51
|
Etgen AM, Acosta-Martinez M. Participation of growth factor signal transduction pathways in estradiol facilitation of female reproductive behavior. Endocrinology 2003; 144:3828-35. [PMID: 12933654 DOI: 10.1210/en.2003-0157] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estradiol (E(2)) regulates female reproductive behavior (lordosis) by acting on estrogen-sensitive neurons. We recently showed that E(2) facilitation of lordosis behavior requires concurrent activation of brain IGF-I receptors. The present study confirmed this finding and sought to identify the downstream signaling pathways involved in estrogen/IGF-I priming of lordosis. Intracerebroventricular infusions of a selective IGF-I receptor antagonist were administered to ovariectomized rats every 12 h beginning 1 h before the first of two daily E(2) injections. IGF-I receptor blockade partially inhibits lordosis if the antagonist is infused throughout the 2-d estrogen treatment period but not if it is administered only during the first or last 12 h of estrogen treatment. Because E(2) and IGF-I can activate phosphatidylinositol-3-kinase (PI3K) and MAPK, we infused agents that block PI3K and/or MAPK activity as described above. Both PI3K inhibitors (wortmannin and LY294002) and MAPK inhibitors (PD98059 and U0126) partially attenuate lordosis when administered during estrogen priming. None of these drugs modifies lordosis if they are infused only once, during the last 12 h of estrogen treatment. When both wortmannin and PD98059 are infused during E(2) priming, lordosis behavior is completely abolished. These data suggest that activation of both PI3K and MAPK by E(2) and IGF-I mediates hormonal facilitation of lordosis behavior.
Collapse
Affiliation(s)
- Anne M Etgen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
52
|
Ciana P, Ghisletti S, Mussi P, Eberini I, Vegeto E, Maggi A. Estrogen receptor alpha, a molecular switch converting transforming growth factor-alpha-mediated proliferation into differentiation in neuroblastoma cells. J Biol Chem 2003; 278:31737-44. [PMID: 12709435 DOI: 10.1074/jbc.m301525200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-alpha (TGF-alpha) is known to promote both proliferation and differentiation of neural cell progenitors. Using the human neuroblastoma cell line SK-N-BE that is induced to proliferate by TGF-alpha, we demonstrated that the expression of a single transcription factor, the estrogen receptor-alpha (ER alpha), can reroute the TGF-alpha mitogenic signaling toward a path leading to differentiation. With selected mutations in ER alpha and signal transducer and activator of transcription 3 (Stat3), we demonstrated that the blockade of TGF-alpha mitotic potential was not dependent on ER alpha DNA binding activity but required a transcriptionally active Stat3. In neuroblastoma cells, 17 beta-estradiol treatment induced a transient increase in the transcription of estrogen-responsive element-containing promoters including those regulating TGF-alpha and prothymosin alpha synthesis. Based on the data presented, we hypothesized that in the presence of prothymosin alpha, ER alpha activates its direct target genes and increases cell proliferation, whereas in the presence of high levels of TGF-alpha, ER alpha preferentially interacts with Stat3 and causes cell differentiation. Our results reveal a novel form of "end-product" regulation of an intracellular receptor that occurs through recruitment of membrane receptors and their signaling effector system. Cross-coupling between membrane and intracellular receptors has been described by several laboratories. This study proves the relevance of these interactions in cellular responses to growth factors.
Collapse
Affiliation(s)
- Paolo Ciana
- Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
53
|
Perez-Martin M, Azcoitia I, Trejo JL, Sierra A, Garcia-Segura LM. An antagonist of estrogen receptors blocks the induction of adult neurogenesis by insulin-like growth factor-I in the dentate gyrus of adult female rat. Eur J Neurosci 2003; 18:923-30. [PMID: 12925018 DOI: 10.1046/j.1460-9568.2003.02830.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interdependence between estradiol and insulin-like growth factor-I has been documented for different neural events, including neuronal differentiation, synaptic plasticity, neuroendocrine regulation and neuroprotection. In the present study we have assessed whether both factors interact in the regulation of neurogenesis in the adult rat dentate gyrus. Wistar albino female rats were bilaterally ovariectomized and treated with estradiol, insulin-like growth factor-I and/or the estrogen receptor antagonist ICI 182,780. Estradiol was administered in a subcutaneous silastic capsule. Insulin-like growth factor-I and ICI 182,780 were delivered in the lateral cerebral ventricle. Animals received six daily injections of 5-bromo-2-deoxyuridine and were killed 24 h after the last injection. The total number of 5-bromo-2-deoxyuridine-positive neurons was significantly increased in animals treated with insulin-like growth factor-I, compared with rats treated with vehicles, while rats treated with both insulin-like growth factor-I and estradiol showed a higher number of 5-bromo-2-deoxyuridine-positive neurons than rats treated with insulin-like growth factor-I or estradiol alone. The antiestrogen ICI 182,780 blocked the effect of insulin-like growth factor-I on the number of 5-bromo-2-deoxyuridine neurons with independence of whether the animals were treated or not with estradiol. These findings suggest that estrogen receptors are involved in the induction of adult neurogenesis by insulin-like growth factor-I in the dentate gyrus, and that estradiol and insulin-like growth factor-I have a cooperative interaction to promote neurogenesis. The interaction between insulin-like growth factor-I and estradiol may participate in changes in the rate of neurogenesis during different endocrine and physiological conditions, and may be related to the decline in neurogenesis with ageing.
Collapse
|
54
|
Mendez P, Azcoitia I, Garcia-Segura LM. Estrogen receptor alpha forms estrogen-dependent multimolecular complexes with insulin-like growth factor receptor and phosphatidylinositol 3-kinase in the adult rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:170-6. [PMID: 12670715 DOI: 10.1016/s0169-328x(03)00088-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Estradiol and insulin-like growth factor-I (IGF-I) have numerous functional interactions in the brain, including the regulation of neuroendocrine events, the control of reproductive behavior and the promotion of synaptic plasticity and neuronal survival. To explore the mechanisms involved in these interdependent actions of estradiol and IGF-I in the adult brain, the potential interactions of estrogen receptors with components of the IGF-I signaling system were assessed in this study. Systemic estradiol administration resulted in a transient immunocoprecipitation of the IGF-I receptor with the estrogen receptor alpha and in a transient increase in tyrosine phosphorylation of the IGF-I receptor in the hypothalamus of adult ovariectomized Wistar rats. Both effects were coincident in time, with a peak between 1 and 3 h after systemic estradiol administration. Three hours after estradiol treatment, there was an enhanced immunocoprecipitation of estrogen receptor alpha with p85 subunit of phosphatidylinositol 3-kinase, as well as an enhanced immunocoprecipitation of p85 with insulin receptor substrate-1. The interaction with the IGF-I receptor was specific for the alpha form of the estrogen receptor and was also induced by intracerebroventricular injection of IGF-I. These hormonal actions may be part of the mechanism by which estradiol activates IGF-I receptor signaling pathways in the brain and may explain the interdependence of estrogen receptors and the IGF-I receptor in synaptic plasticity, neuroprotection and other neural events.
Collapse
Affiliation(s)
- Pablo Mendez
- Instituto Cajal, C.S.I.C., Av. Dr. Arce 37, 28002, Madrid, Spain
| | | | | |
Collapse
|
55
|
Abstract
Over the past century, the average lifespan of women has increased from 50 to over 80 years, but the age of the menopause has remained fixed at 51 years. This "change of life" is marked by a dramatic and permanent decrease in circulating levels of ovarian estrogens. Therefore, more women will live a greater proportion of their lives in a chronic hypoestrogenic state. Ovarian steroid hormones are pleiotropic and have multiple, diverse, and possibly opposing actions in different contexts. In light of recent reports of the possible health risks of hormone replacement therapy (HRT) on several different physiological systems, the question of whether estrogens are protective or risk factors must be carefully re-evaluated.
Collapse
Affiliation(s)
- Phyllis M Wise
- Department of Neurobiology, Physiology, and Behavior, Division of Biological Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616-8536, USA.
| |
Collapse
|
56
|
Yang RC, Shih HC, Hsu HK, Chang HC, Hsu C. Estradiol enhances the neurotoxicity of glutamate in GT1-7 cells through an estrogen receptor-dependent mechanism. Neurotoxicology 2003; 24:65-73. [PMID: 12564383 DOI: 10.1016/s0161-813x(02)00108-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutamate plays an important role in neuroendocrine regulation of reproduction through acting on the N-methyl-D-asparate receptor (NMDAR) in the preoptic area (POA). However, a larger dose of glutamate is neurotoxic. Estradiol (E2) increases the responsiveness of neurons to glutamate through activation and/or expression of NMDAR. In order to investigate whether estradiol modulates the neurotoxic effect of glutamate on the neurons through estrogen receptor (ER), immortalized GT1-7 cells, which simultaneously express ER and NMDAR were used. Tamoxifen and ICI 182,780, ER antagonist, were used to investigate whether the ER is involved in the effect of estradiol on glutamate-induced neurotoxicity. MK-801, a NMDAR antagonist, was used to confirm the enhancement of NMDAR-mediated neurotoxicity by estradiol. Neurotoxicity was evaluated by cell viability and LDH efflux. Cell death was observed by flow cytometry and DNA fragmentation. The results showed that: (1) estradiol (10 nM, incubated for 3 days) significantly enhanced the glutamate-induced neuronal death; (2) the percentages of necrosis and apoptosis were elevated after glutamate treatment, and estradiol significantly enhanced the glutamate-induced cell death; (3) glutamate-induced DNA fragmentation was enhanced by E2-pretreatment; (4) the induction of cell death and increase of LDH efflux after glutamate treatment were also enhanced by E2-pretreatment; (5) both the tamoxifen and ICI 182,780 abolished the estradiol-enhanced NMDAR expression and neurotoxicity of glutamate; (6) higher dose of MK-801 (2 microM) was needed in E2-pretreated cells than in non-E2-pretreated group to block the glutamate-induced neurotoxicity. These results suggested that pretreatment of estradiol might enhance the expression of NMDAR and subsequent glutamate-induced neurotoxicity on the GT1-7 cells through an ER-dependent manner.
Collapse
Affiliation(s)
- Rei-Cheng Yang
- Department of Physiology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan, ROC
| | | | | | | | | |
Collapse
|
57
|
Cardona-Gómez GP, Mendez P, DonCarlos LL, Azcoitia I, Garcia-Segura LM. Interactions of estrogen and insulin-like growth factor-I in the brain: molecular mechanisms and functional implications. J Steroid Biochem Mol Biol 2002; 83:211-7. [PMID: 12650718 DOI: 10.1016/s0960-0760(02)00261-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the brain, as in other tissues, estradiol interacts with growth factors. One of the growth factors that is involved in the neural actions of estradiol is insulin-like growth factor-I (IGF-I). Estradiol and IGF-I cooperate in the central nervous system to regulate neuronal development, neural plasticity, neuroendocrine events and the response of neural tissue to injury. The precise molecular mechanisms involved in these interactions are still not well understood. In the central nervous system there is abundant co-expression of estrogen receptors (ERs) and IGF-I receptors (IGF-IRs) in the same cells. Furthermore, the expression of estrogen receptors and IGF-I receptors in the brain is cross-regulated. In addition, using specific antibodies for the phosphorylated forms of extracellular-signal regulated kinase (ERK) 1 and ERK2 and Akt/protein kinase B (Akt/PKB) it has been shown that estradiol affects IGF-I signaling pathways in the brain. Estradiol treatment results in a dose-dependent increase in the phosphorylation of ERK and Akt/PKB in the brain of adult ovariectomized rats. In addition, estradiol and IGF-I have a synergistic effects on the activation of Akt/PKB in the adult rat brain. These findings suggest that estrogen effects in the brain may be mediated in part by the activation of the signaling pathways of the IGF-I receptor.
Collapse
|
58
|
Carrer HF, Cambiasso MJ. Sexual differentiation of the brain: genes, estrogen, and neurotrophic factors. Cell Mol Neurobiol 2002; 22:479-500. [PMID: 12585676 DOI: 10.1023/a:1021825317546] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Based on evidence obtained during the past 50 years, the current hypothesis to explain the sexual dimorphism of structure and function in the brain of vertebrates maintains that these differences are produced by the epigenetic action of gonadal hormones. However, evidence has progressively accumulated suggesting that genetic mechanisms controlling sexual-specific neuronal characteristics precede, or occur in parallel with, hormonal effects. 1. In cultures of hypothalamic neurons taken from gestation day 16 (GD16) embryos, treatment of sexually segregated cultures with estradiol (E2) induces axon growth in neurons from male neurons, but not from female neurons. In these cultures treatment with E2 increased the levels of tyrosine kinase type B (TrkB) and insulin-like growth factor I (IGF-I) receptors in male but not in female neurons. This and other sex differences cannot be explained by differences in hormonal environment, because the donor embryos were obtained when gonadal secretion of steroids is just beginning, before the perinatal surge of testosterone that determines development of the male brain beginning at GD17/18. 2. The response to estrogen is contingent upon coculture with heterotopic glia (mostly astrocytes) from a target region (amygdala) harvested from same-sex fetuses at GD16, whereas in the presence of homotopic glia or in cultures without glia, E2 had no effect. It was concluded that the axogenic effect of E2 depends on interaction between neurons and glia from a target region and that neurons from fetal male donors appear to mature earlier than neurons from females, a differentiated response that takes place prior to divergent exposure to gonadal secretions. 3. The effects of target and nontarget glia-conditioned media (CM) on the E2-induced growth of neuronal processes of hypothalamic neurons obtained from sexually segregated fetal donors were also studied. Estrogen added to media conditioned by target glia modified the number of primary neurites and the growth of axons of hypothalamic neurons of males but not of females. 4. Neither the Type III steroidal receptor blocker tamoxifen nor Type I antiestrogen ICI 182,780 prevented the axogenic effects of the hormone. Estradiol made membrane-impermeable by conjugation to a protein of high molecular weight (E2-BSA) preserved its axogenic capacity, suggesting the possibility of a membrane effect responsible for the action of E2. 5. Western blot analysis of the tyrosine kinase type A (TrkA), type B (TrkB), type C (TrkC), and insulin-like growth factor (IGF-I R) receptors in extracts from homogenates of cultured hypothalamic neurons showed that in cultures of male-derived neurons grown with E2 and CM from target glia, the amounts of TrkB and IGF-I R increased notably. Densitometric quantification showed that these cultures had more TrkB than cultures with CM alone or E2 alone. On the contrary, in cultures of female-derived neurons, the presence of CM alone induced maximal levels of TrkB, which were not further increased by E2; female-derived neurons in all conditions did not contain IGF-I R. Levels of TrkC were not modified by any experimental condition in male- or female-derived cultures and Trk A was not found in the homogenates. These results are compared with similar data from other laboratories and integrated in a model for the confluent interaction of estrogen and neurotrophic factors released by glia that may contribute to the sexual differentiation of the brain.
Collapse
Affiliation(s)
- Hugo F Carrer
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Casilla de Correo 389, Córdoba 5000, Argentina.
| | | |
Collapse
|
59
|
Cardona-Gomez GP, Mendez P, Garcia-Segura LM. Synergistic interaction of estradiol and insulin-like growth factor-I in the activation of PI3K/Akt signaling in the adult rat hypothalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 107:80-8. [PMID: 12414126 DOI: 10.1016/s0169-328x(02)00449-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Estradiol and insulin-like growth factor-I (IGF-I) interact in the hypothalamus to regulate neuronal function, synaptic plasticity and neuroendocrine events. However, the molecular mechanisms involved in these interactions are still unknown. In the present study, the effect of estradiol on the signaling pathways of IGF-I receptor has been assessed in the hypothalamus of young adult ovariectomized rats, using specific antibodies for the phosphorylated forms of extracellular-signal regulated kinase (ERK) 1 and ERK2 and Akt/protein kinase B (Akt/PKB). Estradiol treatment resulted, between 6 and 24 h after systemic administration, in dose-dependent effects on the phosphorylation of ERK and Akt/PKB. Estradiol did not modify the level of ERK phosphorylation induced by intracerebroventricular administration of IGF-I. However, both hormones had a synergistic effect on the phosphorylation of Akt/PKB. These findings suggest that estrogen effects in the hypothalamus may be mediated in part by the activation of the signaling pathways of the IGF-I receptor.
Collapse
|
60
|
Isgor C, Huang GC, Akil H, Watson SJ. Correlation of estrogen beta-receptor messenger RNA with endogenous levels of plasma estradiol and progesterone in the female rat hypothalamus, the bed nucleus of stria terminalis and the medial amygdala. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 106:30-41. [PMID: 12393262 DOI: 10.1016/s0169-328x(02)00407-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Estrogen receptor beta (ERbeta) has been previously mapped in the rat central nervous system. This study aims to explore the regulation of ERbeta mRNA as it is expressed in the intact and cycling female rat brain. Young adult female rats (90+ day, N=20) were screened for estrous phases via vaginal cytology and sacrificed. Brains and blood were collected and processed for in situ hybridization and estradiol (E2) and progesterone (P4) hormone assays, respectively. ERbeta mRNA levels exhibited significant correlations with ovarian steroid ratios (E2/P4) in various brain regions, including the bed nucleus of stria terminalis, the medial nucleus of amygdala, and the anteroventral periventricular nuclei but not the paraventricular and the supraoptic nuclei or the preoptic area of the hypothalamus. No regulatory changes were detected in the cortex. Specifically, in the affected regions, higher P4 levels were significantly correlated with higher ERbeta mRNA expression. In contrast, there was a tendency for higher E2 levels to be correlated with lower ERbeta mRNA expression, but this tendency reached significance only in the bed nucleus of stria terminalis. These results suggest that ERbeta mRNA is regulated in the intact and cycling female rat hypothalamic as well as extrahypothalamic brain regions, and the circulating ovarian hormones play a critical role.
Collapse
Affiliation(s)
- Ceylan Isgor
- Mental Health Research Institute, The University of Michigan School of Medicine, Ann Arbor 48109-0720, USA.
| | | | | | | |
Collapse
|
61
|
Avola R, Cormaci G, Mazzone V, Denaro L, Mignini F, Tomassoni D, Zaccheo D. Effect of growth factors on DNA labeling and cytoskeletal protein expression in 17-beta-estradiol and basic fibroblast growth factor pre-treated astrocyte cultures. Clin Exp Hypertens 2002; 24:753-67. [PMID: 12450249 DOI: 10.1081/ceh-120015350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Astrocytes react to all noxae which damage neurons. Their reactions include degeneration, hypertrophy, hyperplasia and fibre formation. Growth factors inducing proliferation and differentiation of both neurons and astrocytes in culture play a pivotal role in the dynamic flow of signaling molecules between neurons and astroglia. Estrogens as well influence astroglia and are neuroprotectants. This study has investigated the interactions between growth factors and estrogens on DNA labeling and cytoskeletal protein [glial fibrillary acidic protein (GFAP) and vimentin] expression in 22 DIV astrocyte cultures treated for 24 or 36 h under different experimental conditions. Contemporary addition of 17-beta-estradiol (E2) with two or three growth factors for 24 h, significantly stimulated methyl-[3H]thymidine incorporation into DNA from 22 days in vitro (DIV) astrocyte cultures. This effect reached a peak when E2 was co-added with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and insulin. In astrocyte cultures treated for 36 h with E2 and EGF + insulin or bFGF + insulin added in the last 12 h, DNA labeling was remarkably increased. The parallel cyclin Dl expression positively correlated with ERK2 activation. Western blot analysis for cytoskeletal proteins showed also changes of both GFAP and vimentin expression. The above data suggest the occurrence of a scheduled interaction between "competence" or "progression" growth factors and estrogens on DNA labeling and cytoskeletal protein expression during astroglial cell proliferation and differentiation in culture. A better understanding of the mechanisms of these interactions may contribute to develop strategies for controlling astroglial reaction in cerebrovascular disease including stroke and hypertensive brain damage.
Collapse
Affiliation(s)
- Roberto Avola
- Department of Chemical Sciences, Section of Biochemistry and Molecular Biology, University of Catania, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
62
|
Melcangi RC, Martini L, Galbiati M. Growth factors and steroid hormones: a complex interplay in the hypothalamic control of reproductive functions. Prog Neurobiol 2002; 67:421-49. [PMID: 12385863 DOI: 10.1016/s0301-0082(02)00060-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms through which LHRH-secreting neurons are controlled still represent a crucial and debated field of research in the neuroendocrine control of reproduction. In the present review, we have specifically considered two potential signals reaching these hypothalamic neurons: steroid hormones and growth factors. Examples of the relevant physiological role of the interactions between these two families of biologically acting molecules have been provided. In many cases, these interactions occur at the level of hypothalamic astrocytes, which are presently accepted as functional partners of the LHRH-secreting neurons. On the basis of the observations here summarized, we have formulated the hypothesis that a functional co-operation of steroid hormones and growth factors occurring in the hypothalamic astrocytic compartment represents a key factor in the neuroendocrine control of reproductive functions.
Collapse
Affiliation(s)
- Roberto C Melcangi
- Department of Endocrinology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | | | | |
Collapse
|
63
|
Palomo T, Archer T, Beninger RJ, Kostrzewa RM. Neurodevelopmental liabilities of substance abuse. Neurotox Res 2002; 4:267-79. [PMID: 12829418 DOI: 10.1080/1029842021000010857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The perinate is particularly risk-prone to chemical species which have the potential of inducing neuronal apoptosis or necrosis and thereby adversely altering development of the brain, to produce life-long functional and behavioral deficits. This paper is an overview for many substances of abuse, but the purview is much more broadened by the realization that even elevated levels of estrogens and corticosteroids in the pregnant mother can act as neuroteratogens, by passing via the placenta and altering neural development or inducing apoptosis in the perinate. Finally, therapeutic risks of anesthetics are highlighted, as these too induce neuronal apoptosis in the neonate by either blocking N-methyl-D-aspartate receptors or by acting as gamma-aminobutyric acid agonists. By understanding the mechanisms involved it may ultimately be possible to interrupt the mechanistic scheme and thereby prevent neuroteratological processes.
Collapse
Affiliation(s)
- Tomas Palomo
- Servicio de Psiquiatria, Hospital 12 de Octobre, Ctra. Andalucia Km. 5,400, 28041 Madrid, Spain.
| | | | | | | |
Collapse
|
64
|
Abstract
Accumulated clinical and basic evidence suggests that gonadal steroids affect the onset and progression of several neurodegenerative diseases and schizophrenia, and the recovery from traumatic neurological injury such as stroke. Thus, our view on gonadal hormones in neural function must be broadened to include not only their function in neuroendocrine regulation and reproductive behaviors, but also to include a direct participation in response to degenerative disease or injury. Recent findings indicate that the brain up-regulates both estrogen synthesis and estrogen receptor expression at sites of injury. Genetic or pharmacological inactivation of aromatase, the enzyme involved in estrogen synthesis, indicates that the induction of this enzyme in the brain after injury has a neuroprotective role. Some of the mechanisms underlying the neuroprotective effects of estrogen may be independent of the classically defined nuclear estrogen receptors (ERs). Other neuroprotective effects of estrogen do depend on the classical nuclear ERs, through which estrogen alters expression of estrogen responsive genes that play a role in apoptosis, axonal regeneration, or general trophic support. Yet another possibility is that non-classical ERs in the membrane or cytoplasm alter phosphorylation cascades, such as those involved in the signaling of insulin-like growth factor-1 (IGF-1). Indeed, ERs and IGF-1 receptor interact in the activation of PI3K and MAPK signaling cascades and in the promotion of neuroprotection. The decrease in estrogen and IGF-1 levels with aging may thus result in an increased risk for neuronal pathological alterations after different forms of brain injury.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Departamento de Biologia Celular, Facultad de Biologia, Universidad Complutense, E-28040 Madrid, Spain.
| | | | | |
Collapse
|
65
|
Functional interactions between estrogen and insulin-like growth factor-I in the regulation of alpha 1B-adrenoceptors and female reproductive function. J Neurosci 2002. [PMID: 11896179 DOI: 10.1523/jneurosci.22-06-02401.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ovarian hormone estradiol (E(2)) and insulin-like growth factor-I (IGF-I) interact in the CNS to regulate neuroendocrine function and synaptic remodeling. Previously, our laboratory showed that 2 d E(2) treatment induces alpha(1B)-adrenoceptor expression and promotes IGF-I enhancement of alpha(1)-adrenoceptor potentiation of cAMP accumulation in the preoptic area (POA) and hypothalamus (HYP). This study examined the hypothesis that E(2)-dependent aspects of female reproductive function, including alpha(1B)-adrenoceptor expression and function in the POA and HYP, are mediated by brain IGF-I receptors (IGF-IRs) in female rats. Ovariohysterectomized rats were implanted with a guide cannula aimed at the third ventricle and treated in vivo with vehicle or E(2) daily for 2 d before experimentation. Intracerebroventricular infusions of JB-1, a selective IGF-IR antagonist, were administered every 12 hr beginning 1 hr before the first E(2) injection. Administration of JB-1 during E(2) priming completely blocks hormone-induced luteinizing hormone release and partially inhibits hormone-dependent reproductive behavior. Reproductive behavior is restored by intracerebroventricular infusion of 8-bromo-cGMP, the second messenger implicated in alpha(1)-adrenergic facilitation of lordosis. In addition, blockade of IGF-IRs during E(2) priming prevents E(2)-induced increases in alpha(1B)-adenoceptor binding density and abolishes acute IGF-I enhancement of NE-stimulated cAMP accumulation in HYP and POA slices. These data document the existence of a novel mechanism by which IGF-I participates in the remodeling of noradrenergic receptor signaling in the HYP and POA after E(2) treatment. These events may help coordinate the timing of ovulation with the expression of sexual receptivity.
Collapse
|
66
|
Cardona-Gómez GP, Mendez P, DonCarlos LL, Azcoitia I, Garcia-Segura LM. Interactions of estrogens and insulin-like growth factor-I in the brain: implications for neuroprotection. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:320-34. [PMID: 11744097 DOI: 10.1016/s0165-0173(01)00137-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Data from epidemiological studies suggest that the decline in estrogen following menopause could increase the risk of neurodegenerative diseases. Furthermore, experimental studies on different animal models have shown that estrogen is neuroprotective. The mechanisms involved in the neuroprotective effects of estrogen are still unclear. Anti-oxidant effects, activation of different membrane-associated intracellular signaling pathways, and activation of classical nuclear estrogen receptors (ERs) could contribute to neuroprotection. Interactions with neurotrophins and other growth factors may also be important for the neuroprotective effects of estradiol. In this review we focus on the interaction between insulin-like growth factor-I (IGF-I) and estrogen signaling in the brain and on the implications of this interaction for neuroprotection. During the development of the nervous system, IGF-I promotes the differentiation and survival of specific neuronal populations. In the adult brain, IGF-I is a neuromodulator, regulates synaptic plasticity, is involved in the response of neural tissue to injury and protects neurons against different neurodegenerative stimuli. As an endocrine signal, IGF-I represents a link between the growth and reproductive axes and the interaction between estradiol and IGF-I is of particular physiological relevance for the regulation of growth, sexual maturation and adult neuroendocrine function. There are several potential points of convergence between estradiol and IGF-I receptor (IGF-IR) signaling in the brain. Estrogen activates the mitogen-activated protein kinase (MAPK) pathway and has a synergistic effect with IGF-I on the activation of Akt, a kinase downstream of phosphoinositol-3 kinase. In addition, IGF-IR is necessary for the estradiol induced expression of the anti-apoptotic molecule Bcl-2 in hypothalamic neurons. The interaction of ERs and IGF-IR in the brain may depend on interactions between neural cells expressing ERs with neural cells expressing IGF-IR, or on direct interactions of the signaling pathways of alpha and beta ERs and IGF-IR in the same cell, since most neurons expressing IGF-IR also express at least one of the ER subtypes. In addition, studies on adult ovariectomized rats given intracerebroventricular (i.c.v.) infusions with antagonists for ERs or IGF-IR or with IGF-I have shown that there is a cross-regulation of the expression of ERs and IGF-IR in the brain. The interaction of estradiol and IGF-I and their receptors may be involved in different neural events. In the developing brain, ERs and IGF-IR are interdependent in the promotion of neuronal differentiation. In the adult, ERs and IGF-IR interact in the induction of synaptic plasticity. Furthermore, both in vitro and in vivo studies have shown that there is an interaction between ERs and IGF-IR in the promotion of neuronal survival and in the response of neural tissue to injury, suggesting that a parallel activation or co-activation of ERs and IGF-IR mediates neuroprotection.
Collapse
Affiliation(s)
- G P Cardona-Gómez
- Instituto Cajal, C.S.I.C., Avenida Doctor Arce 37, E-28002, Madrid, Spain
| | | | | | | | | |
Collapse
|
67
|
Ivanova T, Küppers E, Engele J, Beyer C. Estrogen stimulates brain-derived neurotrophic factor expression in embryonic mouse midbrain neurons through a membrane-mediated and calcium-dependent mechanism. J Neurosci Res 2001; 66:221-30. [PMID: 11592117 DOI: 10.1002/jnr.1214] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have provided evidence that 17beta-estradiol (E) synthesized in the midbrain promotes the differentiation of midbrain dopamine neurons through nonclassical steroid action. Because these developmental effects resemble those reported for brain-derived neurotrophic factor (BDNF), we hypothesized that E influences dopaminergic cell differentiation through a BDNF-dependent mechanism. Competitive RT-PCR and ELISA techniques were employed to study first the developmental pattern of BDNF and trkB expression in the mouse midbrain. BDNF protein/mRNA levels peaked postnatally, whereas trkB did not fluctuate perinatally. To prove the hypothesis that E regulates BDNF expression in vivo, fetuses and newborns were treated with the aromatase antagonist CGS 16949A. CGS 16949A exposure reduced midbrain BDNF mRNA/protein levels. The coapplication of CGS 16949A and E abolished this effect. Midbrain cultures from mouse fetuses were used to investigate intracellular signaling mechanisms involved in transmitting E effects. Estrogen increased expression of BDNF but not of other neurotrophins. As concerns the related signaling mechanism, these effects were antagonized by interrupting intracellular Ca(2+) signaling with BAPTA and thapsigargin but not by the estrogen receptor antagonist ICI 182,780. Insofar as E effects on BDNF mRNA expression were inhibited by cycloheximide, it appears likely that other, not yet characterized intermediate proteins take part in the estrogenic regulation of BDNF expression. We conclude that E exerts its stimulatory effect on the differentiation of dopaminergic neurons by coordinating BDNF expression. This particular E effect appears to be transmitted through Ca(2+)-dependent signaling cascades upon activation of putative membrane estrogen receptors.
Collapse
Affiliation(s)
- T Ivanova
- Abteilung Anatomie und Zellbiologie, Universität Ulm, 89069 Ulm, Germany
| | | | | | | |
Collapse
|
68
|
Venters HD, Broussard SR, Zhou JH, Bluthé RM, Freund GG, Johnson RW, Dantzer R, Kelley KW. Tumor necrosis factor(alpha) and insulin-like growth factor-I in the brain: is the whole greater than the sum of its parts? J Neuroimmunol 2001; 119:151-65. [PMID: 11585617 DOI: 10.1016/s0165-5728(01)00388-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cytokine tumor necrosis factor(alpha) (TNFalpha) and the hormone insulin-like growth factor-I (IGF-I) have both been shown to regulate inflammatory events in the central nervous system (CNS). This review summarizes the seemingly independent roles of TNFalpha and IGF-I in promoting and inhibiting neurodegenerative diseases. We then offer evidence that the combined effects of IGF-I and TNFalpha on neuronal survival can be vastly different when both receptors are stimulated simultaneously, as is likely to occur in vivo. We propose the framework of a molecular model of hormone-cytokine receptor cross talk in which disparate cell surface receptors share intracellular substrates that regulate neuronal survival.
Collapse
Affiliation(s)
- H D Venters
- Laboratory of Immunophysiology, Department of Animal Sciences, College of Medicine, University of Illinois, 207 Edward R. Madigan Laboratory, 1207 West Gregory Drive, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Azcoitia I, Garcia-Ovejero D, Chowen JA, Garcia-Segura LM. Astroglia play a key role in the neuroprotective actions of estrogen. PROGRESS IN BRAIN RESEARCH 2001; 132:469-78. [PMID: 11545012 DOI: 10.1016/s0079-6123(01)32096-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- I Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain.
| | | | | | | |
Collapse
|
70
|
Abstract
Although central and peripheral factors have been implicated in the neuromodulation of GnRH in PCOS, there are no definitive or conclusive data to establish a primary causal role for any one factor. Because increased GnRH pulse frequency is at least a contributor to the secretion of excess LH and insufficient FSH that are the proximate cause of chronic anovulation in PCOS, strategies to slow the GnRH pulse generator are likely to promote ovulation in women with PCOS. Several pharmacologic agents, such as dopamine agonists and antagonists, have been tried, but the lack of consistent effects in women with PCOS limits their clinical utility. Current treatment strategies include the use of the combined oral contraceptive pills, antiandrogens or androgen receptor blockers, and insulin sensitizers. Oral contraceptive preparations are effective in suppressing ovarian hyperandrogenemia, regulating menstrual cycles, and reducing the risk of endometrial hyperplasia. Androgen blockade and antiandrogens provide symptomatic relief from androgen-induced acne and hirsutism and have been reported to restore ovulation in women with PCOS. Whether this effect is mediated peripherally or centrally remains to be clarified. The most recent class of pharmacologic agents to gain popularity are the "insulin modifiers." With increasing evidence that insulin resistance constitutes a key metabolic element, it seems logical that improving insulin sensitivity and glucose disposal might wholly, or partially, reverse certain features of PCOS, including anovulation. To date, insulin modifiers have proved most promising in improving the clinical features and promoting fertility, but whether this effect is centrally mediated is yet to be elucidated.
Collapse
Affiliation(s)
- B N Kalro
- Departments of Obstetrics, Gynecology, and Reproductive Services, Magee-Womens Hospital, University of Pittsburgh School of Medicine, USA
| | | | | |
Collapse
|
71
|
Cardona-Gómez GP, DonCarlos L, Garcia-Segura LM. Insulin-like growth factor I receptors and estrogen receptors colocalize in female rat brain. Neuroscience 2001; 99:751-60. [PMID: 10974438 DOI: 10.1016/s0306-4522(00)00228-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several findings indicate that there is a close interaction between estrogen and insulin-like growth factor I in different brain regions. In adult brain, both estrogen and insulin-like growth factor I have co-ordinated effects in the regulation of neuroendocrine events, synaptic plasticity and neural response to injury. In this study we have qualitatively assessed whether estrogen receptors and insulin-like growth factor I receptor are colocalized in the same cells in the preoptic area, hypothalamus, hippocampus, cerebral cortex and cerebellum of female rat brain using confocal microscopy. Immunoreactivity for estrogen receptors alpha and beta was colocalized with immunoreactivity for insulin-like growth factor I receptor in many neurons from the preoptic area, hypothalamus, hippocampus and cerebral cortex. Furthermore, estrogen receptor beta and insulin-like growth factor I receptor immunoreactivities were colocalized in the Purkinje cells of the cerebellum. Colocalization of estrogen receptor beta and insulin-like growth factor I receptor was also detected in cells with the morphology of astrocytes in all regions assessed. The co-expression of estrogen receptors and insulin-like growth factor I receptor in the same neurons may allow a cross-coupling of their signaling pathways. Furthermore, the colocalization of immunoreactivity for estrogen receptor beta and insulin-like growth factor I receptor in glial cells suggests that glia may also play a role in the interactions of insulin-like growth factor I and estrogen in the rat brain. In conclusion, the co-expression of estrogen receptors and insulin-like growth factor I receptors in the same neural cells suggests that the co-ordinated actions of estrogen and insulin-like growth factor I in the brain may be integrated at the cellular level.
Collapse
|
72
|
Suzuki M, Yonezawa T, Fujioka H, Matuamuro M, Nishihara M. Induction of granulin precursor gene expression by estrogen treatment in neonatal rat hypothalamus. Neurosci Lett 2001; 297:199-202. [PMID: 11137762 DOI: 10.1016/s0304-3940(00)01699-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our previous research has demonstrated that androgen treatment during the perinatal period increases granulin (grn) precursor mRNA levels in the neonatal rat hypothalamus. To elucidate whether exogenous estrogen increases grn mRNA in the neonatal hypothalami, expression of grn gene in the neonatal hypothalamus was studied by the competitive reverse transcription-polymerase chain reaction method. At 6 and 10 days of age, grn gene expression was significantly increased in the hypothalamus of pups whose dam has been dietarily administrated ethinyl estradiol from day 15 of gestation to the day of sampling. The subcutaneous injection of estradiol benzoate to neonatal rats at 2 days of age significantly increased grn gene expression on day 10. It was shown that estrogen, as well as androgen, was able to induce grn gene expression in the neonatal hypothalamus.
Collapse
Affiliation(s)
- M Suzuki
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657, Tokyo, Japan
| | | | | | | | | |
Collapse
|
73
|
Wise PM, Dubal DB, Wilson ME, Rau SW, Liu Y. Estrogens: trophic and protective factors in the adult brain. Front Neuroendocrinol 2001; 22:33-66. [PMID: 11141318 DOI: 10.1006/frne.2000.0207] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Our appreciation that estrogens are important neurotrophic and neuroprotective factors has grown rapidly. Although a thorough understanding of the molecular and cellular mechanisms that underlie this effect requires further investigation, significant progress has been made due to the availability of animal models in which we can test potential candidates. It appears that estradiol can act via mechanisms that require classical intracellular receptors (estrogen receptor alpha or beta) that affect transcription, via mechanisms that include cross-talk between estrogen receptors and second messenger pathways, and/or via mechanisms that may involve membrane receptors or channels. This area of research demands attention since estradiol may be an important therapeutic agent in the maintenance of normal neural function during aging and after injury.
Collapse
Affiliation(s)
- P M Wise
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | |
Collapse
|
74
|
Abstract
This review highlights recent evidence from clinical and basic science studies supporting a role for estrogen in neuroprotection. Accumulated clinical evidence suggests that estrogen exposure decreases the risk and delays the onset and progression of Alzheimer's disease and schizophrenia, and may also enhance recovery from traumatic neurological injury such as stroke. Recent basic science studies show that not only does exogenous estradiol decrease the response to various forms of insult, but the brain itself upregulates both estrogen synthesis and estrogen receptor expression at sites of injury. Thus, our view of the role of estrogen in neural function must be broadened to include not only its function in neuroendocrine regulation and reproductive behaviors, but also to include a direct protective role in response to degenerative disease or injury. Estrogen may play this protective role through several routes. Key among these are estrogen dependent alterations in cell survival, axonal sprouting, regenerative responses, enhanced synaptic transmission and enhanced neurogenesis. Some of the mechanisms underlying these effects are independent of the classically defined nuclear estrogen receptors and involve unidentified membrane receptors, direct modulation of neurotransmitter receptor function, or the known anti-oxidant activities of estrogen. Other neuroprotective effects of estrogen do depend on the classical nuclear estrogen receptor, through which estrogen alters expression of estrogen responsive genes that play a role in apoptosis, axonal regeneration, or general trophic support. Yet another possibility is that estrogen receptors in the membrane or cytoplasm alter phosphorylation cascades through direct interactions with protein kinases or that estrogen receptor signaling may converge with signaling by other trophic molecules to confer resistance to injury. Although there is clear evidence that estradiol exposure can be deleterious to some neuronal populations, the potential clinical benefits of estrogen treatment for enhancing cognitive function may outweigh the associated central and peripheral risks. Exciting and important avenues for future investigation into the protective effects of estrogen include the optimal ligand and doses that can be used clinically to confer benefit without undue risk, modulation of neurotrophin and neurotrophin receptor expression, interaction of estrogen with regulated cofactors and coactivators that couple estrogen receptors to basal transcriptional machinery, interactions of estrogen with other survival and regeneration promoting factors, potential estrogenic effects on neuronal replenishment, and modulation of phenotypic choices by neural stem cells.
Collapse
|
75
|
Cambiasso MJ, Colombo JA, Carrer HF. Differential effect of oestradiol and astroglia-conditioned media on the growth of hypothalamic neurons from male and female rat brains. Eur J Neurosci 2000; 12:2291-8. [PMID: 10947808 DOI: 10.1046/j.1460-9568.2000.00120.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether soluble products from different CNS regions differ in their ability to support oestrogen-stimulated neurite growth, hypothalamic neurons from sexually segregated embryos were cultured with astroglia-conditioned medium (CM) derived from cortex, striatum and mesencephalon, with or without 17-beta-oestradiol 100 nM added to the medium. After 48 h in vitro, neurite outgrowth was quantified by morphometric analysis. Astroglia-CM from mesencephalon (a target for the axons of hypothalamic neurons) induced the greatest axogenic response in males and in this case only a neuritogenic effect could be demonstrated for oestradiol. On the other hand, astroglia-CM from regions that do not receive projections from ventromedial hypothalamus inhibited axon growth. A sexual difference in the response of hypothalamic neurons to astroglia-CM and oestradiol was found; growth of neurons from female foetuses was increased by astroglia-CM from mesencephalon, but no neuritogenic effect could be demonstrated for oestradiol in these cultures. Blot immunobinding demonstrated the presence of receptors for neurotrophic factors in cultures of hypothalamic neurons; Western blot analysis of these cultures demonstrated that oestradiol increased the concentration of trkB and IGF-I Rbeta, whereas trkA was not detected and the concentration of trkC was not modified. These results support the hypothesis that target regions produce some factor(s) that stimulate the growth of axons from projecting neurons and further indicate that in the case of males this effect is modulated by oestradiol, perhaps mediated through the upregulation of trkB and IGF-I receptors.
Collapse
Affiliation(s)
- M J Cambiasso
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Córdoba, Argentina
| | | | | |
Collapse
|
76
|
Cardona-Gómez GP, Chowen JA, Garcia-Segura LM. Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats. JOURNAL OF NEUROBIOLOGY 2000; 43:269-81. [PMID: 10842239 DOI: 10.1002/(sici)1097-4695(20000605)43:3<269::aid-neu5>3.0.co;2-d] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gonadal hormones interact with insulin-like growthfactor-I (IGF-I) to regulate synaptic plasticity during the estrous cycle in the rat mediobasal hypothalamus. It has been proposed that tanycytes, specialized glial cells lining the ventral region of the third ventricle, may regulate the availability of IGF-I to hypothalamic neurons. IGF-I levels in tanycytes fluctuate during the estrous cycle. Furthermore, estrogen administration to ovariectomized rats increases IGF-I levels in tanycytes, while progesterone, injected simultaneously with estrogen, blocks the estrogen-induced increase of IGF-I levels in tanycytes. To test whether hormonal regulation of IGF-I receptor (IGF-IR) and IGF binding protein-2 (IGFBP-2) may be involved in the accumulation of IGF-I in tanycytes, we assessed the effect of ovarian hormones on the levels of these molecules in the mediobasal hypothalamus of adult female rats. Ovariectomized animals were treated with either oil, estrogen, progesterone, or estrogen and progesterone simultaneously and then killed 6 or 24 h later. Some neurons, some astrocytes, and many tanycytes in the mediobasal hypothalamus were found by confocal microscopy to be immunoreactive for IGF-IR. IGFBP-2 immunoreactivity was restricted almost exclusively to tanycytes and ependymal cells and was colocalized with IGF-IR immunoreactivity in tanycytes. By electron microscope immunocytochemistry using colloidal gold labeling, IGF-IR and IGFBP-2 immunoreactivities were observed in the microvilli of tanycytes in the lumen of the third ventricle. IGF-IR and IGFBP-2 immunoreactive levels on the apical surface of tanycytes were significantly decreased by the administration of progesterone, either alone or in the presence of estradiol. IGF-IR levels in the mediobasal hypothalamus, measured by Western blotting, were not significantly affected by the separate administration of estradiol or progesterone to ovariectomized rats. However, the simultaneous administration of both hormones resulted in a marked decrease in IGF-IR protein levels. Estradiol administration to ovariectomized rats increased IGFBP-2 immunoreactive levels in the hypothalamus. While progesterone did not significantly affect IGFBP-2 expression, the simultaneous injection of estradiol and progesterone resulted in a marked decrease in IGFBP-2 protein levels. The effect of estradiol on IGFBP-2 was observed both in protein and mRNA levels, suggesting a transcriptional regulation. However, the simultaneous administration of progesterone and estradiol had different effects on IGF-IR protein and IGF-IR mRNA levels, as well as on IGFBP-2 protein and IGFBP-2 mRNA levels, suggesting a postranscriptional action. These findings indicate that estradiol and progesterone regulate the expression of IGF-IR and IGFBP-2 in the mediobasal hypothalamus of adult female rats. Regulation of the hypothalamic IGF-I system by ovarian hormones may be physiologically relevant for neuroendocrine regulation and for synaptic plasticity during the estrous cycle. These results do not support the hypothesis that estrogen-induced accumulation of IGF-I by tanycytes is mediated by the hormonal regulation of IGF-IR. However, estrogen-induced up-regulation of IGFBP-2 and progesterone-induced down-regulation of IGF-IR and IGFBP-2 levels in the apical plasma membrane of tanycytes may be involved in the fluctuation of IGF-I levels in the mediobasal hypothalamus during the estrous cycle.
Collapse
|
77
|
Suzuki M, Bannai M, Matsumuro M, Furuhata Y, Ikemura R, Kuranaga E, Kaneda Y, Nishihara M, Takahashi M. Suppression of copulatory behavior by intracerebroventricular infusion of antisense oligodeoxynucleotide of granulin in neonatal male rats. Physiol Behav 2000; 68:707-13. [PMID: 10764901 DOI: 10.1016/s0031-9384(99)00241-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual dimorphism of the rodent brain is manifested by the epigenetic action of gonadal steroids. Our previous research identified the granulin (grn) precursor gene as a sex steroid-inducible gene, which was shown to be expressed more abundantly in male than female neonates at the mediobasal hypothalamic area. Grn is a 6-kDa polypeptide promoting or inhibiting the growth of epithelial cells and hematocytes in vitro. In this study, effects on male sexual behavior of male were pursued under conditions in which grn gene expression was suppressed during the critical period. To this end, an antisense oligodeoxynucleotide (ODN) of the grn precursor gene was designed, incorporated into inactivated Sendai virus (HVJ)-liposome complexes, and infused into the third ventricle of 2-day-old male rats. Two different control treatments were used: the first consisted of a control sequence ODN that had little homology to known mRNAs; the second of vehicle (HVJ-liposome) alone. After maturation, animals treated with antisense ODN of grn displayed significantly lower scores than control males on various parameters assessing sexual behavior; i.e., mount, intromission, and ejaculation. The antisense ODN, however, did not affect body growth or serum concentrations of testosterone and luteinizing hormone. Further, there was no significant difference in the volume of the sexual dimorphic nucleus of the preoptic area between antisense ODN-treated and control animals. It was shown that inadequate expression of the grn gene in the brain of male neonatal rats during the critical period suppressed the induction of some type of male sexual behavior, suggesting the grn was involved in the process of masculinization of the rat brain.
Collapse
Affiliation(s)
- M Suzuki
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Azcoitia I, Sierra A, Garcia-Segura LM. Neuroprotective effects of estradiol in the adult rat hippocampus: interaction with insulin-like growth factor-I signalling. J Neurosci Res 1999; 58:815-22. [PMID: 10583912 DOI: 10.1002/(sici)1097-4547(19991215)58:6<815::aid-jnr8>3.0.co;2-r] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously shown that 17-beta-estradiol protects neurons in the dentate gyrus from kainic acid-induced death in vivo. To analyse whether this effect is mediated through estrogen receptors and through cross-talk between steroid and insulin-like growth factor (IGF) systems, we have concomitantly administered antagonists of estrogen receptor (ICI 182,780) or the IGF-I receptor (JB1) with estradiol. In addition, we have also administered IGF-I with or without the estrogen receptor antagonist. JB1 (20 microg/ml), ICI 182,780 (10(-7) M), and IGF-I (100 microg/ml) were delivered into the left lateral ventricle of young ovariectomized rats via an Alzet osmotic minipump (0.5 microl/hr) for 2 weeks. All rats received kainic acid (7 mg/Kg b.w.) or vehicle i.p. injections at day 7 after minipump implant. Also on day 7, rats treated i.c. v.with only ICI 182,780 or JB1 received a single i.p. injection of 17-beta-estradiol (150 microg/rat) or vehicle. On day 14 after minipump implant, the rats were killed, brains processed, and the number of surviving hilar neurons estimated by the optical disector technique. Both IGF-I and estradiol treatments resulted in over 90% survival of hilar neurons. The neuroprotective action of estradiol was blocked by ICI 182,780 and by JB1. Furthermore, IGF-I enhancement of neuronal survival was significantly reduced by ICI 182,780. These results indicate that in this model of hippocampal lesion, the neuroprotective effect of estradiol depends both on estrogen receptors and IGF-I receptors, while the protection exerted by IGF-I depends also on estrogen receptors. In conclusion, an interaction of estrogen receptor and IGF-I receptor signalling may mediate neuroprotection in the adult rat hippocampus.
Collapse
Affiliation(s)
- I Azcoitia
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain.
| | | | | |
Collapse
|
79
|
Segovia S, Guillamón A, del Cerro MC, Ortega E, Pérez-Laso C, Rodriguez-Zafra M, Beyer C. The development of brain sex differences: a multisignaling process. Behav Brain Res 1999; 105:69-80. [PMID: 10553691 DOI: 10.1016/s0166-4328(99)00083-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In order to account for the development of sex differences in the brain, we took, as an integrative model, the vomeronasal pathway, which is involved in the control of reproductive physiology and behavior. The fact that brain sex differences take place in complex neural networks will help to develop a motivational theory of sex differences in reproductive behaviors. We also address the classic genomic actions in which three agents (the hormone, the intracellular receptor, and the transcription function) play an important role in brain differentiation, but we also point out refinements that such a theory requires if we want to account of the existence of two morphological patterns of sex differences in the brain, one in which males show greater morphological measures (neuron numbers and/or volume) than females and the opposite. Moreover, we also consider very important processes closely related to neuronal afferent input and membrane excitability for the developing of sex differences. Neurotransmission associated to metabotropic and ionotropic receptors, neurotrophic factors, neuroactive steroids that alter membrane excitability, cross-talk (and/or by-pass) phenomena, and second messenger pathways appear to be involved in the development of brain sex differences. The sexual differentiation of the brain and reproductive behavior is regarded as a cellular multisignaling process.
Collapse
Affiliation(s)
- S Segovia
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
80
|
Mong JA, McCarthy MM. Steroid-induced developmental plasticity in hypothalamic astrocytes: implications for synaptic patterning. JOURNAL OF NEUROBIOLOGY 1999; 40:602-19. [PMID: 10453059 DOI: 10.1002/(sici)1097-4695(19990915)40:4<602::aid-neu14>3.0.co;2-o] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have previously demonstrated that astrocytes in the developing arcuate nucleus of the rat hypothalamus exhibit a sexually dimorphic morphology as a result of differential exposure to gonadal steroids. Testosterone via its aromatized byproduct, estrogen, induces arcuate astrocytes to undergo differentiation during the first few days of life. These differentiated astrocytes exhibit a stellate morphology. Coincident with the steroid-induced increase in astrocyte differentiation is a reduction of dendritic spines on arcuate neurons. As a result, the arcuate nucleus of males has fewer axodendritic spine synapses than females and this dimorphism is retained throughout life. In the immediately adjacent ventromedial nucleus, neonatal astrocytes are immature and unresponsive to steroids. Neurons in this region show no change in dendritic spines in the first few days of life but do exhibit increased dendritic branching as a result of testosterone exposure. These findings illustrate the importance of distinct populations of astrocytes in restricted brain regions and their potential importance to the establishment of regionally specific synaptic patterning. Conflicting reports leave the site of steroid-mediated astrocyte responsiveness in the arcuate nucleus unresolved: Are gonadal steroids acting directly on astrocytes or are steroid-concentrating neurons mediating astrocytic responsiveness? In this review, we discuss the current understanding of astrocyte-neuron interactions and the possible mechanisms for steroid-mediated, astrocyte-directed synaptic patterning in the developing hypothalamus.
Collapse
Affiliation(s)
- J A Mong
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, Maryland 21201, USA
| | | |
Collapse
|
81
|
Garcia-Segura LM, Naftolin F, Hutchison JB, Azcoitia I, Chowen JA. Role of astroglia in estrogen regulation of synaptic plasticity and brain repair. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(19990915)40:4<574::aid-neu12>3.0.co;2-8] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
82
|
Lackey BR, Gray SL, Henricks DM. The insulin-like growth factor (IGF) system and gonadotropin regulation: actions and interactions. Cytokine Growth Factor Rev 1999; 10:201-17. [PMID: 10647777 DOI: 10.1016/s1359-6101(99)00013-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factors (IGF) are polypeptides that regulate growth, differentiation and survival in a multitude of cells and tissues. The IGF system consists of ligands, receptors, binding proteins and binding protein proteases. The influence of the IGF system on reproductive parameters, specifically gonadotropin release and interactions between the IGF system and other effectors of gonadotropin release will be examined in this review.
Collapse
Affiliation(s)
- B R Lackey
- Department of Animal and Veterinary Science, Clemson University, SC 29634-0361, USA.
| | | | | |
Collapse
|
83
|
Asthana S, Craft S, Baker LD, Raskind MA, Birnbaum RS, Lofgreen CP, Veith RC, Plymate SR. Cognitive and neuroendocrine response to transdermal estrogen in postmenopausal women with Alzheimer's disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology 1999; 24:657-77. [PMID: 10399774 DOI: 10.1016/s0306-4530(99)00020-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Preliminary evidence from clinical studies indicates that treatment with estrogen augments cognitive function for women with Alzheimer's disease (AD). The neurobiology of estrogen, particularly its neuromodulatory and neuroprotective actions, provide a viable basis to support such cognition-enhancing effects. We conducted a placebo-controlled, double-blind, parallel-group design pilot clinical study to evaluate the cognitive and neuroendocrine response to estrogen administration for postmenopausal women with AD. Twelve women with probably AD of mild-moderate severity completed the study. During an eight week treatment period, six women received 0.05 mg/day dosage of 17 beta-estradiol via a skin patch and the remaining six wore a placebo skin patch. Subjects were randomized to equal distribution, and evaluated at baseline, at weeks 1, 3, 5, and 8 on treatment, and at weeks 9, 10, 11, and 13 off treatment. On each day of evaluation, cognition was assessed using a battery of neuropsychological tests, and blood samples were collected to measure plasma concentrations of estradiol and estrone. In addition, several neuroendocrine markers were measured in plasma to evaluate the relationship between estrogen-induced cognitive effects and fluctuations in the catecholaminergic and insulin-like growth factor systems. Significant effects of estrogen treatment were observed on attention (i.e. Stroop: number of self-corrections in the Interference condition, F[1,8] = 8.22, P < 0.03) and verbal memory (i.e., Buschke: delayed cued recall, F[3,30] = 4.31, P < 0.02). The salutary effects of estrogen on cognition were observed after the first week of treatment, and started to diminish when treatment was terminated. For women treated with estrogen, enhancement in verbal memory was positively correlated with plasma levels of estradiol (r = 0.96, P < 0.02) and negatively correlated with concentrations of insulin-like growth factor binding protein-3 (IGFBP-3) in plasma (r = -0.92, P < 0.03). Furthermore, a trend in the data was evident to suggest a negative relationship between plasma levels of insulin-like growth factor-1 (IGF-1) and verbal memory (r = -0.86, P = 0.06). Estrogen administration suppressed peripheral markers of the IGF system, as evidenced by a negative correlation between plasma concentration of estradiol and IGF-1 (r = -0.93, P < 0.03), and a trend for a similar relationship between plasma levels of estradiol and IGFBP-3 (r = -0.86, P = 0.06). With respect to the catecholamines assayed, norepinephrine was positively correlated with verbal memory (r = 0.95, P < 0.02) for women who were treated with estrogen. Furthermore, there was a trend to suggest a negative relationship between plasma epinephrine levels and the number of errors committed on a test of attention (r = -0.84, P = 0.07). In the placebo group, no significant effects of estrogen replacement were evident either on measures of cognition or on any of the neuroendocrine markers. The results of this study suggest that estrogen replacement may enhance cognition for postmenopausal women with AD. Furthermore, several markers of neuroendocrine activity may serve to index the magnitude of estrogen-induced facilitation on cognition. In addition, research findings from the present study will provide important information for the design of larger prospective clinical studies that are essential to definitively establish the therapeutic role of estrogen replacement for postmenopausal women with AD.
Collapse
Affiliation(s)
- S Asthana
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, American Lake Division, Tacoma, WA 98493, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Toran-Allerand CD, Singh M, Sétáló G. Novel mechanisms of estrogen action in the brain: new players in an old story. Front Neuroendocrinol 1999; 20:97-121. [PMID: 10328986 DOI: 10.1006/frne.1999.0177] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Estrogen elicits a selective enhancement of the growth and differentiation of axons and dendrites (neurites) in the developing brain. Widespread colocalization of estrogen and neurotrophin receptors (trk) within estrogen and neurotrophin targets, including neurons of the cerebral cortex, sensory ganglia, and PC12 cells, has been shown to result in differential and reciprocal transcriptional regulation of these receptors by their ligands. In addition, estrogen and neurotrophin receptor coexpression leads to convergence or cross-coupling of their signaling pathways, particularly at the level of the mitogen-activated protein (MAP) kinase cascade. 17beta-Estradiol elicits rapid (within 5-15 min) and sustained (at least 2 h) tyrosine phosphorylation and activation of the MAP kinases, extracellular-signal regulated kinase (ERK)1, and ERK2, which is successfully inhibited by the MAP kinase/ERK kinase 1 inhibitor PD98059, but not by the estrogen receptor (ER) antagonist ICI 182,780 and also does not appear to result from estradiol-induced activation of trk. Furthermore, the ability of estradiol to phosphorylate ERK persists even in ER-alpha knockout mice, implicating other estrogen receptors such as ER-beta in these actions of estradiol. The existence of an estrogen receptor-containing, multimeric complex consisting of hsp90, src, and B-Raf also suggests a direct link between the estrogen receptor and the MAP kinase signaling cascade. Collectively, these novel findings, coupled with our growing understanding of additional signaling substrates utilized by estrogen, provide alternative mechanisms for estrogen action in the developing brain which could explain not only some of the very rapid effects of estrogen, but also the ability of estrogen and neurotrophins to regulate the same broad array of cytoskeletal and growth-associated genes involved in neurite growth and differentiation. This review expands the usually restrictive view of estrogen action in the brain beyond the confines of sexual differentiation and reproductive neuroendocrine function. It considers the much broader question of estrogen as a neural growth factor with important influences on the development, survival, plasticity, regeneration, and aging of the mammalian brain and supports the view that the estrogen receptor is not only a ligand-induced transcriptional enhancer but also a mediator of rapid, nongenomic events.
Collapse
Affiliation(s)
- C D Toran-Allerand
- Department of Anatomy and Cell Biology, Center for Neurobiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
85
|
Garcia-Segura LM, Wozniak A, Azcoitia I, Rodriguez JR, Hutchison RE, Hutchison JB. Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience 1999; 89:567-78. [PMID: 10077336 DOI: 10.1016/s0306-4522(98)00340-6] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent evidence indicates that 17beta-estradiol may have neuroprotective and neuroregenerative properties. Estradiol is formed locally in neural tissue from precursor androgens. The expression of aromatase, the enzyme that catalyses the conversion of androgens to estrogens, is restricted, under normal circumstances, to specific neuronal populations. These neurons are located in brain areas in which local estrogen formation may be involved in neuroendocrine control and in the modulation of reproductive or sex dimorphic behaviours. In this study the distribution of aromatase immunoreactivity has been assessed in the brain of mice and rats after a neurotoxic lesion induced by the systemic administration of kainic acid. This treatment resulted in the induction of aromatase expression by reactive glia in the hippocampus and in other brain areas that are affected by kainic acid. The reactive glia were identified as astrocytes by co-localization of aromatase with glial fibrillary acidic protein and by ultrastructural analysis. No immunoreactive astrocytes were detected in control animals. The same result, the de novo induction of aromatase expression in reactive astrocytes on the hippocampus, was observed after a penetrating brain injury. Furthermore, using a 3H2O assay, aromatase activity was found to increase significantly in the injured hippocampus. These findings indicate that although astrocytes do not normally express aromatase, the enzyme expression is induced in these glial cells by different forms of brain injury. The results suggest a role for local astroglial estrogen formation in brain repair.
Collapse
Affiliation(s)
- L M Garcia-Segura
- MRC Neuroendocrine Development and Behaviour Group, The Barbraham Institute, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
86
|
Plagemann A, Harder T, Rake A, Janert U, Melchior K, Rohde W, Dörner G. Morphological alterations of hypothalamic nuclei due to intrahypothalamic hyperinsulinism in newborn rats. Int J Dev Neurosci 1999; 17:37-44. [PMID: 10219959 DOI: 10.1016/s0736-5748(98)00064-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In former studies, a temporary, intrahypothalamically localized hyperinsulinism during brain development was shown to result in overweight and metabolic disturbances during later life in rats. Therefore, we tested the hypothesis whether intrahypothalamic insulin treatment during early postnatal life may lead to hypothalamic morphological alterations, i.e., of numerical density of neurons and area of neuronal nuclei or area of neuronal cytoplasm, in this animal model. For this purpose, on the 8th day of age in Wistar rats a long-acting insulin was bilaterally applicated stereotactically into the hypothalamus (12 mIU on each side), while in controls the insulin-free agar-vehicle was given only. By computer-assisted morphometric analysis on the 15th day of life a decrease of the mean area of neuronal nuclei and the mean nucleus-cytoplasm-ratio within the VMN of the insulin-treated animals was observed, as compared to control rats (P < 0.05), while no significant alterations were found in the lateral hypothalamic area (LHA). Analysis of topographically distinct parts of the VMN revealed significant reductions of the mean area of neuronal nuclei (P < 0.001) and nucleus-cytoplasm-ratio (P < 0.05) in the anterior part of the VMN (VMNpa). Furthermore, in the ventrolateral part (VMNpv) a decreased mean neuronal density was observed in the insulin group (P < 0.01). In contrast, the dorsomedial part of the VMN (VMNpd) displayed an increased mean neuronal density in the insulin-treated animals (P < 0.05). In the dorsomedial hypothalamic nucleus (DMN) a significant increase of the mean area of neuronal nuclei (P < 0.01) and the area of neuronal cytoplasm were observed (P < 0.001). These alterations were accompanied by a significantly elevated mean numerical density of astrocytes (positive for glial fibriallary acidic protein; GFAP+) within the periventricular hypothalamic area (PER) of the insulin-treated rats (P < 0.05). These observations speak for a varying vulnerability of LHA, DMN and distinct parts of the VMN to hyperinsulinism during early development, possibly leading to a disturbed organization and, consecutively, permanent dysfunction of these morphologically connected and functionally interacting hypothalamic nuclei.
Collapse
Affiliation(s)
- A Plagemann
- Institute of Experimental Endocrinology, Humboldt University Medical School (Charité), Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
87
|
Fernandez-Galaz MC, Naftolin F, Garcia-Segura LM. Phasic synaptic remodeling of the rat arcuate nucleus during the estrous cycle depends on insulin-like growth factor-I receptor activation. J Neurosci Res 1999; 55:286-92. [PMID: 10348659 DOI: 10.1002/(sici)1097-4547(19990201)55:3<286::aid-jnr3>3.0.co;2-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Insulin-like growth factor-I (IGF-I) has trophic and plastic effects on neurons and glial cells and modulates neuroendocrine events by acting at the level of the hypothalamus. IGF-I and estrogen signaling interact to regulate in vitro hypothalamic neuronal survival and differentiation. In vivo, IGF-I levels fluctuate in the rat hypothalamic arcuate nucleus during the estrous cycle in parallel with a phasic remodeling of synaptic contacts and glial cell processes. Both the fluctuation of IGF-I levels and the synaptic and glial changes are induced by estrogen. The possible role of IGF-I in the regulation of arcuate nucleus synaptic plasticity has been assessed in the present study by intracerebroventricular administration to cycling female rats of a specific IGF-I receptor antagonist. In agreement with previous findings, the number of synaptic inputs to arcuate neuronal somas in control rats showed a significant decrease between the morning of proestrus and the morning of estrus. This decline in synaptic inputs and the accompanying increase in glial ensheathing of neuronal somas were blocked by the IGF-I receptor antagonist. In contrast, the IGF-I receptor antagonist did not affect the basal number of synapses or the morphology of synaptic terminals or length of the synaptic contacts. These findings indicate that IGF-I receptor activation may be involved in the phasic remodeling of arcuate nucleus synapses during the estrous cycle. Res.
Collapse
Affiliation(s)
- M C Fernandez-Galaz
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
88
|
Chowen JA, González-Parra S, García-Segura LM, Argente J. Sexually dimorphic interaction of insulin-like growth factor (IGF)-I and sex steroids in lactotrophs. J Neuroendocrinol 1998; 10:493-502. [PMID: 9700676 DOI: 10.1046/j.1365-2826.1998.00228.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anterior pituitary hormone secretion is sexually dimorphic due partially to gender differences in the postpubertal hormone environment; however, differences in the pituitary's responsiveness to these signals may also play a role. We have used simple and double in situ hybridization to determine whether lactotrophs and somatotrophs from male and female rats respond differently in vitro to growth hormone-releasing hormone (GHRH), somatostatin (SS) or insulin-like growth factor (IGF)-I and whether sex steroids modulate these responses. Cultures were treated with either 17 beta-estradiol (E; 10(-9)M), testosterone (T; 10(-7)M), dihydrotestosterone (DHT; 10(-7) M) or vehicle in combination with either GHRH (10(-7)M), SS (10(-7)M), IGF-I (10(-7)M) or vehicle. Basal mRNA levels of GH, prolactin (PRL) and pituitary transcription factor-1 (Pit-1) did not differ between the sexes. The responses to peptide hormones alone were similar between the sexes, but not in the presence of gonadal steroids. In females, DHT reduced and E increased the stimulatory effect of GHRH and inhibitory effect of SS on GH mRNA levels (two-way ANOVA: P < 0.05), while having no effect in males. An additive effect of E and GHRH on PRL mRNA levels was seen only in males. The E induced rise in PRL mRNA levels was completely inhibited by SS in females, but only partially so in males (two-way ANOVA: P < 0.001). IGF-I inhibited the E induced rise in PRL and lactotroph Pit-1 mRNA levels only in females. These results suggest that sex steroids modulate the pituitary's response to hypothalamic and circulating factors differently in males and females and that this may play a role in generating the sexually dimorphic patterns of pituitary hormone secretion.
Collapse
|
89
|
Fernandez-Galaz MC, Morschl E, Chowen JA, Torres-Aleman I, Naftolin F, Garcia-Segura LM. Role of astroglia and insulin-like growth factor-I in gonadal hormone-dependent synaptic plasticity. Brain Res Bull 1997; 44:525-31. [PMID: 9370220 DOI: 10.1016/s0361-9230(97)00238-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gonadal hormones exert a critical influence over the architecture of specific brain areas affecting the formation of neuronal contacts. Cellular mechanisms mediating gonadal hormone actions on synapses have been studied extensively in the rat arcuate nucleus, a hypothalamic center involved in the feed-back regulation of gonadotropins. Gonadal steroids exert organizational and activational effects on arcuate nucleus synaptic connectivity. Perinatal testosterone induces a sexual dimorphic pattern of synaptic contacts. Furthermore, during the preovulatory and ovulatory phases of the estrous cycle there is a transient disconnection of inhibitory synaptic inputs to the somas of arcuate neurons. This synaptic remodeling is induced by estradiol, blocked by progesterone, and begins with the onset of puberty in females. Astroglia appear to play a significant role in the organizational and the activational hormone effects on neuronal connectivity by regulating the amount of neuronal membrane available for the formation of synaptic contacts and by releasing soluble factors, such as insulin-like growth factor I (IGF-I), which promote the differentiation of neural processes. Recent evidence indicates that gonadal steroids and IGF-I may interact in their trophic effects on the neuroendocrine hypothalamus. Estradiol and IGF-I promote the survival and morphological differentiation of rat hypothalamic neurons in primary cultures. The effect of estradiol depends on IGF-I, while the effects of both estradiol and IGF-I depend on estrogen receptors. Furthermore, estrogen activation of astroglia in hypothalamic tissue fragments depends on IGF-I receptors. These findings indicate that IGF-I may mediate some of the developmental and activational effects of gonadal steroids on the brain and suggest that IGF-I may activate the estrogen receptor to induce its neurotrophic effects on hypothalamic cells. In addition, IGF-I levels in the neuroendocrine hypothalamus are regulated by gonadal steroids. IGF-I levels in tanycytes, a specific astroglia cell type present in the arcuate nucleus and median eminence, increase at puberty, are affected by neonatal androgen levels, show sex differences, and fluctuate in accordance to the natural variations in plasma levels of ovarian steroids that are associated with the estrous cycle. These changes appear to be mediated by hormonal regulation of IGF-I uptake from blood or cerebrospinal fluid by tanycytes. These results suggest that tanycytes may be involved in the regulation of neuroendocrine events in adult rats by regulating the availability of IGF-I to hypothalamic neurons. In summary, IGF-I and different forms of neuron-astroglia communication are involved in the effects of estradiol on synaptic plasticity in the hypothalamic arcuate nucleus.
Collapse
|
90
|
Garcia-Segura LM. Estrogen-induced hypothalamic synaptic plasticity. AGING (MILAN, ITALY) 1997; 9:59. [PMID: 9358887 DOI: 10.1007/bf03339708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
91
|
Fernandez AM, Garcia-Estrada J, Garcia-Segura LM, Torres-Aleman I. Insulin-like growth factor I modulates c-Fos induction and astrocytosis in response to neurotoxic insult. Neuroscience 1997; 76:117-22. [PMID: 8971764 DOI: 10.1016/s0306-4522(96)00395-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insulin-like growth factor I participates in the cellular response to brain insult by increasing its messenger RNA expression and/or protein levels in the affected area. Although it has been suggested that insulin-like growth factor I is involved in a variety of cellular responses leading to homeostasis, mechanisms involved in its possible trophic effects are largely unknown. Since activation of c-Fos in postmitotic neurons takes place both in response to insulin-like growth factor I and after brain injury, we have investigated whether this early response gene may be involved in the actions of insulin-like growth factor I after brain insult. Partial deafferentation of the cerebellar cortex by 3-acetylpyridine injection elicited c-Fos protein expression on both Purkinje and granule cells of the cerebellar cortex. This neurotoxic insult also triggered gliosis, as determined by an increased number of glial fibrillary acidic protein-positive cells (reactive astrocytes) in the cerebellar cortex. When 3-acetylpyridine-injected animals received a continuous intracerebellar infusion of either a peptidic insulin-like growth factor I receptor antagonist or an insulin-like growth factor I antisense oligonucleotide for two weeks through an osmotic minipump, c-Fos expression was obliterated while reactive gliosis was greatly increased. On the contrary, continuous infusion of insulin-like growth factor I significantly decreased reactive gliosis without affecting the increase in c-Fos expression. These results indicate that insulin-like growth factor I is involved in both the neuronal (c-Fos) and the astrocytic (glial fibrillary acidic protein) activation in response to injury.
Collapse
Affiliation(s)
- A M Fernandez
- Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|