of the core cell cycle machinery, and it drives cell proliferation by regulating entry and progression of cells through the DNA synthesis phase. Cyclin E expression is normally restricted to proliferating cells. However, high levels of cyclin E are expressed in the adult brain. The function of cyclin E in quiescent, postmitotic nervous system remains unknown. Here we use a combination of in vivo quantitative proteomics and analyses of cyclin E knockout mice to demonstrate that in terminally differentiated neurons cyclin E forms complexes with Cdk5 and controls synapse function by restraining Cdk5 activity. Ablation of cyclin E led to a decreased number of synapses, reduced number and volume of dendritic spines, and resulted in impaired synaptic plasticity and memory formation in cyclin E-deficient animals. These results reveal a cell cycle-independent role for a core cell cycle protein, cyclin E, in synapse function and memory.
Collapse
Affiliation(s)
- Junko Odajima
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Pagliuca FW, Collins MO, Lichawska A, Zegerman P, Choudhary JS, Pines J. Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell 2011; 43:406-17. [PMID: 21816347 PMCID: PMC3332305 DOI: 10.1016/j.molcel.2011.05.031] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 04/06/2011] [Accepted: 05/13/2011] [Indexed: 01/06/2023]
Abstract
Cyclin-dependent kinases comprise the conserved machinery that drives progress through the cell cycle, but how they do this in mammalian cells is still unclear. To identify the mechanisms by which cyclin-cdks control the cell cycle, we performed a time-resolved analysis of the in vivo interactors of cyclins E1, A2, and B1 by quantitative mass spectrometry. This global analysis of context-dependent protein interactions reveals the temporal dynamics of cyclin function in which networks of cyclin-cdk interactions vary according to the type of cyclin and cell-cycle stage. Our results explain the temporal specificity of the cell-cycle machinery, thereby providing a biochemical mechanism for the genetic requirement for multiple cyclins in vivo and reveal how the actions of specific cyclins are coordinated to control the cell cycle. Furthermore, we identify key substrates (Wee1 and c15orf42/Sld3) that reveal how cyclin A is able to promote both DNA replication and mitosis.
Collapse
|
71
|
Targeting low molecular weight cyclin E (LMW-E) in breast cancer. Breast Cancer Res Treat 2011; 132:575-88. [PMID: 21695458 DOI: 10.1007/s10549-011-1638-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
Low molecular weight cyclin E (LMW-E) plays an important oncogenic role in breast cancer. LMW-E, which is not found in normal tissue, can promote the formation of aggressive tumors and can lead to increased genomic instability and tumorigenesis. Additionally, breast cancer patients whose tumors express LMW-E have a very poor prognosis. Therefore, we investigated LMW-E as a potential specific target for treatment either alone or in combination therapy. We hypothesized that because LMW-E binds to CDK2 more efficiently than full length cyclin E, resulting in increased activity, CDK inhibitors could be used to target tumors with LMW-E bound to CDK2. To test the hypothesis, an inducible full length and LMW-E MCF7-Tet-On system was established. Cyclin E (full length (EL) or LMW-E) is only expressed upon induction of the transgene. The doubling times of cells were unchanged when the transgenes were induced. However, upon induction, the kinase activity associated with LMW-E was much higher than that in the EL induced cells or any of the uninduced cells. Additionally only the LMW-E induced cells underwent chromosome aberrations and increased polyploidy. By examining changes in proliferation and survival in cells with induced full length and LMW-E, CDK inhibitors alone were determined to be insufficient to specifically inhibit LMW-E expressing cells. However, in combination with doxorubicin, the CDK inhibitor, roscovitine (seliciclib, CYC202), synergistically led to increased cell death in LMW-E expressing cells. Clinically, the combination of CDK inhibitors and chemotherapy such as doxorubicin provides a viable personalized treatment strategy for those breast cancer patients whose tumors express the LMW-E.
Collapse
|
72
|
Golka K, Selinski S, Lehmann ML, Blaszkewicz M, Marchan R, Ickstadt K, Schwender H, Bolt HM, Hengstler JG. Genetic variants in urinary bladder cancer: collective power of the “wimp SNPs”. Arch Toxicol 2011; 85:539-54. [DOI: 10.1007/s00204-011-0676-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 02/07/2023]
|
73
|
Cao Y, Xu Q, Jin ZD, Zhou Z, Nie JH, Tong J. Induction of adaptive response: Pre-exposure of mice to 900 MHz radiofrequency fields reduces hematopoietic damage caused by subsequent exposure to ionising radiation. Int J Radiat Biol 2011; 87:720-8. [DOI: 10.3109/09553002.2010.550981] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
74
|
Stamatakos M, Palla V, Karaiskos I, Xiromeritis K, Alexiou I, Pateras I, Kontzoglou K. Cell cyclins: triggering elements of cancer or not? World J Surg Oncol 2010; 8:111. [PMID: 21176227 PMCID: PMC3016250 DOI: 10.1186/1477-7819-8-111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/22/2010] [Indexed: 01/16/2023] Open
Abstract
Cyclins are indispensable elements of the cell cycle and derangement of their function can lead to cancer formation. Recent studies have also revealed more mechanisms through which cyclins can express their oncogenic potential. This review focuses on the aberrant expression of G1/S cyclins and especially cyclin D and cyclin E; the pathways through which they lead to tumour formation and their involvement in different types of cancer. These elements indicate the mechanisms that could act as targets for cancer therapy.
Collapse
Affiliation(s)
- Michael Stamatakos
- 4th Department of Surgery, Medical School, University of Athens, Attikon General Hospital, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
75
|
Huang JX, Xiao W, Chen WC, Lin MS, Song ZX, Chen P, Zhang YL, Li FY, Qian RY, Salminen E. Relationship between COX-2 and cell cycle-regulatory proteins in patients with esophageal squamous cell carcinoma. World J Gastroenterol 2010; 16:5975-81. [PMID: 21157974 PMCID: PMC3007117 DOI: 10.3748/wjg.v16.i47.5975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the correlation between cyclooxygenase-2 (COX-2) and cell cycle-regulatory proteins in patients with esophageal squamous cell carcinoma (ESCC).
METHODS: One hundred and two surgically obtained specimens of ESCC were randomly collected. All specimens were obtained from patients who had not received chemo- or radiotherapy prior to surgical resection. Twenty-eight specimens of normal squamous epithelium served as controls. The expression of COX-2, Ki-67, cyclin A and p27 was examined by immunohistochemistry. The Pearson test was used to analyze the relationship between groups.
RESULTS: The protein level of COX-2, Ki-67 and cyclin A was significantly higher in ESCC than in normal squamous epithelium (74.7 ± 61.2 vs 30.2 ± 43.4, 64.0 ± 51.6 vs 11.6 ± 2.3, 44.2 ± 32.2 vs 11.7 ± 5.0, respectively, all P < 0.01). In contrast, the protein level of p27 was significantly lower in ESCC than in normal squamous epithelium (182.0 ± 69.0 vs 266.4 ± 28.0, P < 0.01). In ESCC, COX-2 expression was correlated with T stage, the score of T1-T2 stage was lower than that of T3-T4 stage (55.0 ± 42.3 vs 83.0 ± 66.5, P < 0.05), and Ki-67, cyclin A and p27 expressions were correlated with the tumor differentiation (43.8 ± 31.7 vs 98.4 ± 84.8, 32.0 ± 19.0 vs 54.1 ± 53.7, 206.2 ± 61.5 vs 123.5 ± 68.3, respectively, all P < 0.01). COX-2 expression was positively correlated to Ki-67, cyclin A and negatively correlated to p27 expression in ESCC (r = 0.270, 0.233 and -0.311, respectively, all P < 0.05).
CONCLUSION: The expression of COX-2 is correlated with tumor cell invasion and is closely related to the cell proliferation in patients with ESCC.
Collapse
|
76
|
Leone DP, Srinivasan K, Brakebusch C, McConnell SK. The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain. Dev Neurobiol 2010; 70:659-78. [PMID: 20506362 DOI: 10.1002/dneu.20804] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progenitor cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing forebrain give rise to neurons and glial cells, and are characterized by distinct morphologies and proliferative behaviors. The mechanisms that distinguish VZ and SVZ progenitors are not well understood, although the homeodomain transcription factor Cux2 and Cyclin D2, a core component of the cell cycle machinery, are specifically involved in controlling SVZ cell proliferation. Rho GTPases have been implicated in regulating the proliferation, differentiation, and migration of many cell types, and one family member, Cdc42, affects the polarity and proliferation of radial glial cells in the VZ. Here, we show that another family member, Rac1, is required for the normal proliferation and differentiation of SVZ progenitors and for survival of both VZ and SVZ progenitors. A forebrain-specific loss of Rac1 leads to an SVZ-specific reduction in proliferation, a concomitant increase in cell cycle exit, and premature differentiation. In Rac1 mutants, the SVZ and VZ can no longer be delineated, but rather fuse to become a single compact zone of intermingled cells. Cyclin D2 expression, which is normally expressed by both VZ and SVZ progenitors, is reduced in Rac1 mutants, suggesting that the mutant cells differentiate precociously. Rac1-deficient mice can still generate SVZ-derived upper layer neurons, indicating that Rac1 is not required for the acquisition of upper layer neuronal fates, but instead is needed for the normal regulation of proliferation by progenitor cells in the SVZ.
Collapse
Affiliation(s)
- Dino P Leone
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
77
|
Liao Y, Lönnerdal B. Global microRNA characterization reveals that miR-103 is involved in IGF-1 stimulated mouse intestinal cell proliferation. PLoS One 2010; 5:e12976. [PMID: 20886090 PMCID: PMC2944884 DOI: 10.1371/journal.pone.0012976] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/11/2010] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs play extensive roles in cellular development. Analysis of the microRNA expression pattern during intestinal cell proliferation in early life is likely to unravel molecular mechanisms behind intestinal development and have implications for therapeutic intervention. In this study, we isolated mouse intestinal crypt cells, examined the differences in microRNA expression upon IGF-1 stimulated proliferation and identified miR-103 as a one of the key regulators. Mouse intestinal crypt cells were cultured and treated with IGF-1 for 24 h. MicroRNA microarray showed that multiple microRNAs are regulated by IGF-1, and miR-103 was the most sharply down-regulated. Expression of miR-103 in mouse intestinal crypt cells was confirmed by real-time Q-PCR. Sequence analyses showed that, among the 1040 predicted miR-103 target genes, CCNE1, CDK2, and CREB1 contain complementary sequences to the miR-103 seed region that are conserved between human and mouse. We further demonstrated that miR-103 controls the expression level of these three genes in mouse crypt cells by luciferase assay and immunoblotting assay. Taken together, our data suggest that in mouse intestinal crypt cells, miR-103 is part of the G1/S transition regulatory network, which targets CCNE1, CDK2, and CREB1 during IGF-1 stimulated proliferation.
Collapse
Affiliation(s)
- Yalin Liao
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - Bo Lönnerdal
- Department of Nutrition, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
78
|
Caldon CE, Musgrove EA. Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div 2010; 5:2. [PMID: 20180967 PMCID: PMC2835679 DOI: 10.1186/1747-1028-5-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/17/2010] [Indexed: 02/07/2023] Open
Abstract
The highly conserved E-type cyclins are core components of the cell cycle machinery, facilitating the transition into S phase through activation of the cyclin dependent kinases, and assembly of pre-replication complexes on DNA. Cyclin E1 and cyclin E2 are assumed to be functionally redundant, as cyclin E1-/- E2-/- mice are embryonic lethal while cyclin E1-/- and E2-/- single knockout mice have primarily normal phenotypes. However more detailed studies of the functions and regulation of the E-cyclins have unveiled potential additional roles for these proteins, such as in endoreplication and meiosis, which are more closely associated with either cyclin E1 or cyclin E2. Moreover, expression of each E-cyclin can be independently regulated by distinct transcription factors and microRNAs, allowing for context-specific expression. Furthermore, cyclins E1 and E2 are frequently expressed independently of one another in human cancer, with unique associations to signatures of poor prognosis. These data imply an absence of co-regulation of cyclins E1 and E2 during tumorigenesis and possibly different contributions to cancer progression. This is supported by in vitro data identifying divergent regulation of the two genes, as well as potentially different roles in vivo.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
79
|
Errico A, Deshmukh K, Tanaka Y, Pozniakovsky A, Hunt T. Identification of substrates for cyclin dependent kinases. ACTA ACUST UNITED AC 2010; 50:375-99. [DOI: 10.1016/j.advenzreg.2009.12.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
80
|
Fauré A, Thieffry D. Logical modelling of cell cycle control in eukaryotes: a comparative study. MOLECULAR BIOSYSTEMS 2009; 5:1569-81. [PMID: 19763341 DOI: 10.1039/b907562n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynamical modelling is at the core of the systems biology paradigm. However, the development of comprehensive quantitative models is complicated by the daunting complexity of regulatory networks controlling crucial biological processes such as cell division, the paucity of currently available quantitative data, as well as the limited reproducibility of large-scale experiments. In this context, qualitative modelling approaches offer a useful alternative or complementary framework to build and analyse simplified, but still rigorous dynamical models. This point is illustrated here by analysing recent logical models of the molecular network controlling mitosis in different organisms, from yeasts to mammals. After a short introduction covering cell cycle and logical modelling, we compare the assumptions and properties underlying these different models. Next, leaning on their transposition into a common logical framework, we compare their functional structure in terms of regulatory circuits. Finally, we discuss assets and prospects of qualitative approaches for the modelling of the cell cycle.
Collapse
Affiliation(s)
- Adrien Fauré
- Aix-Marseille University & INSERM U928-TAGC, Marseille, France.
| | | |
Collapse
|
81
|
Nevzorova YA, Tschaharganeh D, Gassler N, Geng Y, Weiskirchen R, Sicinski P, Trautwein C, Liedtke C. Aberrant cell cycle progression and endoreplication in regenerating livers of mice that lack a single E-type cyclin. Gastroenterology 2009; 137:691-703, 703.e1-6. [PMID: 19445941 PMCID: PMC2730664 DOI: 10.1053/j.gastro.2009.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 04/30/2009] [Accepted: 05/06/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS E-cyclins control the transition of quiescent cells into the cell cycle. Two E-cyclins, CcnE1 and CcnE2, have been described, but their specific contributions to cell cycle reentry in vivo are poorly understood. Liver regeneration following partial hepatectomy is an excellent in vivo model for the study of cell cycle reentry of quiescent cells. We investigated the relevance of E-cyclins in directing resting hepatocytes into the cell cycle after partial hepatectomy using CcnE1 and CcnE2 knockout mice. METHODS Partial hepatectomy (70%) was performed in CcnE1 (E1(-/-)) and CcnE2 (E2(-/-)) knockout and wild-type mice. Liver regeneration was monitored by cell cycle markers for G(1)/S phase, S phase, and M phase as well as by determining the liver/body weight ratio after partial hepatectomy. Ploidy of hepatocytes was determined by fluorescence-activated cell sorting and fluorescent in situ hybridization. RESULTS CcnE1 deletion resulted in normal liver regeneration with a slight delay of the G(1)/S-phase transition and a defect in endoreplication of otherwise polyploid hepatocytes. Surprisingly, E2(-/-) mice displayed accelerated and sustained DNA synthesis after partial hepatectomy, excessive endoreplication in hepatocytes, and a liver mass that was 45% greater than that of wild-type mice after termination of the regeneration process. CcnE2 depletion induced overexpression of CcnE1 and prolonged cdk2 kinase activity after partial hepatectomy. CONCLUSIONS CcnE2 has an unexpected role in repressing CcnE1; the phenotype of E2(-/-) mice appears to result from CcnE1 overexpression and cdk2 hyperactivation. CcnE1 and CcnE2 therefore have nonredundant functions for S-phase entry and endoreplication during liver regeneration.
Collapse
Affiliation(s)
- Yulia A. Nevzorova
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Darjus Tschaharganeh
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Nikolaus Gassler
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Yan Geng
- Dana-Farber Cancer Institute, 44 Binney Street, Smith 936, Boston, MA 02115, USA
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Peter Sicinski
- Dana-Farber Cancer Institute, 44 Binney Street, Smith 936, Boston, MA 02115, USA
| | - Christian Trautwein
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Christian Liedtke
- Department of Medicine III, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
82
|
Mao TL, Shih IM. Advances in the diagnosis of gestational trophoblastic tumors and tumor-like lesions. ACTA ACUST UNITED AC 2009; 3:371-80. [DOI: 10.1517/17530050903032646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
83
|
Wang L, Shao ZM. Cyclin E Expression and Prognosis in Breast Cancer Patients: A Meta-Analysis of Published Studies. Cancer Invest 2009; 24:581-7. [PMID: 16982462 DOI: 10.1080/07357900600894799] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vitro studies showed that cyclin E can accelerate the cell cycle by shorten the G1/S phase transition. Therefore, varieties of studies have investigated the relationship between cyclin E and survival in breast cancer patients. However, the results differed widely between studies. We reviewed the published studies and performed a meta-analysis, which including 12 independent studies and 2,534 patients. The combined HR estimate for relapse-free survival (RFS) was 2.32 (95% CI, 1.25-4.30) and 1.72 (95% CI, 0.95-3.10) in univariate and multivariate analysis, respectively. In addition, the combined HR estimate for overall survival (OS) and breast cancer specific survival (BCSS) was 2.98 (95% CI, 1.85-4.78) and 2.86 (95% CI, 1.85-4.41) in univariate and multivariate analysis, respectively. In conclusion, the high level of cyclin E appears to be an independent prognostic factor to OS/BCSS of breast cancer patients but not to RFS.
Collapse
Affiliation(s)
- Lei Wang
- Department of Breast Surgery, Department of Oncology, Cancer Hospital/Cancer Institute, Fudan University, Shanghai, China
| | | |
Collapse
|
84
|
Braden WA, McClendon AK, Knudsen ES. Cyclin-dependent kinase 4/6 activity is a critical determinant of pre-replication complex assembly. Oncogene 2008; 27:7083-93. [PMID: 18776921 DOI: 10.1038/onc.2008.319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclin-dependent kinases (CDKs) are important in regulating cell cycle transitions, particularly in coordinating DNA replication. Although the role of CDK2 activity on the replication apparatus has been extensively studied, the role of CDK4/6 in DNA replication control is less understood. Through targeted inhibition of CDK4/6 activity, we demonstrate that CDK4/6 kinase activity promotes cdc6 and cdt1 expression, and pre-replication complex (pre-RC) assembly in cycling cells. Conversely, CDK2 inhibition had no effect on the pre-RC assembly. The inhibition of pre-RC assembly is dependent on a functional retinoblastoma (RB) protein, which mediates downstream effects. As such, CDK4/6 inhibition has minimal effect on the replication apparatus in the absence of RB. The requirement of CDK4/6 was further interrogated using cells lacking D-type cyclins, in which replication complexes form normally, and correspondingly CDK4/6 inhibition had no effect on cell cycle or replication control. However, in the absence of D-type cyclins, CDK2 inhibition resulted in the attenuation of cdc6 and cdt1 levels, suggesting overlapping roles for CDK4/6 and CDK2 in regulating replication protein activity. Finally, CDK4/6 inhibition prevented the accumulation of cdc6 and cdt1 as cells progressed from mitosis through the subsequent G(1). Combined, these studies indicate that CDK4/6 activity is important in regulating the expression of these critical mediators of DNA replication.
Collapse
Affiliation(s)
- W A Braden
- Department of Cancer Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
85
|
Xie DX, Yao J, Zhang P, Li XL, Feng YD, Wu JH, Tao DD, Hu JB, Gong JP. Are progenitor cells pre-programmed for sequential cell cycles not requiring cyclins D and E and activation of Cdk2? Cell Prolif 2008; 41:265-78. [PMID: 18336471 DOI: 10.1111/j.1365-2184.2008.00518.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Based on studies of unicellular organisms or cultured mammalian cells, the generally accepted model of cell-cycle regulation has been developed in which sequential (scheduled) expression of cyclins D, E, A and B and activation of Cdk2 and Cdk1 takes place. It is assumed that the same model is applicable both in vivo and in vitro. MATERIALS AND METHODS In the present study, we compared proliferating marrow cells freshly isolated from healthy individuals with proliferating lymphocytes in cultures. RESULTS We demonstrate that during progression of freshly collected human bone marrow cells through G(1), S and G(2)/M, only Cdk1 combined with cyclins A and B(1) was distinctly present and active, and its activity gradually increased. In contrast, in vitro growing mitogen-stimulated lymphocytes had perfectly scheduled sequential expression of all four cyclins and Cdk1 and Cdk2 activities. CONCLUSION Our findings demonstrate that the pattern of cyclin expression and Cdk activity in bone marrow in vivo is distinctly different from the one observed for normal cells in vitro. Because proliferating bone marrow cells are predominantly expanding populations of committed progenitors, it is likely that during the expansion phase their cell-cycle progression is pre-programmed, being driven solely by Cdk1 combined either with cyclin A or with cyclin B(1). Expansion of progenitor cells thus may not require the early steps of cell-cycle regulation, associated with triggering progression by availability of growth factors and mitogens.
Collapse
Affiliation(s)
- D-X Xie
- Tongji Cancer Research Institute, Tongji Hospital, Tongji Medical College in Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Lee SH, Lee MY, Han HJ. Short-period hypoxia increases mouse embryonic stem cell proliferation through cooperation of arachidonic acid and PI3K/Akt signalling pathways. Cell Prolif 2008; 41:230-47. [PMID: 18336469 DOI: 10.1111/j.1365-2184.2008.00516.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia plays important roles in some early stages of mammalian embryonic development and in various physiological functions. This study examined the effect of arachidonic acid on short-period hypoxia-induced regulation of G(1) phase cell-cycle progression and inter-relationships among possible signalling molecules in mouse embryonic stem cells. Hypoxia increased the level of hypoxia-inducible factor-1alpha (HIF-1alpha) expression and H2O2 generation in a time-dependent manner. In addition, hypoxia increased the levels of cell-cycle regulatory proteins (cyclin D(1), cyclin E, cyclin-dependent kinase 2 (CDK2) and CDK4). Maximum increases in the level of these proteins and retinoblastoma phosphorylation were observed after 12-24 h of exposure to hypoxic conditions, and then decreased. Alternatively, the level of the CDK inhibitors, p21(Cip1) and p27(Kip1) were decreased. These results were consistent with the results of [3H]-thymidine incorporation and cell counting. Hypoxia also increased the level of [3H]-arachidonic acid release and inhibition of cPLA(2) reduced hypoxia-induced increase in levels of the cell-cycle regulatory proteins and [3H]-thymidine incorporation. The level of cyclooxygenase-2 (COX-2) was also increased by hypoxia and inhibition of COX-2 decreased the levels of cell-cycle regulatory proteins and [3H]-thymidine incorporation. Indeed, the percentage of cells in S phase, levels of cell cycle regulatory proteins, and [3H]-thymidine incorporation were further increased in hypoxic conditions with arachidonic acid treatment compared to normoxic conditions. Hypoxia-induced Akt and mitogen-activated protein kinase (MAPK) phosphorylation was inhibited by vitamin C (antioxidant, 10(-3) M). In addition, hypoxia-induced increase of cell-cycle regulatory protein expression and [(3)H]-thymidine incorporation were attenuated by LY294002 (PI3K inhibitor, 10(-6) M), Akt inhibitor (10(-6) M), rapamycin (mTOR inhibitor, 10(-9) M), PD98059 (p44/42 inhibitor, 10(-5) M), and SB203580 (p38 MAPK inhibitor, 10(-6) M). Furthermore, hypoxia-induced increase of [(3)H]-arachidonic acid release was blocked by PD98059 or SB203580, but not by LY294002 or Akt inhibitor. In conclusion, arachidonic acid up-regulates short time-period hypoxia-induced G(1) phase cyclins D(1) and E, and CDK 2 and 4, in mouse embryonic stem cells through the cooperation of PI3K/Akt/mTOR, MAPK and cPLA(2)-mediated signal pathways.
Collapse
Affiliation(s)
- S H Lee
- Department of Veterinary Physiology, Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | | | | |
Collapse
|
87
|
Abstract
Human cancers arise from an imbalance of cell growth and cell death. Key proteins that govern this balance are those that mediate the cell cycle. Several different molecular effectors have been identified that tightly regulate specific phases of the cell cycle, including cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors. Notably, loss of expression or function of two G1-checkpoint CDK inhibitors - p21 (CDKN1A) and p27 (CDKN1B) - has been implicated in the genesis or progression of many human malignancies. Additionally, there is a growing body of evidence suggesting that functional loss of p21 or p27 can mediate a drug-resistance phenotype. However, reports in the literature have also suggested p21 and p27 can promote tumours, indicating a paradoxical effect. Here, we review historic and recent studies of these two CDK inhibitors, including their identification, function, importance to carcinogenesis and finally their roles in drug resistance.
Collapse
|
88
|
Riefler GM, Dent SYR, Schumacher JM. Tousled-mediated activation of Aurora B kinase does not require Tousled kinase activity in vivo. J Biol Chem 2008; 283:12763-8. [PMID: 18334486 DOI: 10.1074/jbc.m709034200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Aurora kinases comprise an evolutionarily conserved protein family that is required for a variety of cell division events, including spindle assembly, chromosome segregation, and cytokinesis. Emerging evidence suggests that once phosphorylated, a subset of Aurora substrates can enhance Aurora kinase activity. Our previous work revealed that the Caenorhabditis elegans Tousled-like kinase TLK-1 is a substrate and activator of the AIR-2 Aurora B kinase in vitro and that partial loss of TLK-1 enhances the mitotic defects of an air-2 mutant. However, given that these experiments were performed in vitro and with partial loss of function alleles in vivo, a necessary step forward in our understanding of the relationship between the Aurora B and Tousled kinases is to prove that TLK-1 expression is sufficient for Aurora B activation in vivo. Here, we report that heterologous expression of wild-type and kinase-inactive forms of TLK-1 suppresses the lethality of temperature-sensitive mutants of the yeast Aurora B kinase Ipl1. Moreover, kinase-dead TLK-1 associates with and augments the activity of Ipl1 in vivo. Together, these results provide critical and compelling evidence that Tousled has a bona fide kinase-independent role in the activation of Aurora B kinases in vivo.
Collapse
Affiliation(s)
- Gary M Riefler
- Department of Molecular Genetics, M.D Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | | | |
Collapse
|
89
|
Costoya JA, Hobbs RM, Pandolfi PP. Cyclin-dependent kinase antagonizes promyelocytic leukemia zinc-finger through phosphorylation. Oncogene 2008; 27:3789-96. [PMID: 18246121 DOI: 10.1038/onc.2008.7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acute promyelocytic leukemia is associated with chromosomal translocations that involve the RARalpha gene and several distinct loci producing a variety of fusion proteins. One such fusion partner is promyelocytic leukemia zinc-finger gene (PLZF), a member of the POK (POZ and Krüppel) family of transcriptional repressors that is a key developmental regulator, stem cell maintenance factor and tumor suppressor. Overexpression of PLZF has been shown to induce cell cycle arrest at the G(1) to S transition and repress the expression of key pro-proliferative genes such as CCNA2 and MYC. However, given this data suggesting an important growth inhibitory role for PLZF, relatively little is known regarding regulation of its activity. Here we show that the main cyclin-dependent kinase involved at the G(1) to S transition (CDK2) phosphorylates PLZF at two consensus sites found within PEST domains present in the hinge region of the protein. This phosphorylation triggers the ubiquitination and subsequent degradation of PLZF, which impairs PLZF transcriptional repression ability and antagonizes its growth inhibitory effects. This critical mechanism of PLZF regulation may thus be relevant for cell cycle progression during the development and the pathogenesis of human cancer.
Collapse
Affiliation(s)
- J A Costoya
- Cancer Biology and Genetics Program, Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
90
|
Matthäus C, Bird B, Miljković M, Chernenko T, Romeo M, Diem M. Chapter 10: Infrared and Raman microscopy in cell biology. Methods Cell Biol 2008; 89:275-308. [PMID: 19118679 DOI: 10.1016/s0091-679x(08)00610-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This chapter presents novel microscopic methods to monitor cell biological processes of live or fixed cells without the use of any dye, stains, or other contrast agent. These methods are based on spectral techniques that detect inherent spectroscopic properties of biochemical constituents of cells, or parts thereof. Two different modalities have been developed for this task. One of them is infrared micro-spectroscopy, in which an average snapshot of a cell's biochemical composition is collected at a spatial resolution of typically 25 mum. This technique, which is extremely sensitive and can collect such a snapshot in fractions of a second, is particularly suited for studying gross biochemical changes. The other technique, Raman microscopy (also known as Raman micro-spectroscopy), is ideally suited to study variations of cellular composition on the scale of subcellular organelles, since its spatial resolution is as good as that of fluorescence microscopy. Both techniques exhibit the fingerprint sensitivity of vibrational spectroscopy toward biochemical composition, and can be used to follow a variety of cellular processes.
Collapse
Affiliation(s)
- Christian Matthäus
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
AIM: To detect the expression of P27 and cyclin D1 and E expression in gastric cancer, and to provide a new way to diagnose and treat gastric cancer.
METHODS: Immunohistochemistry was used to examine the expression of P27, cyclin D1 and cyclin E proteins in gastric carcinoma (n = 54) and normal gastric mucosa (n = 15).
RESULTS: Positive immunohistochemistry was seen in 20 of 54 gastric cancer cases and in 11 of 15 normal gastric tissues. P27 expression differed significantly between gastric cancer and normal gastric tissue (P < 0.05), had no relation with sex, age, tumor size, invasive depth and differentiation, but had a significant relationship with TNM staging and lymph node metastasis (P < 0.05). P27 expression had a negative correlation with cyclin D1 (r = -0.332) and no relationship with cyclin E.
CONCLUSION: The difference in P27 expression in gastric cancer and normal gastric tissue is remarkable. The expression has a significant relationship with TNM staging and lymph node metastasis. P27 expression has a negative correlation with cyclin D1 and no relationship with cyclin E expression.
Collapse
|
92
|
Keck JM, Summers MK, Tedesco D, Ekholm-Reed S, Chuang LC, Jackson PK, Reed SI. Cyclin E overexpression impairs progression through mitosis by inhibiting APC(Cdh1). ACTA ACUST UNITED AC 2007; 178:371-85. [PMID: 17664332 PMCID: PMC2064850 DOI: 10.1083/jcb.200703202] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Overexpression of cyclin E, an activator of cyclin-dependent kinase 2, has been linked to human cancer. In cell culture models, the forced expression of cyclin E leads to aneuploidy and polyploidy, which is consistent with a direct role of cyclin E overexpression in tumorigenesis. In this study, we show that the overexpression of cyclin E has a direct effect on progression through the latter stages of mitotic prometaphase before the complete alignment of chromosomes at the metaphase plate. In some cases, such cells fail to divide chromosomes, resulting in polyploidy. In others, cells proceed to anaphase without the complete alignment of chromosomes. These phenotypes can be explained by an ability of overexpressed cyclin E to inhibit residual anaphase-promoting complex (APCCdh1) activity that persists as cells progress up to and through the early stages of mitosis, resulting in the abnormal accumulation of APCCdh1 substrates as cells enter mitosis. We further show that the accumulation of securin and cyclin B1 can account for the cyclin E–mediated mitotic phenotype.
Collapse
Affiliation(s)
- Jamie M Keck
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | | | | | |
Collapse
|
93
|
Menges M, Pavesi G, Morandini P, Bögre L, Murray JAH. Genomic organization and evolutionary conservation of plant D-type cyclins. PLANT PHYSIOLOGY 2007; 145:1558-76. [PMID: 17951462 PMCID: PMC2151690 DOI: 10.1104/pp.107.104901] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 10/06/2007] [Indexed: 05/21/2023]
Abstract
Plants contain more genes encoding core cell cycle regulators than other organisms but it is unclear whether these represent distinct functions. D-type cyclins (CYCD) play key roles in the G1-to-S-phase transition, and Arabidopsis (Arabidopsis thaliana) contains 10 CYCD genes in seven defined subgroups, six of which are conserved in rice (Oryza sativa). Here, we identify 22 CYCD genes in the poplar (Populus trichocarpa) genome and confirm that these six CYCD subgroups are conserved across higher plants, suggesting subgroup-specific functions. Different subgroups show gene number increases, with CYCD3 having three members in Arabidopsis, six in poplar, and a single representative in rice. All three species contain a single CYCD7 gene. Despite low overall sequence homology, we find remarkable conservation of intron/exon boundaries, because in most CYCD genes of plants and mammals, the first exon ends in the conserved cyclin signature. Only CYCD3 genes contain the complete cyclin box in a single exon, and this structure is conserved across angiosperms, again suggesting an early origin for the subgroup. The single CYCD gene of moss has a gene structure closely related to those of higher plants, sharing an identical exon/intron structure with several higher plant subgroups. However, green algae have CYCD genes structurally unrelated to higher plants. Conservation is also observed in the location of potential cyclin-dependent kinase phosphorylation sites within CYCD proteins. Subgroup structure is supported by conserved regulatory elements, particularly in the eudicot species, including conserved E2F regulatory sites within CYCD3 promoters. Global expression correlation analysis further supports distinct expression patterns for CYCD subgroups.
Collapse
Affiliation(s)
- Margit Menges
- Institute of Biotechnology, University of Cambridge, Cambridge CB2 1QT, United Kingdom
| | | | | | | | | |
Collapse
|
94
|
Sieuwerts AM, Look MP, Meijer-van Gelder ME, Timmermans M, Trapman AMAC, Garcia RR, Arnold M, Goedheer AJW, de Weerd V, Portengen H, Klijn JGM, Foekens JA. Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res 2007; 12:3319-28. [PMID: 16740753 DOI: 10.1158/1078-0432.ccr-06-0225] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the prognostic value of cyclin E with a quantitative method for lymph node-negative primary breast cancer patients. PATIENTS AND METHODS mRNA transcripts of full-length and splice variants of cyclin E1 (CCNE1) and cyclin E2 (CCNE2) were measured by real-time PCR in frozen tumor samples from 635 lymph node-negative breast cancer patients who had not received neoadjuvant or adjuvant systemic therapy. RESULTS None of the PCR assays designed for the specific splice variants of the cyclins gave additional prognosis-related information compared with the common assays able to detect all variants. In Cox multivariate analysis, corrected for the traditional prognostic factors, high levels of cyclin E were independently associated with a short distant metastasis-free survival [hazard ratio (HR), 3.40; P < 0.001 for CCNE1 and HR, 1.76; P < 0.001 for CCNE2, respectively]. After dichotomizing the tumors at the median level of 70% tumor cells, the multivariate analysis showed particularly strong results for CCNE1 in the group of 433 patients with stroma-enriched primary tumors (HR, 5.12; P < 0.001). In these tumors, the worst prognosis was found for patients with estrogen receptor-negative tumors expressing high CCNE1 (HR, 9.89; P < 0.001) and for patients with small (T1) tumors expressing high CCNE1 (HR, 8.47; P < 0.001). CONCLUSION Our study shows that both CCNE1 and CCNE2 qualify as independent prognostic markers for lymph node-negative breast cancer patients, and that CCNE1 may provide additional information for specific subgroups of patients.
Collapse
|
95
|
Cheng XJ, Xu W, Zhang QY, Zhou RL. Relationship between LAPTM4B gene polymorphism and susceptibility of colorectal and esophageal cancers. Ann Oncol 2007; 19:527-32. [PMID: 17965115 DOI: 10.1093/annonc/mdm469] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Lysosome-associated protein transmembrane 4 beta (LAPTM4B) is a novel gene of the mammalian LAPTM family and has been shown to be overexpressed in human hepatocellular carcinoma. There are two alleles, LAPTM4B*1 and *2, which share the same sequence except for one segment of 19 bp in the 5' untranslated region of the exon 1. LAPTM4B*1 has one 19 bp segment, while LAPTM4B*2 has two tight tandem segments. The current case-control study was aimed to identify relationship between the gene polymorphism of LAPTM4B and the susceptibility of colorectal and esophageal cancers. PATIENTS AND METHODS Blood samples were collected from patients with colon, rectal or esophageal cancers and control subjects. Genotypes of LAPTM4B were determined by PCR to detect differences between cancer cases (n = 701) and healthy controls (n = 350). Association between the LAPTM4B polymorphism and the risk of cancer was calculated by unconditional logistic regression models. RESULTS We found that there was a significant difference (P = 0.0016) in allelic frequencies of LAPTM4B*2 between colon cancer cases (33.2%) and controls (24.1%). The risk of colon cancer was elevated significantly in cases with *1/2 genotype [odds ratio (OR) = 1.474; 95% confidence interval (CI) = 1.037-2.095] and *2/2 genotype (OR = 2.531; 95% CI = 1.316-4.868) when compared with the *1/1 genotype. No significant difference was observed for LAPTM4B*2 between the rectal or esophageal cancer cases when compared with the controls. The polymorphism in LAPTM4B was associated with increased risk of colon cancer but not of rectal and esophageal cancers. CONCLUSIONS These results indicate that the genetic polymorphism of LAPTM4B is a potential risk factor for the development of colon cancer.
Collapse
Affiliation(s)
- X-J Cheng
- Department of Clinical Laboratory, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | | | | | | |
Collapse
|
96
|
Sherr CJ, Matsushime H, Roussel MF. Regulation of CYL/cyclin D genes by colony-stimulating factor 1. CIBA FOUNDATION SYMPOSIUM 2007; 170:209-19; discussion 219-26. [PMID: 1483347 DOI: 10.1002/9780470514320.ch13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The proliferative effects of colony-stimulating factor 1 (CSF-1) on macrophages are exerted only throughout the G1 phase of the cell cycle. Genetic targets of the delayed early response to CSF-1 include novel G1 cyclin (CYL or cyclin D) genes. In macrophages, cyclin D1 is induced early in G1 and is expressed throughout the cell cycle as long as CSF-1 is present. The cyclin D1 protein turns over rapidly in CSF-1-stimulated cells and its level declines precipitously upon CSF-1 withdrawal. Cyclin D2 is induced later in G1 and its expression is periodic, whereas cyclin D3 is not expressed in macrophages but is regulated by growth factors in other cell types. The cyclin D1 protein associates during G1 with a polypeptide antigenically related to p34cdc2 and binds in vitro to a histone H1 kinase present in lysates of CSF-1-starved macrophages. The instability of the cyclin D1 protein and its ability to rescue a cyclin-dependent kinase activity from growth factor-deprived macrophages together suggest that the cyclin D protein is the dynamic partner in the complex. The timing of expression of cyclin D genes suggests that they act to link growth factor signals with cell cycle transitions during G1.
Collapse
Affiliation(s)
- C J Sherr
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | |
Collapse
|
97
|
Marcote MJ, Pagano M, Draetta G. cdc2 protein kinase: structure-function relationships. CIBA FOUNDATION SYMPOSIUM 2007; 170:30-41; discussion 41-9. [PMID: 1483349 DOI: 10.1002/9780470514320.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of the cdc2 kinase in the cell cycle occurs upon binding to a regulatory subunit called cyclin. Cyclin A associates with both Cdc2 and its homologue Cdk2. The two complexes appear in S phase but cyclin A/Cdk2 is activated earlier than cyclin A/Cdc2. Several regions in Cdc2 are involved in binding cyclins A and B. Phosphorylation of cyclin/Cdk complexes ensures that the kinase activity peaks at a specific time in the cell cycle. Phosphorylation of Thr161 in Cdc2 is required for strong cyclin binding and kinase activity in vitro; its dephosphorylation is necessary for cells to exit mitosis. We have identified a novel 'Activating factor' that stimulates binding between cyclin and Cdc2 by inducing phosphorylation of Cdc2 on Thr161. We propose that Thr161 is targeted by an additional cell cycle regulatory pathway.
Collapse
Affiliation(s)
- M J Marcote
- Differentiation Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
98
|
Smartt HJM, Guilmeau S, Nasser SV, Nicholas C, Bancroft L, Simpson SA, Yeh N, Yang W, Mariadason JM, Koff A, Augenlicht LH. p27kip1 Regulates cdk2 activity in the proliferating zone of the mouse intestinal epithelium: potential role in neoplasia. Gastroenterology 2007; 133:232-43. [PMID: 17631145 DOI: 10.1053/j.gastro.2007.04.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 04/12/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Reduced p27(kip1) expression is a marker of poor prognosis in colorectal neoplasia, and inactivation of p27 in mice (p27(Delta51/Delta51)) causes increased intestinal epithelial cell proliferation and small and large intestinal neoplasia in a diet-dependent manner. Here, we addressed the role of p27 in untransformed intestinal epithelial cells in vivo and the consequence of its targeted inactivation. METHODS A sequential fractionation procedure was used to isolate murine intestinal epithelial cells relative to their position along the crypt-villus axis, and the levels of cyclins, cyclin-dependent kinases (cdks), and cdk inhibitors and of the complexes formed among them was determined by immunoprecipitation-immunoblotting and kinase assays. RESULTS As cells exited the proliferative crypt compartment, expression and activity of both cdk2 and cdk4 decreased, in parallel with reduced expression of cyclin A and proliferating cell nuclear antigen (PCNA); expression of cyclin D1, D2, and cyclin E showed little change. As expected, expression of the cdk inhibitors p21, p57, and p16 was highest in differentiated villus cells. Unexpectedly, p27 protein expression was highest in cells of the proliferative crypt compartment where it bound both cdk2 and cdk4. Cdk2 activity was increased in crypt cells from p27(Delta51/Delta51) mice, although cyclin D-associated kinase activity was unchanged (indeed, cyclin D1/2-cdk4 complex levels were reduced). Importantly, cdk2 activity was unchanged in crypt cells from p21(-/-) mice, which do not develop intestinal tumors. CONCLUSIONS We propose that p27 contributes to intestinal epithelial homeostasis by regulating cdk2 activity in proliferating cells, thus gating cell cycle progression and suppressing intestinal neoplasia.
Collapse
Affiliation(s)
- Helena J M Smartt
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Yeh N, Miller JP, Gaur T, Capellini TD, Nikolich-Zugich J, de la Hoz C, Selleri L, Bromage TG, van Wijnen AJ, Stein GS, Lian JB, Vidal A, Koff A. Cooperation between p27 and p107 during endochondral ossification suggests a genetic pathway controlled by p27 and p130. Mol Cell Biol 2007; 27:5161-71. [PMID: 17502351 PMCID: PMC1951950 DOI: 10.1128/mcb.02431-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 02/21/2007] [Accepted: 05/02/2007] [Indexed: 02/05/2023] Open
Abstract
Pocket proteins and cyclin-dependent kinase (CDK) inhibitors negatively regulate cell proliferation and can promote differentiation. However, which members of these gene families, which cell type they interact in, and what they do to promote differentiation in that cell type during mouse development are largely unknown. To identify the cell types in which p107 and p27 interact, we generated compound mutant mice. These mice were null for p107 and had a deletion in p27 that prevented its binding to cyclin-CDK complexes. Although a fraction of these animals survived into adulthood and looked similar to single p27 mutant mice, a larger number of animals died at birth or within a few weeks thereafter. These animals displayed defects in chondrocyte maturation and endochondral bone formation. Proliferation of chondrocytes was increased, and ectopic ossification was observed. Uncommitted mouse embryo fibroblasts could be induced into the chondrocytic lineage ex vivo, but these cells failed to mature normally. These results demonstrate that p27 carries out overlapping functions with p107 in controlling cell cycle exit during chondrocyte maturation. The phenotypic similarities between p107(-/-) p27(D51/D51) and p107(-/-) p130(-/-) mice and the cells derived from them suggest that p27 and p130 act in an analogous pathway during chondrocyte maturation.
Collapse
Affiliation(s)
- Nancy Yeh
- Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Schnackenberg BJ, Palazzo RE, Marzluff WF. Cyclin E/Cdk2 is required for sperm maturation, but not DNA replication, in early sea urchin embryos. Genesis 2007; 45:282-91. [PMID: 17458867 DOI: 10.1002/dvg.20291] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cell cycle is driven by the activity of cyclin/cdk complexes. In somatic cells, cyclin E/cdk2 oscillates throughout the cell cycle and has been shown to promote S-phase entry and initiation of DNA replication. In contrast, cyclin E/cdk2 activity remains constant throughout the early embryonic development of the sea urchin and localizes to the sperm nucleus following fertilization. We now show that cyclin E localization to the sperm nucleus following fertilization is not unique to the sea urchin, but also occurs in the surf clam, and inhibition of cyclin E/cdk2 activity by roscovitine inhibits the morphological changes indicative of male pronuclear maturation in sea urchin zygotes. Finally, we show that inhibition of cyclin E/cdk2 activity does not block DNA replication in the early cleavage cycles of the sea urchin. We conclude that cyclin E/cdk2 activity is required for male pronuclear maturation, but not for initiation of DNA replication in early sea urchin development.
Collapse
Affiliation(s)
- Bradley J Schnackenberg
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | |
Collapse
|