51
|
Rodrigues RCLB, Sene L, Matos GS, Roberto IC, Pessoa A, Felipe MGA. Enhanced Xylitol Production by Precultivation of Candida guilliermondii Cells in Sugarcane Bagasse Hemicellulosic Hydrolysate. Curr Microbiol 2006; 53:53-9. [PMID: 16775788 DOI: 10.1007/s00284-005-0242-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 10/31/2005] [Indexed: 11/27/2022]
Abstract
The present work evaluated the key enzymes involved in xylitol production (xylose reductase [XR] and xylitol dehydrogenase [XDH]) and their correlation with xylose, arabinose, and acetic acid assimilation during cultivation of Candida guilliermondii FTI 20037 cells in sugarcane bagasse hemicellulosic hydrolysate. For this purpose, inocula previously grown either in sugarcane bagasse hemicellulosic hydrolysate (SBHH) or in semidefined medium (xylose as a substrate) were used. The highest xylose/acetic acid consumption ratio (1.78) and the lowest arabinose consumption (13%) were attained in the fermentation using inoculum previously grown in semidefined medium (without acetic acid and arabinose). In this case, the highest values of XR (1.37 U mg prot(-1)) and XDH (0.91 U mg prot(-1)) activities were observed. The highest xylitol yield (approximately 0.55 g g(-1)) and byproducts (ethanol and glycerol) formation were not influenced by inoculum procedure. However, the cell previously grown in the hydrolysate was effective in enhancing xylitol production by keeping the XR enzyme activity at high levels (around 0.99 U.mg(prot) (-1)), reducing the XDH activity (34.0%) and increasing xylitol volumetric productivity (26.5%) with respect to the inoculum cultivated in semidefined medium. Therefore, inoculum adaptation to SBHH was shown to be an important strategy to improve xylitol productivity.
Collapse
Affiliation(s)
- Rita C L B Rodrigues
- Departamento de Biotecnologia, DEBIQ, Faculdade de Engenharia Química de Lorena, FAENQUIL, Lorena, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
52
|
Slininger PJ, Dien BS, Gorsich SW, Liu ZL. Nitrogen source and mineral optimization enhance d-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbiol Biotechnol 2006; 72:1285-96. [PMID: 16676180 DOI: 10.1007/s00253-006-0435-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 03/20/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
Nutrition-based strategies to optimize xylose to ethanol conversion by Pichia stipitis were identified in growing and stationary-phase cultures provided with a defined medium varied in nitrogen, vitamin, purine/pyrimidine, and mineral content via full or partial factorial designs. It is surprising to note that stationary-phase cultures were unable to ferment xylose (or glucose) to ethanol without the addition of a nitrogen source, such as amino acids. Ethanol accumulation increased with arginine, alanine, aspartic acid, glutamic acid, glycine, histidine, leucine, and tyrosine, but declined with isoleucine. Ethanol production from 150 g/l xylose was maximized (61+/-9 g/l) by providing C:N in the vicinity of approximately 57-126:1 and optimizing the combination of urea and amino acids to supply 40-80 % nitrogen from urea and 60-20 % from amino acids (casamino acids supplemented with tryptophan and cysteine). When either urea or amino acids were used as sole nitrogen source, ethanol accumulation dropped to 11 or 24 g/l, respectively, from the maximum of 46 g/l for the optimal nitrogen combination. The interaction of minerals with amino acids and/or urea was key to optimizing ethanol production by cells in both growing and stationary-phase cultures. In nongrowing cultures supplied with nitrogen as amino acids, ethanol concentration increased from 24 to 54 g/l with the addition of an optimized mineral supplement of Fe, Mn, Mg, Ca, Zn, and others.
Collapse
Affiliation(s)
- Patricia J Slininger
- U. S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA.
| | | | | | | |
Collapse
|
53
|
Maas RHW, Bakker RR, Eggink G, Weusthuis RA. Lactic acid production from xylose by the fungus Rhizopus oryzae. Appl Microbiol Biotechnol 2006; 72:861-8. [PMID: 16528511 DOI: 10.1007/s00253-006-0379-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/13/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Lignocellulosic biomass is considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid. The filamentous fungus Rhizopus oryzae is able to grow in mineral medium with glucose as sole carbon source and to produce optically pure L(+)-lactic acid. Less is known about the conversion by R. oryzae of pentose sugars such as xylose, which is abundantly present in lignocellulosic hydrolysates. This paper describes the conversion of xylose in synthetic media into lactic acid by ten R. oryzae strains resulting in yields between 0.41 and 0.71 g g(-1). By-products were fungal biomass, xylitol, glycerol, ethanol and carbon dioxide. The growth of R. oryzae CBS 112.07 in media with initial xylose concentrations above 40 g l(-1) showed inhibition of substrate consumption and lactic acid production rates. In case of mixed substrates, diauxic growth was observed where consumption of glucose and xylose occurred subsequently. Sugar consumption rate and lactic acid production rate were significantly higher during glucose consumption phase compared to xylose consumption phase. Available xylose (10.3 g l(-1)) and glucose (19.2 g l(-1)) present in a mild-temperature alkaline treated wheat straw hydrolysate was converted subsequently by R. oryzae with rates of 2.2 g glucose l(-1) h(-1) and 0.5 g xylose l(-1) h(-1). This resulted mainly into the product lactic acid (6.8 g l(-1)) and ethanol (5.7 g l(-1)).
Collapse
Affiliation(s)
- Ronald H W Maas
- Biobased Products, Agrotechnology and Food Sciences Group, Wageningen University and Research Centre, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
54
|
Wang TH, Zhong YH, Huang W, Liu T, You YW. Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei. Lett Appl Microbiol 2005; 40:424-9. [PMID: 15892737 DOI: 10.1111/j.1472-765x.2005.01685.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To inhibit xylitol dehydrogenase (XDH) in Trichoderma reesei by antisense inhibition strategy and construct novel strains capable of accumulating xylitol. METHODS AND RESULTS The xdh1 antisense expression plasmid pGTA-xdh was constructed by inserting xdh1 DNA fragment inversely between the gpdA promoter and the trpC terminator from Aspergillus nidulans into a pUC19 plasmid backbone. Trichoderma reesei protoplasts were co-transformated with pGTA-xdh and hygromycin B resistance plasmid pAN7-1. Of 20 transformants screened from the selective medium, one transformant with the highest xylitol accumulation, designated ZY15, showed a distinct reduction (c. 52%) in XDH activity compared with the original strain Rut-C30. The results of Southern hybridization and PCR assay showed that the antisense expression cassette of xdh1 was integrated into the genome of T. reesei. The RT-PCR analysis proved that antisense RNA effectively inhibited XDH expression (c. 65%). Xylitol accumulation (2.37 mg ml(-1)) of ZY15 was five times higher than that (0.46 mg ml(-1)) of the original strain Rut-C30. CONCLUSIONS Strain ZY15 successfully downregulated XDH production and exhibited xylitol accumulation in xylose liquid medium. SIGNIFICANCE AND IMPACT OF THE STUDY This study contributed to the budding field of fungal genetics in two points. First, it confirmed that antisense RNA strategy could be used as a means of reducing gene expression in the filamentous fungus T. reesei. Secondly, it verified that the strategy appears most promising for creating novel filamentous fungi strains capable of accumulating intermediary metabolites.
Collapse
Affiliation(s)
- T H Wang
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China.
| | | | | | | | | |
Collapse
|
55
|
Böer E, Wartmann T, Schmidt S, Bode R, Gellissen G, Kunze G. Characterization of the AXDH gene and the encoded xylitol dehydrogenase from the dimorphic yeast Arxula adeninivorans. Antonie van Leeuwenhoek 2005; 87:233-43. [PMID: 15803389 DOI: 10.1007/s10482-004-3832-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 09/27/2004] [Indexed: 11/25/2022]
Abstract
The xylitol dehydrogenase-encoding Arxula adeninivorans AXDH gene was isolated and characterized. The gene includes a coding sequence of 1107 bp encoding a putative 368 amino acid protein of 40.3 kDa. The identity of the gene was confirmed by a high degree of homology of the derived amino acid sequence to that of xylitol dehydrogenases from different sources. The gene activity was regulated by carbon source. In media supplemented with xylitol, D-sorbitol and D-xylose induction of the AXDH gene and intracellular accumulation of the encoded xylitol dehydrogenase was observed. This activation pattern was confirmed by analysis of AXDH promoter-GFP gene fusions. The enzyme characteristics were analysed from isolates of native strains as well as from those of recombinant strains expressing the AXDH gene under control of the strong A. adeninivorans-derived TEF1 promoter. For both proteins, a molecular mass of ca. 80 kDa was determined corresponding to a dimeric structure, an optimum pH at 7.5 and a temperature optimum at 35 degrees C. The enzyme oxidizes polyols like xylitol and D-sorbitol whereas the reduction reaction is preferred when providing D-xylulose, D-ribulose and L-sorbose as substrates. Enzyme activity exclusively depends on NAD+ or NADH as coenzymes.
Collapse
Affiliation(s)
- Erik Böer
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstr. 3, D-06466 Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
56
|
Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchange resins for xylitol production. Process Biochem 2004. [DOI: 10.1016/j.procbio.2003.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
57
|
Klinner U, Schäfer B. Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol Rev 2004; 28:201-23. [PMID: 15109785 DOI: 10.1016/j.femsre.2003.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2003] [Revised: 08/20/2003] [Accepted: 10/02/2003] [Indexed: 11/16/2022] Open
Abstract
Targeted insertion mutagenesis is a main molecular tool of yeast science initially applied in Saccharomyces cerevisiae. The method was extended to fission yeast Schizosaccharomyces pombe and to "non-conventional" yeast species, which show specific properties of special interest to both basic and applied research. Consequently, the behaviour of such non-Saccharomyces yeasts is reviewed against the background of the knowledge of targeted insertion mutagenesis in S. cerevisiae. Data of homologous integration efficiencies obtained with circular, ends-in or ends-out vectors in several yeasts are compared. We follow details of targeted insertion mutagenesis in order to recognize possible rate-limiting steps. The route of the vector to the target and possible mechanisms of its integration into chromosomal genes are considered. Specific features of some yeast species are discussed. In addition, similar approaches based on homologous recombination that have been established for the mitochondrial genome of S. cerevisiae are described.
Collapse
Affiliation(s)
- U Klinner
- RWTH Aachen, Institut für Biologie IV (Mikrobiologie und Genetik), Worringer Weg, D-52056 Aachen, Germany.
| | | |
Collapse
|
58
|
|
59
|
Jeffries TW, Jin YS. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2003; 47:221-68. [PMID: 12876799 DOI: 10.1016/s0065-2164(00)47006-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanisms underlying ethanol and heat tolerance are complex. Many different genes are involved, and the exact basis is not fully understood. The integrity of cytoplasmic and mitochondrial membranes is critical to maintain proton gradients for metabolic energy and nutrient uptake. Heat and ethanol stress adversely affect membrane integrity. These factors are particularly detrimental to xylose-fermenting yeasts because they require oxygen for biosynthesis of essential cell membrane and nucleic acid constituents, and they depend on respiration for the generation of ATP. Physiological responses to ethanol and heat shock have been studied most extensively in S. cerevisiae. However, comparative biochemical studies with other organisms suggest that similar mechanisms will be important in xylose-fermenting yeasts. The composition of a cell's membrane lipids shifts with temperature, ethanol concentration, and stage of cultivation. Levels of unsaturated fatty acids and ergosterol increase in response to temperature and ethanol stress. Inositol is involved in phospholipid biosynthesis, and it can increase ethanol tolerance when provided as a supplement. Membrane integrity determines the cell's ability to maintain proton gradients for nutrient uptake. Plasma membrane ATPase generates the proton gradient, and the biochemical characteristics of this enzyme contribute to ethanol tolerance. Organisms with higher ethanol tolerance have ATPase activities with low pH optima and high affinity for ATP. Likewise, organisms with ATPase activities that resist ethanol inhibition also function better at high ethanol concentrations. ATPase consumes a significant fraction of the total cellular ATP, and under stress conditions when membrane gradients are compromised the activity of ATPase is regulated. In xylose-fermenting yeasts, the carbon source used for growth affects both ATPase activity and ethanol tolerance. Cells can adapt to heat and ethanol stress by synthesizing trehalose and heat-shock proteins, which stabilize and repair denatured proteins. The capacity of cells to produce trehalose and induce HSPs correlate with their thermotolerance. Both heat and ethanol increase the frequency of petite mutations and kill cells. This might be attributable to membrane effects, but it could also arise from oxidative damage. Cytoplasmic and mitochondrial superoxide dismutases can destroy oxidative radicals and thereby maintain cell viability. Improved knowledge of the mechanisms underlying ethanol and thermotolerance in S. cerevisiae should enable the genetic engineering of these traits in xylose-fermenting yeasts.
Collapse
Affiliation(s)
- T W Jeffries
- Institute for Microbial and Biochemical Technology, Forest Service, Forest Products Laboratory, United States Department of Agriculture, Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
60
|
Martı́nez EA, Silva SS, Almeida e Silva JB, Solenzal AI, Felipe MG. The influence of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolysate by C. guilliermondii. Process Biochem 2003. [DOI: 10.1016/s0032-9592(02)00244-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
61
|
Response surface methodology for xylitol production from sugarcane bagasse hemicellulosic hydrolyzate using controlled vacuum evaporation process variables. Process Biochem 2003. [DOI: 10.1016/s0032-9592(02)00290-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Nidetzky B, Helmer H, Klimacek M, Lunzer R, Mayer G. Characterization of recombinant xylitol dehydrogenase from Galactocandida mastotermitis expressed in Escherichia coli. Chem Biol Interact 2003; 143-144:533-42. [PMID: 12604239 DOI: 10.1016/s0009-2797(02)00215-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plasmid-encoded gene of xylitol dehydrogenase from the yeast Galactocandida mastotermitis was expressed in Escherichia coli at 25 degrees C. Recombinant enzyme was isolated in 70% yield using two steps of biomimetic affinity chromatography with the dye ligand Procion Red HE3B immobilized onto Sepharose 4B-CL. Similar to natural enzyme, recombinant xylitol dehydrogenase is a functional homotetramer with a stoichiometric content of catalytic zinc in each 37-kDa subunit. Though lacking bound Mg(2+) found in xylitol dehydrogenase isolated from yeast cell extracts, the recombinant enzyme is as active and stable as the native enzyme. Stereospecificity of enzymic hydrogen transfer from NADH has been determined by 1H-NMR and is 4-pro-R. A detailed steady-state kinetic analysis has been carried out for the enzymic reaction, polyol+NAD(+)<-->ketose+NADH+H(+), at pH 7.5 and 25 degrees C using xylitol and D-xylulose, the physiological polyol-ketose pair, as well as D-sorbitol and D-fructose. Primary deuterium kinetic isotope effects on steady-state kinetic parameters for oxidation of D-sorbitol and reduction of D-fructose have been measured at pH 7.5. Combined results of initial-rate analysis and isotope effect studies suggest that the enzyme utilizes a preferentially ordered kinetic mechanism in which NAD(+) binds before D-sorbitol and D-fructose is released before NADH. Dissociation of NADH appears to be the main rate-limiting step for D-sorbitol oxidation under substrate-saturated reaction conditions.
Collapse
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology, Graz University of Technology, Petersgasse 12/I, A-8010, Graz, Austria.
| | | | | | | | | |
Collapse
|
63
|
Ward OP, Singh A. Bioethanol technology: developments and perspectives. ADVANCES IN APPLIED MICROBIOLOGY 2003; 51:53-80. [PMID: 12236060 DOI: 10.1016/s0065-2164(02)51001-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Owen P Ward
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
64
|
Abstract
The aldo-keto reductases (AKR) are a superfamily of enzymes with diverse functions in the reduction of aldehydes and ketones. AKR enzymes are found in a wide range of microorganisms, and many open reading frames encoding related putative enzymes have been identified through genome sequencing projects. Established microbial members of the superfamily include the xylose reductases, 2,5-diketo-D-gluconic acid reductases and beta-keto ester reductases. The AKR enzymes share a common (alpha/beta)(8) structure, and conserved catalytic mechanism, although there is considerable variation in the substrate-binding pocket. The physiological function of many of these enzymes is unknown, but a variety of methods including gene disruptions, heterologous expression systems and expression profiling are being employed to deduce the roles of these enzymes in cell metabolism. Several microbial AKR are already being exploited in biotransformation reactions and there is potential for other novel members of this important superfamily to be identified, studied and utilized in this way.
Collapse
Affiliation(s)
- Elizabeth M Ellis
- Departments of Bioscience and Pharmaceutical Sciences, University of Strathclyde, 204 George Street, G1 1XW, Glasgow, UK.
| |
Collapse
|
65
|
Träff KL, Jönsson LJ, Hahn-Hägerdal B. Putative xylose and arabinose reductases inSaccharomyces cerevisiae. Yeast 2002; 19:1233-41. [PMID: 12271459 DOI: 10.1002/yea.913] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Saccharomyces cerevisiae mutants, in which open reading frames (ORFs) displaying similarity to the aldo-keto reductase GRE3 gene have been deleted, were investigated regarding their ability to utilize xylose and arabinose. Reduced xylitol formation from D-xylose in gre3 mutants of S. cerevisiae suggests that Gre3p is the major D-xylose-reducing enzyme in S. cerevisiae. Cell extracts from the gre3 deletion mutant showed no detectable xylose reductase activity. Decreased arabitol formation from L-arabinose indicates that Gre3p, Ypr1p and the protein encoded by YJR096w are the major arabinose reducers in S. cerevisiae. The ypr1 deletion mutant showed the lowest specific L-arabinose reductase activity in cell extracts, 3.5 mU/mg protein compared with 7.4 mU/mg protein for the parental strain with no deletions, and the lowest rate of arabitol formation in vivo. In another set of S. cerevisiae strains, the same ORFs were overexpressed. Increased xylose and arabinose reductase activity was observed in cell extracts for S. cerevisiae overexpressing the GRE3, YPR1 and YJR096w genes. These results, in combination with those obtained with the deletion mutants, suggest that Gre3p, Ypr1p and the protein encoded by YJR096w are capable of xylose and arabinose reduction in S. cerevisiae. Both the D-xylose reductase and the L-arabinose reductase activities exclusively used NADPH as co-factor.
Collapse
Affiliation(s)
- K L Träff
- Department of Applied Microbiology, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | | | | |
Collapse
|
66
|
Godoy De Andrade Rodrigues DC, Da Silva SS, Vitolo M. Influence of pH on the xylose reductase activity of Candida guilliermondii during fed-batch xylitol bioproduction. J Basic Microbiol 2002; 42:201-6. [PMID: 12111747 DOI: 10.1002/1521-4028(200206)42:3<201::aid-jobm201>3.0.co;2-#] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The influence of pH on the xylose reductase (XR) activity was studied. The fed-batch fermentation using exponential feeding rate was employed to produce xylitol. The feeding started when the xylose concentration in the fermenter reached 50 g/l and the pH was adjusted to 2.5, 4.0 or 6.0. The best results for XR activity (0.567 U/mg(protein)) and xylitol volumetric productivity (1.06 g/l.h) were achieved with pH 6.0.
Collapse
Affiliation(s)
- Denise Celeste Godoy De Andrade Rodrigues
- Dept. of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo - Av. Lineu Prestes, 580 bl.16. 05508-900, São Paulo, SP, Brasil
| | | | | |
Collapse
|
67
|
Carvalho W, Silva SS, Converti A, Vitolo M. Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol Bioeng 2002; 79:165-9. [PMID: 12115432 DOI: 10.1002/bit.10319] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Candida guilliermondii cells, immobilized in Ca-alginate beads, were used for batch xylitol production from concentrated sugarcane bagasse hydrolyzate. Maximum xylitol concentration (20.6 g/L), volumetric productivity (0.43 g/L. h), and yield (0.47 g/g) obtained after 48 h of fermentation were higher than similar immobilized-cell systems but lower than free-cell cultivation systems. Substrates, products, and biomass concentrations were used in material balances to study the ways in which the different carbon sources were utilized by the yeast cells under microaerobic conditions. The fraction of xylose consumed to produce xylitol reached a maximum value (0.70) after glucose and oxygen depletion while alternative metabolic routes were favored by sub-optimal conditions.
Collapse
Affiliation(s)
- Walter Carvalho
- Department of Biotechnology, Faculty of Chemical Engineering of Lorena, Rodovia Itajubá-Lorena, km 74.5, Lorena, S.P., Brazil, 12600-000
| | | | | | | |
Collapse
|
68
|
Converti A, Perego P, Domínguez JM, Silva SS. Effect of temperature on the microaerophilic metabolism of Pachysolen tannophilus. Enzyme Microb Technol 2001; 28:339-345. [PMID: 11240189 DOI: 10.1016/s0141-0229(00)00330-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Xylitol production by Pachysolen tannophilus from detoxified hemicellulose hydrolysate was investigated under microaerophilic conditions at temperature ranging from 20 to 40 degrees C. A carbon balance previously proposed to study the influence of pH was used in this work to evaluate the amounts of carbon source (xylose) utilised in competitive metabolic ways: reductive production of xylitol, ethanol fermentation and respiration. At pH = 5.5 more than 83% of xylose was reduced to xylitol at 25 < T < 30 degrees C, whereas respiration became the main process at low temperature (71.1% at 20 degrees C). At high temperature, on the other hand, all three processes took place at comparable rate, consuming at 40 degrees C nearly the same percentage of carbon source (33-35%). Finally, the maximum values of volumetric productivity calculated at variable temperature were used to estimate the main thermodynamic parameters of both xylitol production (Deltah* = 105.4 kJ mol(-1); Deltas* = -13.2 J mol(-1) K(-1)) and thermal deactivation (Deltah*(D) = 210.5 kJ mol(-1); Deltas*(D) = 3.63 J mol(-1) K(-1)).
Collapse
Affiliation(s)
- A Converti
- Dipartmento di Ingegneria Chimica e di Processo, Università di Genova, via Opera Pia 15, 16145, Genoa, Italy
| | | | | | | |
Collapse
|
69
|
Leitner C, Mayr P, Riva S, Volc J, Kulbe KD, Nidetzky B, Haltrich D. Enzymatic redox isomerization of 1,6-disaccharides by pyranose oxidase and NADH-dependent aldose reductase. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1381-1177(00)00037-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
70
|
Mahler G, Nudel C. Effect of magnesium ions on fermentative and respirative functions in Pichia stipitis under oxygen-restricted growth. Microbiol Res 2000; 155:31-5. [PMID: 10830897 DOI: 10.1016/s0944-5013(00)80019-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mg2+ level affected growth, xylitol and ethanol production by P. stipitis grown under microaerophilic conditions. Low Mg2+ level (1 mM) directed the C flux from ethanol to xylitol, with no effect on xylose consumption rate. The addition of pyrazole, an alcohol dehydrogenase (ADH) inhibitor, had the same effect, even in conditions of Mg2+ excess (4 mM), indicating a negative interaction between ADH and Mg2+ ions (p << 0.01). Cells grown either with pyrazole or Mg limitation increased their intracellular NADH concentration about 3 times, but displayed no significant differences in ADH specific activities (1,000 U/mg protein, +/- 10%). In contrast, no interaction was measured between Mg and antimycin A, excluding the possibility that Mg2+ limitation interferes with respiration.
Collapse
Affiliation(s)
- G Mahler
- Department of Industrial Microbiology and Biotechnology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | |
Collapse
|
71
|
Jeffries TW, Shi NQ. Genetic engineering for improved xylose fermentation by yeasts. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1999; 65:117-61. [PMID: 10533434 DOI: 10.1007/3-540-49194-5_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Xylose utilization is essential for the efficient conversion of lignocellulosic materials to fuels and chemicals. A few yeasts are known to ferment xylose directly to ethanol. However, the rates and yields need to be improved for commercialization. Xylose utilization is repressed by glucose which is usually present in lignocellulosic hydrolysates, so glucose regulation should be altered in order to maximize xylose conversion. Xylose utilization also requires low amounts of oxygen for optimal production. Respiration can reduce ethanol yields, so the role of oxygen must be better understood and respiration must be reduced in order to improve ethanol production. This paper reviews the central pathways for glucose and xylose metabolism, the principal respiratory pathways, the factors determining partitioning of pyruvate between respiration and fermentation, the known genetic mechanisms for glucose and oxygen regulation, and progress to date in improving xylose fermentations by yeasts.
Collapse
Affiliation(s)
- T W Jeffries
- USDA, Forest Service, Institute for Microbial and Biochemical Technology, Madison, WI 53705, USA
| | | |
Collapse
|
72
|
Richard P, Toivari MH, Penttilä M. Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett 1999; 457:135-8. [PMID: 10486580 DOI: 10.1016/s0014-5793(99)01016-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The open reading frame YLR070c of Saccharomyces cerevisiae has high sequence similarity to S. cerevisiae sorbitol dehydrogenase and to xylitol dehydrogenase of Pichia stipitis. Overexpression of this open reading frame in S. cerevisiae resulted in xylitol dehydrogenase activity. The enzyme is specific for NADH. The following Michaelis constants were estimated: D-xylulose, 1.1 mM; NADH, 240 microM (at pH 7.0); xylitol, 25 mM; NAD, 100 microM (at pH 9.0). Xylitol dehydrogenase activity with the same kinetic properties can also be induced by xylose in wild type S. cerevisiae cells.
Collapse
Affiliation(s)
- P Richard
- VTT Biotechnology and Food Research, Finland.
| | | | | |
Collapse
|
73
|
Nobre A, Lucas C, Leão C. Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl Environ Microbiol 1999; 65:3594-8. [PMID: 10427054 PMCID: PMC91539 DOI: 10.1128/aem.65.8.3594-3598.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1999] [Accepted: 05/20/1999] [Indexed: 11/20/2022] Open
Abstract
Debaryomyces hansenii is a yeast species that is known for its halotolerance. This organism has seldom been mentioned as a pentose consumer. In the present work, a strain of this species was investigated with respect to the utilization of pentoses and hexoses in mixtures and as single carbon sources. Growth parameters were calculated for batch aerobic cultures containing pentoses, hexoses, and mixtures of both types of sugars. Growth on pentoses was slower than growth on hexoses, but the values obtained for biomass yields were very similar with the two types of sugars. Furthermore, when mixtures of two sugars were used, a preference for one carbon source did not inhibit consumption of the other. Glucose and xylose were transported by cells grown on glucose via a specific low-affinity facilitated diffusion system. Cells derepressed by growth on xylose had two distinct high-affinity transport systems for glucose and xylose. The sensitivity of labeled glucose and xylose transport to dissipation of the transmembrane proton gradient by the protonophore carbonyl cyanide m-chlorophenylhydrazone allowed us to consider these transport systems as proton symports, although the cells displayed sugar-associated proton uptake exclusively in the presence of NaCl or KCl. When the V(max) values of transport systems for glucose and xylose were compared with glucose- and xylose-specific consumption rates during growth on either sugar, it appeared that transport did not limit the growth rate.
Collapse
Affiliation(s)
- A Nobre
- Departamento de Biologia, Centro de Ciências do Ambiente, Universidade do Minho, 4709 Braga Codex, Portugal
| | | | | |
Collapse
|
74
|
Tavares JM, Duarte LC, Amaral-Collaço M, GıÌrio FM. Phosphate limitation stress induces xylitol overproduction byDebaryomyces hansenii. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13420.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
75
|
Weierstall T, Hollenberg CP, Boles E. Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 1999; 31:871-83. [PMID: 10048030 DOI: 10.1046/j.1365-2958.1999.01224.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified and characterized three genes, SUT1, SUT2 and SUT3, that encode glucose transporters of the yeast Pichia stipitis. When expressed in a Saccharomyces cerevisiae hxt null mutant strain that is unable to take up monosaccharides, all three proteins restored growth on glucose. Sequencing of the genes revealed open reading frames coding for 553 amino acids in the case of SUT1, and for 550 amino acids in the case of SUT2 and of SUT3. The derived protein sequences are closely related to one another, and show distinct sequence similarities to the S. cerevisiae hexose transporter family and to monosaccharide transporters of other organisms. The Sut2 and Sut3 proteins are nearly identical and differ only in one amino acid. Determination of substrate specificities and kinetic parameters of the individual Sut proteins expressed in a S. cerevisiae hxt1-7 mutant revealed Sut1, Sut2 and Sut3 as glucose transporters with K(m) values in the millimolar range. The proteins were also able to transport xylose and other monosaccharides, but with a considerably lower affinity. In P. stipitis, transcription of SUT1 was strongly induced by glucose and was independent of the oxygen supply. In contrast, SUT2 and SUT3 were only expressed under aerobic conditions, but independent of the carbon source. Cells disrupted for the SUT1 gene did not show any obvious growth phenotype, however low-affinity glucose uptake was lost. Further investigations suggest that the Sut proteins constitute a subfamily of glucose transporters in P. stipitis, and that other and probably unrelated proteins exist additionally mediating high-affinity glucose and xylose uptake.
Collapse
Affiliation(s)
- T Weierstall
- Institut für Mikrobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | | | |
Collapse
|
76
|
Chandrakant P, Bisaria VS. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 1999; 18:295-331. [PMID: 9887507 DOI: 10.1080/0738-859891224185] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lignocellulosic materials containing cellulose, hemicellulose, and lignin as their main constituents are the most abundant renewable organic resource present on Earth. The conversion of both cellulose and hemicellulose for production of fuel ethanol is being studied intensively with a view to develop a technically and economically viable bioprocess. The fermentation of glucose, the main constituent of cellulose hydrolyzate, to ethanol can be carried out efficiently. On the other hand, although bioconversion of xylose, the main pentose sugar obtained on hydrolysis of hemicellulose, to ethanol presents a biochemical challenge, especially if it is present along with glucose, it needs to be fermented to make the biomass-to-ethanol process economical. A lot of attention therefore has been focussed on the utilization of both glucose and xylose to ethanol. Accordingly, while describing the advancements that have taken place to get xylose converted efficiently to ethanol by xylose-fermenting organisms, the review deals mainly with the strategies that have been put forward for bioconversion of both the sugars to achieve high ethanol concentration, yield, and productivity. The approaches, which include the use of (1) xylose-fermenting yeasts alone, (2) xylose isomerase enzyme as well as yeast, (3) immobilized enzymes and cells, and (4) sequential fermentation and co-culture process are described with respect to their underlying concepts and major limitations. Genetic improvements in the cultures have been made either to enlarge the range of substrate utilization or to channel metabolic intermediates specifically toward ethanol. These contributions represent real significant advancements in the field and have also been adequately dealt with from the point of view of their impact on utilization of both cellulose and hemicellulose sugars to ethanol.
Collapse
Affiliation(s)
- P Chandrakant
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | | |
Collapse
|
77
|
Silva SS, Felipe MG, Mancilha IM. Factors that affect the biosynthesis of xylitol by xylose-fermenting yeasts. A review. Appl Biochem Biotechnol 1998; 70-72:331-9. [PMID: 9627388 DOI: 10.1007/bf02920149] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xylitol is a sweetener with important technological properties like anticariogenicity, low caloric value, and negative dissolution heat. Because it can be used successfully in food formulations and pharmaceutical industries, its production is in great demand. Xylitol can be obtained by microbiological process, since many yeasts and filamentous fungi synthesize the xylose reductase enzyme, which catalyses the xylose reduction into xylitol as the first step in the xylose metabolism. The xylitol production by biotechnological means has several economic advantages in comparison with the conventional process based on the chemical reduction of xylose. The efficiency and the productivity of this fermentation chiefly depends upon the microorganism and the process conditions employed. In this mini-review, the most significant upstream parameters on xylitol production by biotechnological process are described.
Collapse
Affiliation(s)
- S S Silva
- Department of Biotechnology, Faculty of Chemical Engineering of Lorena, São Paulo, Brazil.
| | | | | |
Collapse
|
78
|
Abstract
The effect of redox potential on xylitol production by Candida parapsilosis was investigated. The redox potential was found to be useful for monitoring the dissolved oxygen (DO) level in culture media, especially when the DO level was low. An increase in the agitation speed in a 5 L fermentor resulted in an increased culture redox potential as well as enhanced cell growth. Production of xylitol was maximized at a redox potential of 100 mV. As the initial cell concentration increased from 8 g/L to 30 g/L, the volumetric productivity of xylitol increased from 1.38 g/L. h to 4.62 g/L. h. A two-stage xylitol production strategy was devised, with stage 1 involving rapid production of cells under well-aerated conditions, and stage 2 involving cultivation with reduced aeration such that the culture redox potential was 100 mV. Using this technique, a final xylitol concentration of 180 g/L was obtained from a culture medium totally containing 254.5 g/L xylose in a 3,000 L pilot scale fermentor after 77 h fermentation. The volumetric productivity of xylitol during the fermentation was 2.34 g/L. h.
Collapse
Affiliation(s)
- D K Oh
- Department of Food Science and Technology, Woosuk University, Cheonju 565-800, Korea.
| | | | | |
Collapse
|
79
|
On-line monitoring of monosaccharides and ethanol during a fermentation by microdialysis sampling, liquid chromatography and two amperometric biosensors. Chromatographia 1998. [DOI: 10.1007/bf02467486] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
80
|
|
81
|
Kern M, Nidetzky B, Kulbe KD, Haltrich D. Effect of nitrogen sources on the levels of aldose reductase and xylitol dehydrogenase activities in the xylose-fermenting yeast Candida tenuis. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0922-338x(97)86767-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
82
|
Abstract
Transport across the plasma membrane is the first, obligatory step of hexose utilization. In yeast cells the uptake of hexoses is mediated by a large family of related transporter proteins. In baker's yeast Saccharomyces cerevisiae the genes of 20 different hexose transporter-related proteins have been identified. Six of these transmembrane proteins mediate the metabolically relevant uptake of glucose, fructose and mannose for growth, two others catalyze the transport of only small amounts of these sugars, one protein is a galactose transporter but also able to transport glucose, two transporters act as glucose sensors, two others are involved in the pleiotropic drug resistance process, and the functions of the remaining hexose transporter-related proteins are not yet known. The catabolic hexose transporters exhibit different affinities for their substrates, and expression of their corresponding genes is controlled by the glucose sensors according to the availability of carbon sources. In contrast, milk yeast Kluyveromyces lactis contains only a few different hexose transporters. Genes of other monosaccharide transporter-related proteins have been found in fission yeast Schizosaccharomyces pombe and in the xylose-fermenting yeast Pichia stipitis. However, the molecular genetics of hexose transport in many other yeasts remains to be established. The further characterization of this multigene family of hexose transporters should help to elucidate the role of transport in yeast sugar metabolism.
Collapse
Affiliation(s)
- E Boles
- Institut für Mikrobiologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | |
Collapse
|
83
|
Kern M, Haltrich D, Nidetzky B, Kulbe KD. Induction of aldose reductase and xylitol dehydrogenase activities in Candida tenuis CBS 4435. FEMS Microbiol Lett 1997; 149:31-7. [PMID: 9103975 DOI: 10.1111/j.1574-6968.1997.tb10304.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study the ability of various sugars and sugar alcohols to induce aldose reductase (xylose reductase) and xylitol dehydrogenase (xylulose reductase) activities in the yeast Candida tenuis was investigated. Both enzyme activities were induced when the organism was grown on D-xylose or L-arabinose as well as on the structurally related sugars D-arabinose or D-lyxose. Mixtures of D-xylose with the more rapidly metabolizable sugar D-glucose resulted in a decrease in the levels of both enzymes formed. These results show that the utilization of D-xylose by C. tenuis is regulated by induction and catabolite repression. Furthermore, the different patterns of induction on distinct sugars suggest that the synthesis of both enzymes is not under coordinate control.
Collapse
Affiliation(s)
- M Kern
- Abteilung Biochemische Technologie, Universität für Bodenkultur Wien (BOKU), Vienna, Austria
| | | | | | | |
Collapse
|
84
|
|
85
|
Bothast RJ, Saha BC. Ethanol Production from Agricultural Biomass Substrates. ADVANCES IN APPLIED MICROBIOLOGY 1997. [DOI: 10.1016/s0065-2164(08)70464-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
86
|
Lynd LR. OVERVIEW AND EVALUATION OF FUEL ETHANOL FROM CELLULOSIC BIOMASS: Technology, Economics, the Environment, and Policy. ACTA ACUST UNITED AC 1996. [DOI: 10.1146/annurev.energy.21.1.403] [Citation(s) in RCA: 499] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lee R. Lynd
- Biochemical Engineering Program, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
87
|
Characterization of the Genetic System of the Xylose-Fermenting Yeast Pichia stipitis. Curr Microbiol 1996; 33:237-42. [PMID: 8824169 DOI: 10.1007/s002849900106] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High mutant frequencies indicated that the wild-type strains of Pichia stipitis are haploid. Sporulation ability of these clones pointed to a homothallic life cycle. Mating was induced by cultivation under nutritionally poor conditions on malt extract medium. Conjugation was followed immediately by sporulation. However, hybrids could be rescued by transferring the nascent zygotes to complete medium before meiosis had started. Under rich nutritional conditions, hybrids were mitotically stable and did not sporulate. The segregation pattern of auxotrophic markers of diploid zygotes indicated regular meiosis, although asci contained preferentially spore dyads.
Collapse
|
88
|
De Orellano MEE, De Ascheri AMP, De Tosetti MIS, Segovia R. An epimerasic activity on galactose induced by xylose inKluyveromyces sp. Appl Biochem Biotechnol 1996. [DOI: 10.1007/bf02788065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
89
|
|
90
|
Olsson L, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 1996. [DOI: 10.1016/0141-0229(95)00157-3] [Citation(s) in RCA: 498] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
91
|
|
92
|
Passoth V, Zimmermann M, Klinner U. Peculiarities of the regulation of fermentation and respiration in the crabtree-negative, xylose-fermenting yeast Pichia stipitis. Appl Biochem Biotechnol 1996; 57-58:201-12. [PMID: 8669897 DOI: 10.1007/bf02941701] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The respiration of Pichia stipitis was not repressed by either high concentrations of fermentable sugars or oxygen limitation. Fermentation was not induced by high sugar concentrations, but was inactivated by aerobic conditions. The activity of pyruvate dehydrogenase was constitutive. In contrast, pyruvate decarboxylase, alcohol dehydrogenase, and aldehyde dehydrogenase were induced by a reduction in the oxygen tension. It was demonstrated that in P. stipitis, the pyruvate decarboxylase is not induced by a signal from glycolysis. Contrary to Saccharomyces cerevisiae, the pyruvate decarboxylase was not inhibited by phosphate.
Collapse
Affiliation(s)
- V Passoth
- Institut für Biologie IV (Mikrobiologie), RWTH Aachen, Germany
| | | | | |
Collapse
|
93
|
Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichia stipitis. World J Microbiol Biotechnol 1995; 11:646-8. [DOI: 10.1007/bf00361008] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/1995] [Accepted: 06/21/1995] [Indexed: 11/27/2022]
|
94
|
|