51
|
Louvel J, Avoli M, Kurcewicz I, Pumain R. Extracellular free potassium during synchronous activity induced by 4-aminopyridine in the juvenile rat hippocampus. Neurosci Lett 1994; 167:97-100. [PMID: 7909934 DOI: 10.1016/0304-3940(94)91036-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Field potential recordings and measurements of the extracellular concentration of free K+ ([K+]o) were made in the stratum radiatum of the CA3 subfield of hippocampal slices that were obtained from 12- to 17-day-old rats. Spontaneous, synchronous field potentials were recorded in the presence of the convulsant drug 4-aminopyridine (4AP, 50 microM). They consisted of interictal- (duration = 0.2-1.2 s; rate of occurrence = 0.3-1.3 Hz) and ictal-like epileptiform discharges (8-40 s; 4-38.10(-3) Hz), as well as large amplitude, negative-going potentials that preceded the onset of the ictal-like event. Such a temporal correlation suggested that the negative-going potential might facilitate the onset of ictal-like activity. Interictal- and ictal-like discharges were abolished by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM), while the negative-going potential was selectively blocked by bicuculline methiodide (BMI, 10 microM). Hence it was presumably due to the activation of GABAA receptors. [K+]o increased up to 12.5 mM (7.9 +/- 2.7 mM, mean +/- S.D.) from a resting value of 3.25 mM during the BMI-sensitive potentials (which also corresponded to the onset of ictal-like events), and after a decline to approximately 5 mM it remained elevated throughout the ictal event. Small, transient increases in [K+]o (up to 3.7 mM) could be seen during each interictal-like event. Following blockade of interictal- and ictal-like discharges by CNQX increases in [K+]o (up to 11 mM; 7.3 +/- 2.1; half-width = 7.2 +/- 2.3 s) still accompanied the BMI-sensitive negative-going potentials.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Louvel
- Montreal Neurological Institute, McGill University, Que., Canada
| | | | | | | |
Collapse
|
52
|
Kreisman NR, Smith ML. Potassium-induced changes in excitability in the hippocampal CA1 region of immature and adult rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 76:67-73. [PMID: 8306432 DOI: 10.1016/0165-3806(93)90123-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Orthodromic and spontaneous population spike activity was measured in vitro in the CA1 region of rat hippocampal slices to determine maturational differences in excitability and susceptibility to K(+)-induced seizures. Several indices of excitability in the CA1 region changed in a non-monotonic fashion during maturation, in response to step-wise increases in bath [K+]. Slices from rats 18-22 days old, showed a greater probability of both spontaneous epileptiform activity and episodes of seizure-like activity followed by spreading depression, and more prolonged durations of evoked seizure-like events. Elevation of [K+] in the bathing medium increased these indices in a similar manner in older rats but not to the same degree as in 18- to 22-day-old rats. However, the threshold level of bath [K+] resulting in evoked bursts of population spikes was lower in adult and 28- to 32-day-old rats than in 18- to 22-day-old rats, suggesting that excitability is not uniformly greater at any given age. In 10- to 15-day-old rats, elevation of bath [K+] either produced persistent blockade of population responses, or increased the amplitude of the initial population spike, without producing bursts. Basal levels of [K+] in the interstitium of the slices corresponded to the various levels of [K+] placed in the bathing medium and there were no differences among age groups. Therefore, differences in basal [K+]o cannot account for the maturational changes in excitability and seizure activity. The period from 18-22 days of age in the rat is a useful focal point for investigating mechanisms underlying maturational changes in propensity to develop seizures.
Collapse
Affiliation(s)
- N R Kreisman
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112-2699
| | | |
Collapse
|
53
|
Syková E, Chvátal A. Extracellular ionic and volume changes: the role in glia-neuron interaction. J Chem Neuroanat 1993; 6:247-60. [PMID: 8104419 DOI: 10.1016/0891-0618(93)90046-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Activity-related changes in extracellular K+ concentration ([K+]e), pH (pHe) and extracellular volume were studied by means of ion-selective microelectrodes in the adult rat spinal cord in vivo and in neonatal rat spinal cords isolated from pups 3-14 days of age (P3-P14). Concomitantly with the ionic changes, the extracellular space (ECS) volume fraction (alpha), ECS tortuosity (lambda) and non-specific uptake (kappa'), three parameters affecting the diffusion of substances in nervous tissue, were studied in the rat spinal cord gray matter. In adult rats, repetitive electrical nerve stimulation (10-100 Hz) elicited increases in [K+]e of about 2.0-3.5 mM, followed by a post-stimulation K(+)-undershoot and triphasic alkaline-acid-alkaline changes in pHe with a dominating acid shift. The ECS volume in the adult rat occupies about 20% of the tissue, alpha = 0.20 +/- 0.003, lambda = 1.62 +/- 0.02 and kappa' = 4.6 +/- 0.4 x 10(-3) s-1 (n = 39). In contrast, in pups at P3-P6, the [K+]e increased by as much as 6.5 mM at a stimulation frequency of 10 Hz, i.e. K+ ceiling level was elevated, and there was a dominating alkaline shift. An increase in [K+]e as large as 1.3-2.5 mM accompanied by an alkaline shift was evoked by a single electrical stimulus. The K+ ceiling level and alkaline shifts decreased with age, while an acid shift, which was preceded by a small initial alkaline shift, appeared in the second postnatal week. In pups at P1-P2, the spinal cord was X-irradiated to block gliogenesis. The typical decrease in [K+]e ceiling level and the development of the acid shift in pHe at P10-P14 were blocked by X-irradiation. Concomitantly, continuous development of glial fibrillary acidic protein positive reaction was disrupted and densely stained astrocytes in gray matter at P10-P14 revealed astrogliosis. The alkaline, but not the acid, shift was blocked by Mg2+ and picrotoxin (10(-6) M). Acetazolamide enhanced the alkaline but blocked the acid shift. Furthermore, the acid shift was blocked, and the alkaline shift enhanced, by Ba2+, amiloride and SITS. Application of glutamate or gamma-aminobutyric acid evoked an alkaline shift in the pHe baseline at P3-P14 as well as after X-irradiation. The results suggest that the activity-related acid shifts in pHe are related to membrane transport processes in mature glia, while the alkaline shifts have a postsynaptic origin and are due to activation of ligand-gated ion channels.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Syková
- Laboratory of Cellular Neurophysiology, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|
54
|
Herreras O, Somjen GG. Analysis of potential shifts associated with recurrent spreading depression and prolonged unstable spreading depression induced by microdialysis of elevated K+ in hippocampus of anesthetized rats. Brain Res 1993; 610:283-94. [PMID: 8319090 DOI: 10.1016/0006-8993(93)91412-l] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The potential shifts (delta Vo) associated with spreading depression (SD) were analysed with the help of multiple extracellular recording and ion-selective microelectrodes in the CA1 region of the dorsal hippocampus of anesthetized rats. Recurrent waves of SD were induced by perfusing high K+ solution through microdialysis probes. SD-related delta Vo had a composite wave shape, consisting of an early, rapidly shifting part (phase I) followed by a slower shift to a second negative maximum (phase II). delta Vo shifts in stratum radiatum usually started earlier, always lasted longer and had larger amplitude than those recorded in stratum pyramidale. The delta Vo responses in stratum radiatum had an inverted saddle shape created by a transient relatively positive "hump" interposed between phases I and II. During this "hump", the potentials in the two layers transiently approached one another. During continuous high K+ dialysis, successive delta Vo waves episodes evolved according to a consistent pattern: while phase I remained unchanged, phase II increased in amplitude and duration with each episode. Eventually, a depressed state developed which lasted for many minutes, termed here prolonged unstable spreading depression. During phase I, delta Vo and extracellular K ([K+]o) changes were correlated. During phase II, [K+]o decreased even as delta Vo continued to increase. During SD, [Ca2+]o decreased to < 0.01 mM. During phases I and II, both [Ca2+]o and [Na+]o remained low. The recoveries of [Ca2+]o and [Na+]o had an initial fast and a later much slower phase and took several minutes longer than the recoveries of [K+]o and delta Vo. Depth profiles of delta Vo and delta [K+]o revealed strikingly steep gradients early and late during a wave; but voltage and ion gradients were not precisely correlated either in time or in space. We conclude that delta Vo of phases I and II are generated by different processes. Membrane ion currents cannot fully explain the delta Vo responses. The possible contributions by ion diffusion and by active ion transport are discussed. The extremely low level to which [Ca2+]o sinks during SD, and its two-phase recovery, indicate intracellular sequestration or binding of substantial amounts of Ca2+ ions. The residual deficit of [Ca2+]o following recovery of SP shifts may account for the persistent depression of synaptic transmission after repolarization of neurons.
Collapse
Affiliation(s)
- O Herreras
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
55
|
Wasterlain CG, Fujikawa DG, Penix L, Sankar R. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 1993; 34 Suppl 1:S37-53. [PMID: 8385002 DOI: 10.1111/j.1528-1157.1993.tb05905.x] [Citation(s) in RCA: 317] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human status epilepticus (SE) is consistently associated with cognitive problems, and with widespread neuronal necrosis in hippocampus and other brain regions. In animal models, convulsive SE causes extensive neuronal necrosis. Nonconvulsive SE in adult animals also leads to widespread neuronal necrosis in vulnerable regions, although lesions develop more slowly than they would in the presence of convulsions or anoxia. In very young rats, nonconvulsive normoxic SE spares hippocampal pyramidal cells, but other types of neurons may not show the same resistance, and inhibition of brain growth, DNA and protein synthesis, and of myelin formation and of synaptogenesis may lead to altered brain development. Lesions induced by SE may be epileptogenic by leading to misdirected regeneration. In SE, glutamate, aspartate, and acetylcholine play major roles as excitatory neurotransmitters, and GABA is the dominant inhibitory neurotransmitter. GABA metabolism in substantia nigra (SN) plays a key role in seizure arrest. When seizures stop, a major increase in GABA synthesis is seen in SN postictally. GABA synthesis in SN may fail in SE. Extrasynaptic factors may also play an important role in seizure spread and in maintaining SE. Glial immaturity, increased electronic coupling, and SN immaturity facilitate SE development in the immature brain. Major increases in cerebral blood flow (CBF) protect the brain in early SE, but CBF falls in late SE as blood pressure falters. At the same time, large increases in cerebral metabolic rate for glucose and oxygen continue throughout SE. Adenosine triphosphate (ATP) depletion and lactate accumulation are associated with hypermetabolic neuronal necrosis. Excitotoxic mechanisms mediated by both N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors open ionic channels permeable to calcium and play a major role in neuronal injury from SE. Hypoxia, systemic lactic acidosis, CO2 narcosis, hyperkalemia, hypoglycemia, shock, cardiac arrhythmias, pulmonary edema, acute renal tubular necrosis, high output failure, aspiration pneumonia, hyperpyrexia, blood leukocytosis and CSF pleocytosis are common and potentially serious complications of SE. Our improved understanding of the pathophysiology of brain damage in SE should lead to further improvement in treatment and outcome.
Collapse
Affiliation(s)
- C G Wasterlain
- Epilepsy Research Laboratory Veterans Affairs Medical Center, Sepulveda, CA 91343
| | | | | | | |
Collapse
|
56
|
Syková E, Jendelová P, Simonová Z, Chvátal A. K+ and pH homeostasis in the developing rat spinal cord is impaired by early postnatal X-irradiation. Brain Res 1992; 594:19-30. [PMID: 1467938 DOI: 10.1016/0006-8993(92)91025-a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activity-related transient changes in extracellular K+ concentration ([K+]e) and pH (pHe) were studied by means of ion-selective microelectrodes in neonatal rat spinal cords isolated from pups 2-14 days of age. Pups 1 to 2 days old were X-irradiated to impair gliogenesis and spinal cords were isolated 2-13 days postirradiation (PI). In 2- to 14-day-old pups PI stimulation produced ionic changes that were the same as those in 3- to 6-day-old control (non-irradiated) pups; e.g. the [K+]e increased by 4.03 +/- 0.24 mM (mean +/- S.E.M., n = 30) at a stimulation frequency of 10 Hz and this was accompanied by an alkaline shift of 0.048 +/- 0.004 pH units (mean +/- S.E.M., n = 32) pH units. By contrast, stimulation in non-irradiated 10- to 14-day-old pups produced smaller [K+]e changes, of 1.95 +/- 0.12 mM (mean +/- S.E.M., n = 30), and an acid shift of 0.035 +/- 0.003 pH units which was usually preceded by a scarcely discernible initial alkaline shift, as is also the case in adult rats. Our results show that the decrease in [K+]e ceiling level and the development of the acid shift in pHe are blocked by X-irradiation. Concomitantly, typical continuous development of GFAP-positive reaction was disrupted and densely stained astrocytes in gray matter of 10- to 14-day-old pups PI revealed astrogliosis. In control 3- to 6-day-old pups and in pups PI the stimulation-evoked alkaline, but not the acid, shift was blocked by Mg2+ and picrotoxin (10(-6) M). The acid shift was blocked, and the alkaline shift enhanced, by acetazolamide, Ba2+, amiloride and SITS. Application of GABA evoked an alkaline shift in the pHe baseline which was blocked by picrotoxin and in HEPES-buffered solution. By contrast, the stimulus-evoked alkaline shifts were enhanced in HEPES-buffered solutions. The results suggest a dual mechanism of the stimulus-evoked alkaline shifts. Firstly, the activation of GABA-gated anion (Cl-) channels induces a passive net efflux of bicarbonate, which may lead to a fall in neuronal intracellular pH and to a rise in the pHe. Secondly, bicarbonate independent alkaline shifts may arise from synaptic activity resulting in a flux of acid equivalents.
Collapse
Affiliation(s)
- E Syková
- Laboratory of Cellular Neurophysiology, Czechoslovak Academy of Sciences, Bulovka, Prague
| | | | | | | |
Collapse
|
57
|
Helekar SA, Noebels JL. A burst-dependent hippocampal excitability defect elicited by potassium at the developmental onset of spike-wave seizures in the Tottering mutant. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 65:205-10. [PMID: 1572065 DOI: 10.1016/0165-3806(92)90180-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hippocampal CA3 pyramidal neurons in the adult epileptic mutant mouse tottering (tg) show normal intrinsic membrane properties, yet fire abnormally prolonged paroxysmal depolarizing shifts (PDS) during in vitro exposure to elevated extracellular potassium solutions. Intracellular recordings in immature mutants reveal that this network burst abnormality is present during the developmental period that coincides with the onset of seizures in the mutant (19-20 postnatal days), and is significantly more pronounced at this age than at adulthood. These data are inconsistent with the hypothesis that the mutant PDS prolongation represents a secondary consequence of a prolonged history of repeated seizures and suggest that it may reflect a cellular epileptogenic phenotype more directly related to the primary neuropathological expression of the tg gene.
Collapse
Affiliation(s)
- S A Helekar
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
58
|
Hablitz JJ, Lee WL. NMDA receptor involvement in epileptogenesis in the immature neocortex. EPILEPSY RESEARCH. SUPPLEMENT 1992; 8:139-45. [PMID: 1329808 DOI: 10.1016/b978-0-444-89710-7.50023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J J Hablitz
- Department of Physiology and Biophysics, University of Alabama, Birmingham 35294
| | | |
Collapse
|
59
|
Abstract
Stimulation-evoked transient changes in extracellular potassium ([K+]e) and pH (pHe) were studied in the neonatal rat spinal cords isolated from 3-13-day-old pups. In unstimulated pups the [K+]e baseline was elevated and pHe was more acid than that in Ringer's solution (3.5 mM K+, pH 7.3-7.35). The [K+]e and pHe in 3-6-day-old pups was 3.91 +/- 0.12 mM and pHe 7.19 +/- 0.01, respectively, while in 10-13-day-old pups it was 4.35 +/- 0.15 mM and 7.11 +/- 0.01, respectively. The [K+]e changes evoked in the dorsal horn by a single electrical stimulus were as large as 1.5-2.5 mM. Such changes in [K+]e are evoked in the adult rat spinal cord with stimulation at a frequency of 10-30 Hz. The maximal changes of 2.1-6.5 mM were found at a stimulation frequency of 10 Hz in 3-6-day-old animals. In older animals the [K+]e changes progressively decreased. The poststimulation K(+)-undershoot was found after a single stimulus as well as after repetitive stimulation. In 3-8-day-old pups, the stimulation evoked an alkaline shift, which was followed by a smaller poststimulation acid shift when the stimulation was discontinued. In pups 3-4-days-old the stimulation evoked the greatest alkaline shifts, i.e., by as much as 0.05 pH units after a single pulse and by about 0.1 pH units during stimulation at a frequency of 10 Hz. In 5-8-day-old pups, the alkaline shift became smaller and the poststimulation acid shift increased.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Jendelová
- Laboratory of Neurohumoral Regulation, Czechoslovak Academy of Sciences, Prague
| | | |
Collapse
|
60
|
Anderson WW, Stasheff SF, Swartzwelder HS, Wilson WA. Regenerative, all-or-none electrographic seizures in the rat hippocampal slice in Mg-free and physiological medium. Brain Res 1990; 532:288-98. [PMID: 2282522 DOI: 10.1016/0006-8993(90)91771-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
All-or-none electrographic seizures (EGSs) were studied in hippocampal slices from young (21- to 38-day-old) rats in medium containing low (0 mM) or physiological (0.9 mM) levels of magnesium, with and without the GABAB agonist baclofen. Extracellular recording and stimulation were performed in stratum pyramidale and stratum radiatum of CA3, respectively. EGS activity was induced by exposure to low-Mg medium or by delivering repetitive stimulus trains in physiological Mg medium. After EGS activity had stabilized, the EGSs were tested for all-or-none behavior by varying the number of pulses in a train. An EGS was considered all-or-none if subthreshold stimulation produced no afterdischarge bursts, and if the EGS duration was largely independent of the number of suprathreshold stimulus pulses. According to this measure, EGSs in Mg-free + baclofen medium were all-or-none. EGSs evoked in physiological Mg medium were also all-or-none, although the threshold was higher, and the EGS duration lower, than in Mg-free medium. This all-or-none characteristic was observed whether the EGSs were induced by prior exposure to Mg-free medium or by repetitive stimulation, and in the presence and absence of baclofen. The all-or-none characteristic suggests that while the triggering mechanism for EGSs is strongly dependent on stimulus intensity, regenerative mechanisms--independent of stimulus intensity--are responsible for the maintenance of EGSs. EGSs are also terminated by mechanisms not dependent on stimulus intensity.
Collapse
Affiliation(s)
- W W Anderson
- Epilepsy Center, Veterans Administration Medical Center, Durham, NC 27705
| | | | | | | |
Collapse
|
61
|
Heinemann U, Albrecht D, Ficker E. Epileptogenicity and cellular currents in rat hippocampus during ontogenesis. J Basic Clin Physiol Pharmacol 1990; 1:49-56. [PMID: 1707664 DOI: 10.1515/jbcpp.1990.1.1-4.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- U Heinemann
- Institut für Neurophysiologie, Zentrum Physiologie und Pathophysiologie, Universität zu Köln, FRG
| | | | | |
Collapse
|
62
|
Albrecht D, Heinemann U. Low calcium-induced epileptiform activity in hippocampal slices from infant rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1989; 48:316-20. [PMID: 2776301 DOI: 10.1016/0165-3806(89)90085-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ca2+-free solutions evoke spontaneous epileptiform activity in area CA1 of hippocampal slices from adult and young rats at the age of 7/8, 14/15 and 23/24 days. Studies with combined Ca2+-selective and K+-selective microelectrodes showed that this epileptiform activity commenced at higher Ca2+ levels in young than in adult animals. Unlike in disinhibition seizures, [K+]o did not rise to abnormally high levels. We further found that Ca2+ washout curves from young animals were much faster than those from adult slices, suggesting that the extracellular space is wider in young animals than in adult ones.
Collapse
Affiliation(s)
- D Albrecht
- Institute of Neurophysiology, University of Cologne, Cologne, F.R.G
| | | |
Collapse
|
63
|
Hablitz JJ, Heinemann U. Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1989; 46:243-52. [PMID: 2720957 DOI: 10.1016/0165-3806(89)90288-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Local changes in extracellular ion concentrations were measured with ion-sensitive microelectrodes in slices of mature (greater than 40 days of age) or immature (16-30 days of age) rat neocortex maintained in vitro. Repetitive stimulation resulted in increases in extracellular potassium ([K+]o) to levels of 8.85 +/- 2.1 mM in slices from adult animals and 12.77 +/- 1.8 mM in slices from immature animals. During exposure to picrotoxin, maximum levels were 11.3 +/- 2.6 and 14.8 +/- 2.5 mM in the mature and immature groups, respectively. Picrotoxin (50 microM) induced spontaneous bursts of repetitive spiking, followed by a slow, negative field potential, associated with spreading depression (SD), in slices from immature animals. [K+]o levels increased to 10.2 +/- 3.9 mM during repetitive spike discharges and reached 30.3 +/- 18.5 mM during SDs. Variations in the size of the extracellular space (ES) were examined during SD. The ES was found to reversibly decrease by 39 +/- 4.5%. Clusters of repetitive spikes were associated with 0.1-0.2 mM decreases in [Ca2+]o, whereas 1.12 +/- 0.06 mM decreases were observed during SDs. Decreases in [Na+]o and [Cl-]o of 56 +/- 10 mM and 41 +/- 9 mM, respectively, were observed during SDs suggesting that a net transmembrane movement of water occurred during SDs. These results indicate that changes in [K+]o associated with epileptiform activity in the immature nervous system are quantitatively different from those observed in the mature brain. These large increases in [K+]o may contribute to the prolonged nature of epileptiform discharges in the developing nervous system.
Collapse
Affiliation(s)
- J J Hablitz
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
64
|
Sutor B, Hablitz JJ. Cholinergic modulation of epileptiform activity in the developing rat neocortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1989; 46:155-60. [PMID: 2706769 DOI: 10.1016/0165-3806(89)90153-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects of carbachol on picrotoxin-induced epileptiform activity and membrane properties of neurons in the developing rat neocortex were examined in an in vitro slice preparation. Intracellular recordings were obtained in layer II-III neurons of slices prepared from rats 9-21 days of age. Epileptiform activity in 9- to 14-day-olds consisted of a sharply rising, sustained (10-30 s) membrane depolarization with superimposed action potentials. Bath application of carbachol (5-50 microM) raised the threshold for evoking epileptiform activity but, when such responses were evoked, their underlying depolarizations were increased in amplitude. Orthodromic stimulation in slices from 15- to 21-day-old animals evoked a prolonged epileptiform burst response that triggered an episode of spreading depression (SD). Carbachol reduced epileptiform responses and suppressed the occurrence of SD. It did not significantly affect the resting membrane potential or the height of the action potential but decreased the rheobase current needed to evoke an action potential and increased the input resistance. All effects of carbachol were antagonized by atropine (1 microM). These results indicate that carbachol has both pre- and postsynaptic effects in the developing neocortex and can significantly modulate neuronal excitability in the immature nervous system.
Collapse
Affiliation(s)
- B Sutor
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|