51
|
Vinod E, Kachroo U, Ozbey O, Sathishkumar S, Boopalan P. Comparison of human articular chondrocyte and chondroprogenitor cocultures and monocultures: To assess chondrogenic potential and markers of hypertrophy. Tissue Cell 2019; 57:42-48. [DOI: 10.1016/j.tice.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023]
|
52
|
Speichert S, Molotkov N, El Bagdadi K, Meurer A, Zaucke F, Jenei-Lanzl Z. Role of Norepinephrine in IL-1β-Induced Chondrocyte Dedifferentiation under Physioxia. Int J Mol Sci 2019; 20:ijms20051212. [PMID: 30861996 PMCID: PMC6429278 DOI: 10.3390/ijms20051212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
As part of the pathogenesis of osteoarthritis (OA), chondrocytes lose their phenotype and become hypertrophic, or dedifferentiate, mainly driven by interleukin-1β (IL-1β). The contribution of other factors to the dedifferentiation process is not completely understood. Recent studies suggested a dose-dependent role for the sympathetic neurotransmitter norepinephrine (NE) in OA chondrocyte metabolism. Therefore, the aim of this study was to analyze the contribution of NE (10-8 M, 10-6 M) to human articular OA chondrocyte dedifferentiation in the absence or presence of IL-1β (0.5 ng/mL). Here, we demonstrate that OA chondrocytes express α2A-, α2C- and β2-adrenoceptors (AR) and show the characteristic shift towards a fibroblast-like shape at day 7 in physioxic monolayer culture. NE alone did not affect morphology but, in combination with IL-1β, markedly accelerated this shift. Moderate glycosaminoglycan (GAG) staining was observed in untreated and NE-treated cells, while IL-1β strongly decreased GAG deposition. IL-1β alone or in combination with NE decreased SOX9, type II collagen, COMP, and aggrecan, and induced MMP13 and ADAMTS4 gene expression, indicating an accelerated dedifferentiation. NE alone did not influence gene expression and did not modulate IL-1β-mediated effects. In conclusion, these results indicate that low-grade inflammation exerts a dominant effect on chondrocyte dedifferentiation and should be targeted early in OA therapy.
Collapse
Affiliation(s)
- Saskia Speichert
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Natalie Molotkov
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Karima El Bagdadi
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Marienburgstr. 2, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
53
|
Silawal S, Willauschus M, Schulze-Tanzil G, Gögele C, Geßlein M, Schwarz S. IL-10 Could Play a Role in the Interrelation between Diabetes Mellitus and Osteoarthritis. Int J Mol Sci 2019; 20:ijms20030768. [PMID: 30759730 PMCID: PMC6387262 DOI: 10.3390/ijms20030768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/19/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
The association between osteoarthritis (OA), obesity and metabolic syndrome suggests an interrelation between OA and diabetes mellitus (DM). Little is known about the role of anti-inflammatory cytokine interleukin (IL)-10 in the interrelation between OA and DM. Hence, the effects of IL-10 under hyperglycemia (HG) and hyperinsulinemia (HI) in human articular chondrocytes (hAC) and chondrosarcoma cell line Okayama University Medical School (OUMS)-27 were examined. HAC and OUMS-27, cultured in normoglycemic (NG) and HG conditions were stimulated with insulin and/or IL-10. Cell survival, metabolic activity, proliferation and extracellular matrix (ECM) synthesis were immunocytochemically examined. No significant differences in vitality of hAC neither in pure NG (NGw/o) nor HG (HGw/o) conditions were found. Applying HI and/or IL-10 in both conditions reduced significantly the vitality of hAC but not of OUMS-27. HG impaired significantly hAC metabolism. When combined with HI + IL-10 or IL-10 alone it decreased also significantly hAC proliferation compared to NGw/o. In OUMS-27 it induced only a trend of impaired proliferation compared to NGw/o. hAC but not OUMS-27 reduced significantly their collagen type (col) I, SOX9 and proteoglycan (PG) synthesis in HG combined with HI +/− IL-10 compared to NGw/o. IL-10 could not moderate HI and HG effects. In contrast to hAC OUMS-27 showed limited sensitivity as DM model.
Collapse
Affiliation(s)
- Sandeep Silawal
- Institute of Anatomy, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany.
| | - Maximilian Willauschus
- Institute of Anatomy, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany.
| | - Gundula Schulze-Tanzil
- Institute of Anatomy, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany.
| | - Clemens Gögele
- Institute of Anatomy, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany.
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.
| | - Markus Geßlein
- Department of Orthopedics and Trauma Surgery, Nuremberg General Hospital, Paracelsus Medical University, Nueremberg. Breslauer Strasse 201, 90471 Nuremberg, Germany.
| | - Silke Schwarz
- Institute of Anatomy, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst Nathan Str. 1, 90419 Nuremberg, Germany.
| |
Collapse
|
54
|
Kwon H, O'Leary SA, Hu JC, Athanasiou KA. Translating the application of transforming growth factor-β1, chondroitinase-ABC, and lysyl oxidase-like 2 for mechanically robust tissue-engineered human neocartilage. J Tissue Eng Regen Med 2019; 13:283-294. [PMID: 30557915 DOI: 10.1002/term.2791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 11/21/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022]
Abstract
Strategies to overcome the limited availability of human articular chondrocytes and their tendency to dedifferentiate during expansion are required to advance their clinical use and to engineer functional cartilage on par with native articular cartilage. This work sought to determine whether a biochemical factor (transforming growth factor-β1 [T]), a biophysical agent (chondroitinase-ABC [C]), and a collagen crosslinking enzyme (lysyl oxidase-like 2 [L]) are efficacious in forming three-dimensional human neocartilage from expanded human articular chondrocytes. Among the treatment regimens, the combination of the three stimuli (TCL treatment) led to the most robust glycosaminoglycan content, total collagen content, and type II collagen production. In particular, TCL treatment synergistically increased tensile stiffness and strength of human neocartilage by 3.5-fold and 3-fold, respectively, over controls. Applied to two additional donors, the beneficial effects of TCL treatment appear to be donor independent; tensile stiffness and strength were increased by up to 8.5-fold and 3-fold, respectively, over controls. The maturation of human neocartilage in response to TCL treatment was examined following 5 and 8 weeks of culture, demonstrating maintenance or further enhancement of functional properties. The present study identifies a novel strategy for engineering human articular cartilage using serially passaged chondrocytes.
Collapse
Affiliation(s)
- Heenam Kwon
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California
| | | | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California
| |
Collapse
|
55
|
Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death Dis 2018; 9:1166. [PMID: 30518918 PMCID: PMC6281585 DOI: 10.1038/s41419-018-1225-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA), a chronic disease characterized by articular cartilage degeneration, is a leading cause of disability and pain worldwide. In OA, chondrocytes in cartilage undergo phenotypic changes and senescence, restricting cartilage regeneration and favouring disease progression. Similar to other wound-healing disorders, chondrocytes from OA patients show a chronic increase in the gap junction channel protein connexin43 (Cx43), which regulates signal transduction through the exchange of elements or recruitment/release of signalling factors. Although immature or stem-like cells are present in cartilage from OA patients, their origin and role in disease progression are unknown. In this study, we found that Cx43 acts as a positive regulator of chondrocyte-mesenchymal transition. Overactive Cx43 largely maintains the immature phenotype by increasing nuclear translocation of Twist-1 and tissue remodelling and proinflammatory agents, such as MMPs and IL-1β, which in turn cause cellular senescence through upregulation of p53, p16INK4a and NF-κB, contributing to the senescence-associated secretory phenotype (SASP). Downregulation of either Cx43 by CRISPR/Cas9 or Cx43-mediated gap junctional intercellular communication (GJIC) by carbenoxolone treatment triggered rediferentiation of osteoarthritic chondrocytes into a more differentiated state, associated with decreased synthesis of MMPs and proinflammatory factors, and reduced senescence. We have identified causal Cx43-sensitive circuit in chondrocytes that regulates dedifferentiation, redifferentiation and senescence. We propose that chondrocytes undergo chondrocyte-mesenchymal transition where increased Cx43-mediated GJIC during OA facilitates Twist-1 nuclear translocation as a novel mechanism involved in OA progression. These findings support the use of Cx43 as an appropriate therapeutic target to halt OA progression and to promote cartilage regeneration.
Collapse
|
56
|
Van Rossom S, Khatib N, Holt C, Van Assche D, Jonkers I. Subjects with medial and lateral tibiofemoral articular cartilage defects do not alter compartmental loading during walking. Clin Biomech (Bristol, Avon) 2018; 60:149-156. [PMID: 30366244 DOI: 10.1016/j.clinbiomech.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/07/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Healthy cartilage is essential for optimal joint function. Although, articular cartilage defects are highly prevalent in the active population and hamper joint function, the effect of articular cartilage defects on knee loading is not yet documented. Therefore, the present study compared knee contact forces and pressures between patients with tibiofemoral cartilage defects and healthy controls. Potentially this provides additional insights in movement adaptations and the role of altered loading in the progression from defect towards OA. METHODS Experimental gait data collected in 15 patients with isolated cartilage defects (8 medial involvement, 7 lateral-involvement) and 19 healthy asymptomatic controls was processed using a musculoskeletal model to calculate contact forces and pressures. Differences between two patient groups and controls were evaluated using Kruskal-Wallis tests and individually compared using Mann-Whitney-U tests (alpha <0.05). FINDINGS The patients with lateral involvement walked significantly slower compared to the healthy controls. No movement adaptations to decrease the loading on the injured condyle were observed. Additionally, the location of loading was not significantly affected. INTERPRETATION The current results suggest that isolated cartilage defects do not induce significant changes in the knee joint loading distribution. Consequently, the involved condyle will capture a physiological loading magnitude that should however be distributed over the cartilage surrounding the defect. This may cause local degenerative changes in the cartilage and in combination with inflammatory responses, might play a key role in the progression from articular cartilage defect to a more severe OA phenotype.
Collapse
Affiliation(s)
- Sam Van Rossom
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Nidal Khatib
- Musculoskeletal Biomechanics Research Centre, University of Cardiff, Cardiff, United Kingdom.
| | - Cathy Holt
- Musculoskeletal Biomechanics Research Centre, University of Cardiff, Cardiff, United Kingdom.
| | - Dieter Van Assche
- Musculoskeletal Rehabilitation Research Group, Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
57
|
Liu ZM, Shen PC, Lu CC, Chou SH, Tien YC. Characterization of the Proliferating Layer Chondrocytes of Growth Plate for Cartilage Regeneration. Tissue Eng Part A 2018; 25:364-378. [PMID: 30141377 DOI: 10.1089/ten.tea.2018.0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPACT STATEMENT In recent years, cell-based therapy is a promising strategy for repairing defect cartilage. However, in vitro expansion of articular chondrocytes (ACs) for collecting enough cell numbers eventually develops cell de-differentiation. In the present study, we choose the proliferative layer chondroctytes (PLCs) of growth plate as new candidate. The novel findings include (1) the higher proliferation potential of PLCs in comparison with the ACs, (2) PLCs produced more GAG than ACs, (3) the increased in GAG matrix production, (4) and lower senescence in PLCs. From these results, we found PLCs might be suitable as cell source for cartilage regeneration.
Collapse
Affiliation(s)
- Zi-Miao Liu
- 1 Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chih Shen
- 1 Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Chang Lu
- 1 Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,2 Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsiang Chou
- 1 Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chun Tien
- 1 Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,2 Department of Orthopedics, Faculty of Medical School, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
58
|
Wuest SL, Caliò M, Wernas T, Tanner S, Giger-Lange C, Wyss F, Ille F, Gantenbein B, Egli M. Influence of Mechanical Unloading on Articular Chondrocyte Dedifferentiation. Int J Mol Sci 2018; 19:ijms19051289. [PMID: 29693628 PMCID: PMC5983850 DOI: 10.3390/ijms19051289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
Due to the limited self-repair capacity of articular cartilage, the surgical restoration of defective cartilage remains a major clinical challenge. The cell-based approach, which is known as autologous chondrocyte transplantation (ACT), has limited success, presumably because the chondrocytes acquire a fibroblast-like phenotype in monolayer culture. This unwanted dedifferentiation process is typically addressed by using three-dimensional scaffolds, pellet culture, and/or the application of exogenous factors. Alternative mechanical unloading approaches are suggested to be beneficial in preserving the chondrocyte phenotype. In this study, we examined if the random positioning machine (RPM) could be used to expand chondrocytes in vitro such that they maintain their phenotype. Bovine chondrocytes were exposed to (a) eight days in static monolayer culture; (b) two days in static monolayer culture, followed by six days of RPM exposure; and, (c) eight days of RPM exposure. Furthermore, the experiment was also conducted with the application of 20 mM gadolinium, which is a nonspecific ion-channel blocker. The results revealed that the chondrocyte phenotype is preserved when chondrocytes go into suspension and aggregate to cell clusters. Exposure to RPM rotation alone does not preserve the chondrocyte phenotype. Interestingly, the gene expression (mRNA) of the mechanosensitive ion channel TRPV4 decreased with progressing dedifferentiation. In contrast, the gene expression (mRNA) of the mechanosensitive ion channel TRPC1 was reduced around fivefold to 10-fold in all of the conditions. The application of gadolinium had only a minor influence on the results. This and previous studies suggest that the chondrocyte phenotype is preserved if cells maintain a round morphology and that the ion channel TRPV4 could play a key role in the dedifferentiation process.
Collapse
Affiliation(s)
- Simon L Wuest
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, CH-6052 Hergiswil, Switzerland.
- University of Bern, Institute for Surgical Technology and Biomechanics, Tissue and Organ Mechanobiology, CH-3014 Bern, Switzerland.
| | - Martina Caliò
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, CH-6052 Hergiswil, Switzerland.
- University of Bern, Institute for Surgical Technology and Biomechanics, Tissue and Organ Mechanobiology, CH-3014 Bern, Switzerland.
| | - Timon Wernas
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, CH-6052 Hergiswil, Switzerland.
| | - Samuel Tanner
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, CH-6052 Hergiswil, Switzerland.
| | - Christina Giger-Lange
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, CH-6052 Hergiswil, Switzerland.
| | - Fabienne Wyss
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, CH-6052 Hergiswil, Switzerland.
| | - Fabian Ille
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, CH-6052 Hergiswil, Switzerland.
| | - Benjamin Gantenbein
- University of Bern, Institute for Surgical Technology and Biomechanics, Tissue and Organ Mechanobiology, CH-3014 Bern, Switzerland.
| | - Marcel Egli
- Lucerne University of Applied Sciences and Arts, School of Engineering and Architecture, Institute of Medical Engineering, Space Biology Group, CH-6052 Hergiswil, Switzerland.
| |
Collapse
|
59
|
Pudlas M, Koch S, Bolwien C, Walles H. Raman Spectroscopy as a Tool for Quality and Sterility Analysis for Tissue Engineering Applications like Cartilage Transplants. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300407] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At present, the production of tissue engineered cartilage requires the concurrent production of two identical transplants. One transplant is used for destructive quality control and the second one is implanted into the patient. A non-invasive characterization of such tissue engineering samples would be a promising tool to achieve a production process of just one transplant that is both implanted and tested. Raman spectroscopy is a method that satisfies this requirement by analyzing cells without lysis, fixation or the use of any chemicals. This pure optical technique is based on inelastic scattering of laser photons by molecular vibrations of biopolymers. Characteristic peaks in Raman spectra of cells could be assigned to typical biochemical molecules present in biological samples. For the analysis of chondrocytes present in cartilage transplants, the determination of the cell vitality as well as the discrimination of another cell type have been studied by Raman spectroscopy. Another bottleneck in such biological processes under GMP conditions is sterility control, as most of the commonly used methods require long cultivation times. Raman spectroscopy provides a good alternative to conventional methods in terms of time saving. In this study, the potential of Raman spectroscopy as a quality and sterility control tool for tissue engineering applications was studied by analyzing and comparing the spectra of cell and bacteria cultures.
Collapse
Affiliation(s)
- Marieke Pudlas
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart - Germany
- University of Stuttgart, Medical Interfacial Engineering, Stuttgart - Germany
| | - Steffen Koch
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart - Germany
- University of Stuttgart, Medical Interfacial Engineering, Stuttgart - Germany
| | - Carsten Bolwien
- Fraunhofer Institute for Physical Measurement Techniques, Freiburg - Germany
| | - Heike Walles
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart - Germany
| |
Collapse
|
60
|
Wong CC, Chen CH, Chiu LH, Tsuang YH, Bai MY, Chung RJ, Lin YH, Hsieh FJ, Chen YT, Yang TL. Facilitating In Vivo Articular Cartilage Repair by Tissue-Engineered Cartilage Grafts Produced From Auricular Chondrocytes. Am J Sports Med 2018; 46:713-727. [PMID: 29211970 DOI: 10.1177/0363546517741306] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Insufficient cell numbers still present a challenge for articular cartilage repair. Converting heterotopic auricular chondrocytes by extracellular matrix may be the solution. HYPOTHESIS Specific extracellular matrix may convert the phenotype of auricular chondrocytes toward articular cartilage for repair. STUDY DESIGN Controlled laboratory study. METHODS For in vitro study, rabbit auricular chondrocytes were cultured in monolayer for several passages until reaching status of dedifferentiation. Later, they were transferred to chondrogenic type II collagen (Col II)-coated plates for further cell conversion. Articular chondrogenic profiles, such as glycosaminoglycan deposition, articular chondrogenic gene, and protein expression, were evaluated after 14-day cultivation. Furthermore, 3-dimensional constructs were fabricated using Col II hydrogel-associated auricular chondrocytes, and their histological and biomechanical properties were analyzed. For in vivo study, focal osteochondral defects were created in the rabbit knee joints, and auricular Col II constructs were implanted for repair. RESULTS The auricular chondrocytes converted by a 2-step protocol expressed specific profiles of chondrogenic molecules associated with articular chondrocytes. The histological and biomechanical features of converted auricular chondrocytes became similar to those of articular chondrocytes when cultivated with Col II 3-dimensional scaffolds. In an in vivo animal model of osteochondral defects, the treated group (auricular Col II) showed better cartilage repair than did the control groups (sham, auricular cells, and Col II). Histological analyses revealed that cartilage repair was achieved in the treated groups with abundant type II collagen and glycosaminoglycans syntheses rather than elastin expression. CONCLUSION The study confirmed the feasibility of applying heterotopic chondrocytes for cartilage repair via extracellular matrix-induced cell conversion. CLINICAL RELEVANCE This study proposes a feasible methodology to convert heterotopic auricular chondrocytes for articular cartilage repair, which may serve as potential alternative sources for cartilage repair.
Collapse
Affiliation(s)
- Chin-Chean Wong
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hwa Chen
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsuan Chiu
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Center for Nano Tissue Engineering and Image Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yang-Hwei Tsuang
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Meng-Yi Bai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.,Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yun-Ho Lin
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Fon-Jou Hsieh
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Lin Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,a Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
61
|
Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W, Osowski A, Wojtkiewicz J. Articular Cartilage Aging-Potential Regenerative Capacities of Cell Manipulation and Stem Cell Therapy. Int J Mol Sci 2018; 19:E623. [PMID: 29470431 PMCID: PMC5855845 DOI: 10.3390/ijms19020623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/11/2018] [Accepted: 02/16/2018] [Indexed: 12/13/2022] Open
Abstract
Changes in articular cartilage during the aging process are a stage of natural changes in the human body. Old age is the major risk factor for osteoarthritis but the disease does not have to be an inevitable consequence of aging. Chondrocytes are particularly prone to developing age-related changes. Changes in articular cartilage that take place in the course of aging include the acquisition of the senescence-associated secretory phenotype by chondrocytes, a decrease in the sensitivity of chondrocytes to growth factors, a destructive effect of chronic production of reactive oxygen species and the accumulation of the glycation end products. All of these factors affect the mechanical properties of articular cartilage. A better understanding of the underlying mechanisms in the process of articular cartilage aging may help to create new therapies aimed at slowing or inhibiting age-related modifications of articular cartilage. This paper presents the causes and consequences of cellular aging of chondrocytes and the biological therapeutic outlook for the regeneration of age-related changes of articular cartilage.
Collapse
Affiliation(s)
- Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, Municipal Hospital in Olsztyn, 10-900 Olsztyn, Poland.
- Department of Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Adam Osowski
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| |
Collapse
|
62
|
Chondrogenic potential of IL-10 in mechanically injured cartilage and cellularized collagen ACI grafts. Osteoarthritis Cartilage 2018; 26:264-275. [PMID: 29169959 DOI: 10.1016/j.joca.2017.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The application of adjunctive mediators in Autologous chondrocyte implantation (ACI) techniques might be useful for improving the dedifferentiated chondrocyte phenotype, to support neocartilage formation and inhibit post-traumatic cartilage destruction. In this study we examined if (a) interleukin 10 treatment can cause chondrogenic phenotype stabilization and matrix preservation in mechanically injured cartilage and if (b) IL-10 can promote chondrogenesis in a clinically applied collagen scaffold for ACI treatment. MATERIALS AND METHODS For (a) bovine articular cartilage was harvested, subjected to an axial unconfined injury and treated with bovine IL-10 (1-10,000 pg/ng/ml). For (b) a post-operatively remaining ACI graft was treated with human IL-10. Expression levels of type I/II/X collagen, SOX9 and aggrecan were measured by qPCR (a,b). After 3 weeks cell death was analyzed (nuclear blebbing and TUNEL assay) and matrix composition was determined by GAG measurements and immunohistochemistry (aggrecan, type I/II collagen, hyaluronic acid). STATISTICS One way ANOVA analysis with Bonferroni's correction. RESULTS (a) IL-10 stabilized the chondrogenic phenotype after injurious compression and preserved matrix integrity. This was indicated by elevated expression of chondrogenic markers COL2A1, ACAN, SOX9, while COL1A1 and COL10A1 were reduced. An increased GAG content paralleled this and histological staining of type 2 collagen, aggrecan and toluidine blue were enhanced after 3 weeks. (b) IL-10 [100 pg/ml] improved the chondrogenic differentiation of human chondrocytes, which was accompanied by cartilaginous matrix formation after 3 weeks of incubation. CONCLUSION Interleukin-10 is a versatile adjuvant candidate to control the post-injurious environment in cartilage defects and promote chondrogenesis in ACI grafts.
Collapse
|
63
|
|
64
|
Huang S, Song X, Li T, Xiao J, Chen Y, Gong X, Zeng W, Yang L, Chen C. Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation. Stem Cell Res Ther 2017; 8:264. [PMID: 29141683 PMCID: PMC5688648 DOI: 10.1186/s13287-017-0719-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023] Open
Abstract
Background Cell source plays a key role in cell-based cartilage repair and regeneration. Recent efforts in cell coculture have attempted to combine the advantages and negate the drawbacks of the constituent cell types. The aim of this study was to evaluate the chondrogenic outcome of articular chondrocytes (ACs) and infrapatellar fat pad (IPFP)-derived mesenchymal stem cells (MSCs) in direct coculture. Methods ACs and IPFP MSCs from the same patients with knee osteoarthritis (OA) were cocultured in monolayer and in pellets. The monocultures of each cell type were also used as controls. Morphological and histologic analysis, immunofluorescence staining, reverse transcription-polymerase chain reaction, and enzyme-linked immunosorbent assay were performed to characterize the chondrogenic differentiation of cocultures. Furthermore, the effects of chitosan/hyaluronic acid (CS/HA) nanoparticle exposure on the chondrogenesis of cocultures were examined. Results In both monolayer and pellet coculture, the hypertrophy of MSCs and the inflammatory activities of ACs were inhibited, although the chondrogenic production in coculture was not promoted compared with that in monoculture. In addition, the exposure of CS/HA nanoparticles to pellet coculture improved the production of type II collagen and aggrecan. Conclusions We demonstrate for the first time that pellet coculture of ACs and IPFP MSCs with CS/HA nanoparticles could promote chondrogenic outcome while preventing the inflammatory status of ACs and the hypertrophic differentiation of MSCs. These findings suggest that the combination of ACs, IPFP MSCs, and CS/HA might be useful in cartilage repair in knee OA.
Collapse
Affiliation(s)
- Shu Huang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jingfang Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Yemiao Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital and Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weinan Zeng
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
65
|
Kosik-Kozioł A, Costantini M, Bolek T, Szöke K, Barbetta A, Brinchmann J, Święszkowski W. PLA short sub-micron fiber reinforcement of 3D bioprinted alginate constructs for cartilage regeneration. Biofabrication 2017; 9:044105. [DOI: 10.1088/1758-5090/aa90d7] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
66
|
Yang SW, Ku KC, Chen SY, Kuo SM, Chen IF, Wang TY, Chang SJ. Development of chondrocyte-seeded electrosprayed nanoparticles for repair of articular cartilage defects in rabbits. J Biomater Appl 2017; 32:800-812. [DOI: 10.1177/0885328217740729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to limited self-healing capacity in cartilages, there is a rising demand for an innovative therapy that promotes chondrocyte proliferation while maintaining its biofunctionality for transplantation. Chondrocyte transplantation has received notable attention; however, the tendencies of cell de-differentiation and de-activation of biofunctionality have been major hurdles in its development, delaying this therapy from reaching the clinic. We believe it is due to the non-stimulative environment in the injured cartilage, which is unable to provide sustainable physical and biological supports to the newly grafted chondrocytes. Therefore, we evaluated whether providing an appropriate matrix to the transplanted chondrocytes could manipulate cell fate and recovery outcomes. Here, we proposed the development of electrosprayed nanoparticles composed of cartilage specific proteins, namely collagen type II and hyaluronic acid, for implantation with pre-seeded chondrocytes into articular cartilage defects. The fabricated nanoparticles were pre-cultured with chondrocytes before implantation into injured articular cartilage. The study revealed a significant potential for nanoparticles to support pre-seeded chondrocytes in cartilage repair, serving as a protein delivery system while improving the survival and biofunctionality of transplanted chondrocytes for prolonged period of time.
Collapse
Affiliation(s)
- Shan-Wei Yang
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kai-Chi Ku
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shu-Ying Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shyh-Ming Kuo
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - I-Fen Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Ting-Yi Wang
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
67
|
Wong CC, Chen CH, Chan WP, Chiu LH, Ho WP, Hsieh FJ, Chen YT, Yang TL. Single-Stage Cartilage Repair Using Platelet-Rich Fibrin Scaffolds With Autologous Cartilaginous Grafts. Am J Sports Med 2017; 45:3128-3142. [PMID: 28892654 DOI: 10.1177/0363546517719876] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND To avoid complicated procedures requiring in vitro chondrocyte expansion for cartilage repair, the development of a culture-free, 1-stage approach combining platelet-rich fibrin (PRF) and autologous cartilage grafts may be the solution. PURPOSE To develop a feasible 1-step procedure to combine PRF and autologous cartilage grafts for articular chondral defects. STUDY DESIGN Controlled laboratory study Methods: The chemotactic effects of PRF on chondrocytes harvested from the primary culture of rabbit cartilage were evaluated in vitro and ex vivo. The rabbit chondrocytes were cultured with different concentrations of PRF media and evaluated for their cell proliferation, chondrogenic gene expression, cell viability, and extracellular matrix synthesis abilities. For the in vivo study, the chondral defects were created on established animal models of rabbits. The gross anatomy, histology, and objective scores were evaluated to validate the treatment results. RESULTS PRF improved the chemotaxis, proliferation, and viability of the cultured chondrocytes. The gene expression of the chondrogenic markers, including type II collagen and aggrecan, revealed that PRF induced the chondrogenic differentiation of cultured chondrocytes. PRF increased the formation and deposition of the cartilaginous matrix produced by cultured chondrocytes. The efficacy of PRF on cell viability was comparable with that of fetal bovine serum. In animal disease models, morphologic, histological, and objectively quantitative evaluation demonstrated that PRF combined with cartilage granules was feasible in facilitating chondral repair. CONCLUSION PRF enhances the migration, proliferation, viability, and differentiation of chondrocytes, thus showing an appealing capacity for cartilage repair. The data altogether provide evidence to confirm the feasibility of 1-stage, culture-free method of combining PRF and autologous cartilage graft for repairing articular chondral defects. CLINICAL RELEVANCE The single-stage, culture-free method of combining PRF and autologous cartilage is useful for repairing articular chondral defects. These advantages benefit clinical translation by simplifying and potentiating the efficacy of autologous cartilage transplantation.
Collapse
Affiliation(s)
- Chin-Chean Wong
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hwa Chen
- Bone and Joint Research Center, Department of Orthopedics, Taipei Medical University Hospital, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wing P Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsuan Chiu
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, USA.,Center for Nano Tissue Engineering and Image Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Pin Ho
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Fon-Jou Hsieh
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Lin Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Department of Otolaryngology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
68
|
Alves da Silva M, Martins A, Costa-Pinto AR, Monteiro N, Faria S, Reis RL, Neves NM. Electrospun Nanofibrous Meshes Cultured With Wharton's Jelly Stem Cell: An Alternative for Cartilage Regeneration, Without the Need of Growth Factors. Biotechnol J 2017; 12. [PMID: 28902474 DOI: 10.1002/biot.201700073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/28/2017] [Indexed: 12/24/2022]
Abstract
Many efforts are being directed worldwide to the treatment of OA-focal lesions. The majority of those efforts comprise either the refinement of surgical techniques or combinations of biomaterials with various autologous cells. Herein, we tested electrospun polycaprolactone (PCL) nanofibrous meshes for cartilage tissue engineering. For that, articular chondrocytes (hACs) isolated from human osteoarthritic joints and Wharton's Jelly Stem Cells (hWJSCs) are cultured on electrospun nanofiber meshes, without adding external growth factors. We observed higher glycosaminoglycans production and higher over-expression of cartilage-related genes from hWJSCs cultured with basal medium, when compared to hACs isolated from osteoarthritic joints. Moreover, the presence of sulfated proteoglycans and collagen type II is observed on both types of cell cultures. We believe that this effect is due to either the electrospun nanofibers topography or the intrinsic chondrogenic differentiation potential of hWJSCs. Therefore, we propose the electrospun nanofibrous scaffolds in combination with hWJSCs as a viable alternative to the commercial membranes used in autologous chondrogenic regeneration approaches.
Collapse
Affiliation(s)
- Marta Alves da Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B's Laboratório Associado PT Government Associate Laboratory, Portugal
| | - Albino Martins
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B's Laboratório Associado PT Government Associate Laboratory, Portugal
| | - Ana R Costa-Pinto
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B's Laboratório Associado PT Government Associate Laboratory, Portugal
| | - Nélson Monteiro
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B's Laboratório Associado PT Government Associate Laboratory, Portugal
| | - Susana Faria
- Prof. S. Faria, Department of Mathematics for Science and Technology, Research CMAT, University of Minho, Guimaraes, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B's Laboratório Associado PT Government Associate Laboratory, Portugal
| | - Nuno M Neves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B's Laboratório Associado PT Government Associate Laboratory, Portugal
| |
Collapse
|
69
|
Zheng W, Lin P, Ma Y, Shao X, Chen H, Chen D, Liu X, Li X, Ye H. Psoralen promotes the expression of cyclin D1 in chondrocytes via the Wnt/β-catenin signaling pathway. Int J Mol Med 2017; 40:1377-1384. [PMID: 28949389 PMCID: PMC5627873 DOI: 10.3892/ijmm.2017.3148] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Psoralen (PSO), the active ingredient of Fructus Psoraleae (FP) the dried ripe fruit of Psoralea corylifolia L., has been commonly used in traditional Chinese medicine (TCM) for the treatment of osteoarthritis (OA). We found that PSO activates cartilaginous cellular functions of rat chondrocytes in vitro. However, the effect of PSO on chondrocyte proliferation and the precise mechanisms involved remain to be elucidated. We investigated the effects of PSO on chondrocytes isolated from Sprague-Dawley (SD) rats and evaluated involvement of the Wnt/β-catenin signaling pathway. The viability of chondrocytes treated with PSO was increased in a dose- and time-dependent manner, as assessed by MTT assay. We found that the gene expression and protein levels of Wnt-4, Frizzled-2, β-catenin and cyclin D1 in the PSO-treated chondrocytes were significantly upregulated, while the gene expression and protein level of glycogen synthase kinase-3β (GSK-3β) were downregulated, compared with the untreated chondrocytes. By immunofluorescence, we also found that PSO induced β-catenin nuclear translocation. Importantly, the expression of β-catenin and cyclin D1 was partly inhibited by Dickkopf-1 (DKK-1), an inhibitor of the Wnt/β-catenin signaling pathway. Additionally, Col-II expression in chondrocytes was increased after treatment with PSO. Taken together, these results indicate that PSO promotes chondrocyte proliferation by activating the Wnt/β-catenin signaling pathway, and it may play an important role in the treatment of OA.
Collapse
Affiliation(s)
- Wenwei Zheng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Pingdong Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuhuan Ma
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiang Shao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Houhuang Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Da Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xianxiang Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongzhi Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
70
|
Miao Y, Dong Y, Huang P, Zhao X, Huang Z, Yao J, Li H, Xu Q. Increasing UCP2 expression and decreasing NOX1/4 expression maintain chondrocyte phenotype by reducing reactive oxygen species production. Oncotarget 2017; 8:63750-63763. [PMID: 28969026 PMCID: PMC5609958 DOI: 10.18632/oncotarget.18908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/06/2017] [Indexed: 11/26/2022] Open
Abstract
The aim of this study is to demonstrate that improving the mitochondrial function can inhibite the loss of chondrocyte phenotype by regulating the expression of uncoupling protein 2(UCP2) and NADPH oxidase1/4(NOX1/4) to reduce the production of reactive oxygen species(ROS). The effects of mitochondrial biogenesis “master regular” peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), mitochondrial transcriptional factor A (TFAM), UCP2, and NOX1/4 on chondrocyte phenotype was examined. It was found that when the chondrocyte phenotype was lost, PGC-1α, UCP2, and TFAM expression decreased, while NOX1/4 expression increased. Inhibiting UCP2 expression promoted the loss of chondrocyte phenotype, and inhibiting NOX1/4 relieved the loss of the chondrocyte phenotype. After activating the PGC-1α-TFAM pathway, UCP2 increased and NOX1/4 decreased, which suppressed loss of the chondrocyte phenotype. After inhibiting NOX1/4, UCP2 expression increased. Increasing and decreasing UCP2 and NOX1/4 expression, respectively, helps maintain the chondrocyte phenotype and improve mitochondrial functioning by reducing reactive oxygen species production.
Collapse
Affiliation(s)
- Yansong Miao
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuefu Dong
- Department of Joint Surgery, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Ping Huang
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Zhao
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Huang
- Department of Cerebral Surgery, Tong Ren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jufang Yao
- Department of Animal Facility, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - He Li
- Department of Traditional Chinese Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingrong Xu
- Department of Orthopaedics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
71
|
Li S, Maçon ALB, Jacquemin M, Stevens MM, Jones JR. Sol–gel derived lithium-releasing glass for cartilage regeneration. J Biomater Appl 2017. [DOI: 10.1177/0885328217706640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Wnt-signalling cascade is one of the crucial pathways involved in the development and homeostasis of cartilage. Influencing this pathway can potentially contribute to improved cartilage repair or regeneration. One key molecular regulator of the Wnt pathway is the glycogen synthase kinase-3 enzyme, the inhibition of which allows initiation of the signalling pathway. This study aims to utilise a binary SiO2–Li2O sol–gel derived glass for controlled delivery of lithium, a known glycogen synthase kinase-3 antagonist. The effect of the dissolution products of the glass on chondrogenic differentiation in an in vitro 3D pellet culture model is reported. Dissolution products that contained 5 mM lithium and 3.5 mM silicon were capable of inducing chondrogenic differentiation and hyaline cartilaginous matrix formation without the presence of growth factors such as TGF-β3. The results suggest that sol–gel derived glass has the potential to be used as a delivery vehicle for therapeutic lithium ions in cartilage regeneration applications.
Collapse
Affiliation(s)
- Siwei Li
- Department of Materials, Imperial College London, London, UK
| | | | - Manon Jacquemin
- Department of Materials, Imperial College London, London, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Julian R Jones
- Department of Materials, Imperial College London, London, UK
| |
Collapse
|
72
|
Biostable scaffolds of polyacrylate polymers implanted in the articular cartilage induce hyaline-like cartilage regeneration in rabbits. Int J Artif Organs 2017; 40:350-357. [PMID: 28574106 PMCID: PMC6379805 DOI: 10.5301/ijao.5000598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 11/24/2022]
Abstract
Purpose To study the influence of scaffold properties on the organization of in vivo cartilage regeneration. Our hypothesis was that stress transmission to the cells seeded inside the pores of the scaffold or surrounding it, which is highly dependent on the scaffold properties, determines the differentiation of both mesenchymal cells and dedifferentiated autologous chondrocytes. Methods 4 series of porous scaffolds made of different polyacrylate polymers, previously seeded with cultured rabbit chondrocytes or without cells, were implanted in cartilage defects in rabbits. Subchondral bone was injured during the surgery to allow blood to reach the implantation site and fill the scaffold pores. Results At 3 months after implantation, excellent tissue regeneration was obtained, with a well-organized layer of hyaline-like cartilage at the condylar surface in most cases of the hydrophobic or slightly hydrophilic series. The most hydrophilic material induced the poorest regeneration. However, no statistically significant difference was observed between preseeded and non-preseeded scaffolds. All of the materials used were biocompatible, biostable polymers, so, in contrast to some other studies, our results were not perturbed by possible effects attributable to material degradation products or to the loss of scaffold mechanical properties over time due to degradation. Conclusions Cartilage regeneration depends mainly on the properties of the scaffold, such as stiffness and hydrophilicity, whereas little difference was observed between preseeded and non-preseeded scaffolds.
Collapse
|
73
|
Witt A, Salamon A, Boy D, Hansmann D, Büttner A, Wree A, Bader R, Jonitz-Heincke A. Gene expression analysis of growth factor receptors in human chondrocytes in monolayer and 3D pellet cultures. Int J Mol Med 2017; 40:10-20. [PMID: 28534942 PMCID: PMC5466384 DOI: 10.3892/ijmm.2017.2994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
The main goal of cartilage repair is to create functional tissue by enhancing the in vitro conditions to more physiological in vivo conditions. Chondrogenic growth factors play an important role in influencing cartilage homeostasis. Insulin‑like growth factor (IGF)‑1 and transforming growth factor (TGF)‑β1 affect the expression of collagen type II (Col2) and glycosaminoglycans (GAGs) and, therefore, the targeted use of growth factors could make chondrogenic redifferentiation more efficient. In the present study, human chondrocytes were postmortally isolated from healthy articular cartilage and cultivated as monolayer or 3D pellet cultures either under normoxia or hypoxia and stimulated with IGF‑1 and/or TGF‑β1 to compare the impact of the different growth factors. The mRNA levels of the specific receptors (IGF1R, TGFBR1, TGFBR2) were analyzed at different time points. Moreover, gene expression rates of collagen type 1 and 2 in pellet cultures were observed over a period of 5 weeks. Additionally, hyaline‑like Col2 protein and sulphated GAG (sGAG) levels were quantified. Stimulation with IGF‑1 resulted in an enhanced expression of IGF1R and TGFBR2 whereas TGF‑β1 stimulated TGFBR1 in the monolayer and pellet cultures. In monolayer, the differences reached levels of significance. This effect was more pronounced under hypoxic culture conditions. In pellet cultures, increased amounts of Col2 protein and sGAGs after incubation with TGF‑β1 and/or IGF‑1 were validated. In summary, constructing a gene expression profile regarding mRNA levels of specific growth factor receptors in monolayer cultures could be helpful for a targeted application of growth factors in cartilage tissue engineering.
Collapse
Affiliation(s)
- Anika Witt
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Centre Rostock, D‑18057 Rostock, Germany
| | - Achim Salamon
- Department of Cell Biology, University Medical Centre Rostock, D‑18057 Rostock, Germany
| | - Diana Boy
- Institute of Forensic Medicine, University Medical Centre Rostock, D‑18057 Rostock, Germany
| | - Doris Hansmann
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Centre Rostock, D‑18057 Rostock, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, University Medical Centre Rostock, D‑18057 Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, University Medical Centre Rostock, D‑18057 Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Centre Rostock, D‑18057 Rostock, Germany
| | - Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Centre Rostock, D‑18057 Rostock, Germany
| |
Collapse
|
74
|
Bonitsky CM, McGann ME, Selep MJ, Ovaert TC, Trippel SB, Wagner DR. Genipin crosslinking decreases the mechanical wear and biochemical degradation of impacted cartilage in vitro. J Orthop Res 2017; 35:558-565. [PMID: 27584857 PMCID: PMC5518482 DOI: 10.1002/jor.23411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/29/2016] [Indexed: 02/04/2023]
Abstract
High energy trauma to cartilage causes surface fissures and microstructural damage, but the degree to which this damage renders the tissue more susceptible to wear and contributes to the progression of post-traumatic osteoarthritis (PTOA) is unknown. Additionally, no treatments are currently available to strengthen cartilage after joint trauma and to protect the tissue from subsequent degradation and wear. The purposes of this study were to investigate the role of mechanical damage in the degradation and wear of cartilage, to evaluate the effects of impact and subsequent genipin crosslinking on the changes in the viscoelastic parameters of articular cartilage, and to test the hypothesis that genipin crosslinking is an effective treatment to enhance the resistance to biochemical degradation and mechanical wear. Results demonstrate that cartilage stiffness decreases after impact loading, likely due to the formation of fissures and microarchitectural damage, and is partially or fully restored by crosslinking. The wear resistance of impacted articular cartilage was diminished compared to undamaged cartilage, suggesting that mechanical damage that is directly induced by the impact may contribute to the progression of PTOA. However, the decrease in wear resistance was completely reversed by the crosslinking treatments. Additionally, the crosslinking treatments improved the resistance to collagenase digestion at the impact-damaged articular surface. These results highlight the potential therapeutic value of collagen crosslinking via genipin in the prevention of cartilage degeneration after traumatic injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:558-565, 2017.
Collapse
Affiliation(s)
- Craig M. Bonitsky
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Megan E. McGann
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Michael J. Selep
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Timothy C. Ovaert
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Stephen B. Trippel
- Deparment of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Diane R. Wagner
- Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, 723 W. Michigan St. SL 260, Indianapolis, Indiana 46202
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
75
|
Samavedi S, Diaz-Rodriguez P, Erndt-Marino JD, Hahn MS. A Three-Dimensional Chondrocyte-Macrophage Coculture System to Probe Inflammation in Experimental Osteoarthritis. Tissue Eng Part A 2016; 23:101-114. [PMID: 27736317 DOI: 10.1089/ten.tea.2016.0007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The goal of the present study was to develop a fully three-dimensional (3D) coculture system that would allow for systematic evaluation of the interplay between activated macrophages (AMs) and chondrocytes in osteoarthritic disease progression and treatment. Toward this end, our coculture system was first validated against existing in vitro osteoarthritis models, which have generally cultured healthy normal chondrocytes (NCs)-in two-dimensional (2D) or 3D-with proinflammatory AMs in 2D. In this work, NCs and AMs were both encapsulated within poly(ethylene glycol) diacrylate hydrogels to mimic the native 3D environments of both cell types within the osteoarthritic joint. As with previous studies, increases in matrix metalloproteinases (MMPs) and proinflammatory cytokines associated with the early stages of osteoarthritis were observed during NC-AM coculture, as were decreases in protein-level Aggrecan and collagen II. Thereafter, the coculture system was extended to osteoarthritic chondrocytes (OACs) and AMs to evaluate the potential effects of AMs on pre-existing osteoarthritic phenotypes. OACs in coculture with AMs expressed significantly higher levels of MMP-1, MMP-3, MMP-9, MMP-13, IL-1β, TNF-α, IL-6, IL-8, and IFN-γ compared to OACs in mono-culture, indicating that proinflammatory macrophages may intensify the abnormal matrix degradation and cytokine secretion already associated with OACs. Likewise, AMs cocultured with OACs expressed significantly more IL-1β and VEGF-A compared to AM mono-culture controls, suggesting that OACs may intensify abnormal macrophage activation. Finally, OACs cultured in the presence of nonactivated macrophages produced lower levels of MMP-9 and proinflammatory cytokines IL-1β, TNF-α, and IFN-γ compared to OACs in the OAC-AM system, results that are consistent with anti-inflammatory agents temporarily reducing certain OA symptoms. In summary, the 3D coculture system developed herein captures several key features of inflammatory OA and may prove useful in future screening of therapeutic agents and/or assessment of disease progression mechanisms.
Collapse
Affiliation(s)
- Satyavrata Samavedi
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Department of Chemical Engineering, Indian Institute of Technology , Hyderabad, India
| | | | - Joshua D Erndt-Marino
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| | - Mariah S Hahn
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
76
|
Pagani S, Borsari V, Veronesi F, Ferrari A, Cepollaro S, Torricelli P, Filardo G, Fini M. Increased Chondrogenic Potential of Mesenchymal Cells From Adipose Tissue Versus Bone Marrow-Derived Cells in Osteoarthritic In Vitro Models. J Cell Physiol 2016; 232:1478-1488. [PMID: 27739057 DOI: 10.1002/jcp.25651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
Abstract
Primarily, to compare the behavior of human mesenchymal stem cells (MSCs) derived from bone marrow (hBMSCs) and adipose tissue (hADSCs) in an osteoarthritic (OA) microenvironment; secondly, to investigate the reaction of these cell types in two alternative in vitro culture systems, obtained by using TNFα and/or IL1β as inflammation mediators, or by using synovial fluid harvested by OA patients (OSF) to simulate the complex inflamed knee microenvironment. 3D micromass cultures of hBMSCs or hADSCs were grown in chondrogenic medium (CTR), in the presence of TNFα and/or IL1β, or synovial fluid from OA patients. After 1 month of culture, the chondrogenic differentiation of micromasses was evaluated by gene expression, matrix composition, and organization. Both hMSCs types formed mature micromasses in CTR, but a better response of hADSCs to the inflammatory environment was documented by micromass area and Bern score evaluations. The addition of OSF elicited a milder reaction than with TNFα and/or IL1β by both cell types, probably due to the presence of both catabolic and protective factors. In particular, SOX9 and ACAN gene expression and GAG synthesis were more abundant in hADSCs than hBMSCs when cultured in OSF. The expression of MMP1 was increased for both hMSCs in inflammatory conditions, but in particular by hBMSCs. hADSCs showed an increased chondrogenic potential in inflammatory culture systems, suggesting a better response of hADSCs in the OA environment, thus underlining the importance of appropriate in vitro models to study MSCs and potential advantages of using these cells for future clinical applications. J. Cell. Physiol. 232: 1478-1488, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefania Pagani
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Veronica Borsari
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Department RIT Rizzoli-Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Andrea Ferrari
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Simona Cepollaro
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giuseppe Filardo
- Biomechnaics Lab-II Clinic, Rizzoli Orthopaedic Institute, Bologna University, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
77
|
Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage. Acta Biomater 2016. [PMID: 27475530 DOI: 10.1016/j.actbio.2016.07.044.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
UNLABELLED Chondrocyte dedifferentiation presents a major barrier in engineering functional cartilage constructs. To mitigate the effects of dedifferentiation, this study employed a post-expansion aggregate culture step to enhance the chondrogenic phenotype of passaged articular chondrocytes (ACs) before their integration into self-assembled neocartilage constructs. The objective was twofold: (1) to explore how passage number (P2, P3, P4, P5, P6, and P7), with or without aggregate culture, affected construct properties; and (2) to determine the highest passage number that could form neocartilage with functional properties. Juvenile leporine ACs were passaged to P2-P7, with or without aggregate culture, and self-assembled into 5mm discs in non-adhesive agarose molds without using any exogenous scaffolds. Construct biochemical and biomechanical properties were assessed. With aggregate culture, neocartilage constructs had significantly higher collagen content, higher tensile properties, and flatter morphologies. These beneficial effects were most obvious at higher passage numbers. Specifically, collagen content, Young's modulus, and instantaneous compressive modulus in the P7, aggregate group were 53%, 116%, and 178% higher than those in the P7, non-aggregate group. Most interestingly, these extensively passaged P7 ACs (expansion factor of 85,000), which are typically highly dedifferentiated, were able to form constructs with properties similar to or higher than those formed by lower passage number cells. This study not only demonstrated that post-expansion aggregate culture could significantly improve the properties of self-assembled neocartilage, but also that chondrocytes of exceedingly high passage numbers, expanded using the methods in this study, could be used in cartilage engineering applications. STATEMENT OF SIGNIFICANCE This work demonstrated that extensively passaged chondrocytes (up to passage 7 (P7); expansion factor of 85,000) could potentially be used for cartilage tissue engineering applications. Specifically, an aggregate culture step, employed after cell expansion and before cell integration into a neocartilage construct, was shown to enhance the ability of the chondrocytes to form neocartilage with better biochemical and biomechanical properties. The beneficial effects of this aggregate culture step was especially noticeable at the high passage numbers. Most interestingly, P7 chondrocytes, which are typically highly dedifferentiated, were able to form neocartilage with properties similar to or higher than those formed by lower passage number cells. The ability to obtain high chondrocyte yields with an enhanced chondrogenic potential could have a broad, beneficial impact in improving current therapies (e.g., using higher cell seeding densities for repair) or developing new strategies that require high cell numbers, such as a scaffold-free approach in forming engineered cartilage.
Collapse
|
78
|
Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage. Acta Biomater 2016; 43:150-159. [PMID: 27475530 DOI: 10.1016/j.actbio.2016.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Chondrocyte dedifferentiation presents a major barrier in engineering functional cartilage constructs. To mitigate the effects of dedifferentiation, this study employed a post-expansion aggregate culture step to enhance the chondrogenic phenotype of passaged articular chondrocytes (ACs) before their integration into self-assembled neocartilage constructs. The objective was twofold: (1) to explore how passage number (P2, P3, P4, P5, P6, and P7), with or without aggregate culture, affected construct properties; and (2) to determine the highest passage number that could form neocartilage with functional properties. Juvenile leporine ACs were passaged to P2-P7, with or without aggregate culture, and self-assembled into 5mm discs in non-adhesive agarose molds without using any exogenous scaffolds. Construct biochemical and biomechanical properties were assessed. With aggregate culture, neocartilage constructs had significantly higher collagen content, higher tensile properties, and flatter morphologies. These beneficial effects were most obvious at higher passage numbers. Specifically, collagen content, Young's modulus, and instantaneous compressive modulus in the P7, aggregate group were 53%, 116%, and 178% higher than those in the P7, non-aggregate group. Most interestingly, these extensively passaged P7 ACs (expansion factor of 85,000), which are typically highly dedifferentiated, were able to form constructs with properties similar to or higher than those formed by lower passage number cells. This study not only demonstrated that post-expansion aggregate culture could significantly improve the properties of self-assembled neocartilage, but also that chondrocytes of exceedingly high passage numbers, expanded using the methods in this study, could be used in cartilage engineering applications. STATEMENT OF SIGNIFICANCE This work demonstrated that extensively passaged chondrocytes (up to passage 7 (P7); expansion factor of 85,000) could potentially be used for cartilage tissue engineering applications. Specifically, an aggregate culture step, employed after cell expansion and before cell integration into a neocartilage construct, was shown to enhance the ability of the chondrocytes to form neocartilage with better biochemical and biomechanical properties. The beneficial effects of this aggregate culture step was especially noticeable at the high passage numbers. Most interestingly, P7 chondrocytes, which are typically highly dedifferentiated, were able to form neocartilage with properties similar to or higher than those formed by lower passage number cells. The ability to obtain high chondrocyte yields with an enhanced chondrogenic potential could have a broad, beneficial impact in improving current therapies (e.g., using higher cell seeding densities for repair) or developing new strategies that require high cell numbers, such as a scaffold-free approach in forming engineered cartilage.
Collapse
|
79
|
Yuan L, Li B, Yang J, Ni Y, Teng Y, Guo L, Fan H, Fan Y, Zhang X. Effects of Composition and Mechanical Property of Injectable Collagen I/II Composite Hydrogels on Chondrocyte Behaviors. Tissue Eng Part A 2016; 22:899-906. [DOI: 10.1089/ten.tea.2015.0513] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lu Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Bao Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Jirong Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yilu Ni
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yingying Teng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
80
|
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
|
81
|
Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016; 98:1-22. [PMID: 27177218 DOI: 10.1016/j.biomaterials.2016.04.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
Affiliation(s)
- Brian J Huang
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Davis, USA; Department of Orthopedic Surgery, University of California Davis, USA.
| |
Collapse
|
82
|
Ashraf S, Ahn J, Cha BH, Kim JS, Han I, Park H, Lee SH. RHEB: a potential regulator of chondrocyte phenotype for cartilage tissue regeneration. J Tissue Eng Regen Med 2016; 11:2503-2515. [PMID: 27061379 DOI: 10.1002/term.2148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 01/03/2023]
Abstract
As articular cartilage has a limited ability to self-repair, successful cartilage regeneration requires clinical-grade chondrocytes with innate characteristics. However, cartilage regeneration via chondrocyte transplantation is challenging, because chondrocytes lose their innate characteristics during in vitro expansion. Here, we investigated the mechanistic underpinning of the gene Ras homologue enriched in brain (RHEB) in the control of senescence and dedifferentiation through the modulation of oxidative stress in chondrocytes, a hallmark of osteoarthritis. Serial expansion of human chondrocytes led to senescence, dedifferentiation and oxidative stress. RHEB maintained the innate characteristics of chondrocytes by regulating senescence, dedifferentiation and oxidative stress, leading to the upregulation of COL2 expression via SOX9 and the downregulation of p27 expression via MCL1. RHEB also decreased the expression of COL10. RHEB knockdown mimics decreased the expression of SOX9, COL2 and MCL1, while abrogating the suppressive function of RHEB on p27 and COL10 in chondrocytes. RHEB-overexpressing chondrocytes successfully formed cartilage tissue in vitro as well as in vivo, with increased expression of GAG matrix and chondrogenic markers. RHEB induces a distinct gene expression signature that maintained the innate chondrogenic properties over a long period. Therefore, RHEB expression represents a potentially useful mechanism in terms of cartilage tissue regeneration from chondrocytes, by which chondrocyte phenotypic and molecular characteristics can be retained through the modulation of senescence, dedifferentiation and oxidative stress. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- S Ashraf
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea.,School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - J Ahn
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| | - B-H Cha
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| | - J-S Kim
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| | - I Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Centre, Kyeunggi-do, Republic of Korea
| | - H Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - S-H Lee
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| |
Collapse
|
83
|
Frohbergh ME, Guevara JM, Grelsamer RP, Barbe MF, He X, Simonaro CM, Schuchman EH. Acid ceramidase treatment enhances the outcome of autologous chondrocyte implantation in a rat osteochondral defect model. Osteoarthritis Cartilage 2016; 24:752-62. [PMID: 26524412 PMCID: PMC4799741 DOI: 10.1016/j.joca.2015.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/14/2015] [Accepted: 10/22/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The overall aim of this study was to evaluate how supplementation of chondrocyte media with recombinant acid ceramidase (rhAC) influenced cartilage repair in a rat osteochondral defect model. METHODS Primary chondrocytes were grown as monolayers in polystyrene culture dishes with and without rhAC (added once at the time of cell plating) for 7 days, and then seeded onto Bio-Gide® collagen scaffolds and grown for an additional 3 days. The scaffolds were then introduced into osteochondral defects created in Sprague-Dawley rat trochlea by a microdrilling procedure. Analysis was performed 6 weeks post-surgery macroscopically, by micro-CT, histologically, and by immunohistochemistry. RESULTS Treatment with rhAC led to increased cell numbers and glycosaminoglycan (GAG) production (∼2 and 3-fold, respectively) following 7 days of expansion in vitro. Gene expression of collagen 2, aggrecan and Sox-9 also was significantly elevated. After seeding onto Bio-Gide®, more rhAC treated cells were evident within 4 h. At 6 weeks post-surgery, defects containing rhAC-treated cells exhibited more soft tissue formation at the articular surface, as evidenced by microCT, as well as histological evidence of enhanced cartilage repair. Notably, collagen 2 immunostaining revealed greater surface expression in animals receiving rhAC treated cells as well. Collagen 10 staining was not enhanced. CONCLUSION The results further demonstrate the positive effects of rhAC treatment on chondrocyte growth and phenotype in vitro, and reveal for the first time the in vivo effects of the treated cells on cartilage repair.
Collapse
Affiliation(s)
- Michael E. Frohbergh
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Johana M. Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Ronald P. Grelsamer
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA
| | - Xingxuan He
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Calogera M. Simonaro
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Edward H. Schuchman
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY,Corresponding Author: Edward H. Schuchman, PhD, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Rm. 14-20A, New York, NY 10029, Tel: 212-659-6711; Fax: 212-849-2447,
| |
Collapse
|
84
|
Schneevoigt J, Fabian C, Leovsky C, Seeger J, Bahramsoltani M. In VitroExpression of the Extracellular Matrix Components Aggrecan, Collagen Types I and II by Articular Cartilage-Derived Chondrocytes. Anat Histol Embryol 2016; 46:43-50. [DOI: 10.1111/ahe.12230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- J. Schneevoigt
- Institute of Anatomy; Histology and Embryology; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - C. Fabian
- Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
| | - C. Leovsky
- Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
| | - J. Seeger
- Institute of Anatomy; Histology and Embryology; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - M. Bahramsoltani
- Institute of Veterinary Anatomy; Department of Veterinary Medicine; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
85
|
Panadero J, Lanceros-Mendez S, Ribelles JG. Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater 2016; 33:1-12. [PMID: 26826532 DOI: 10.1016/j.actbio.2016.01.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/17/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
Abstract
Chondrogenesis of dedifferentiated chondrocytes and mesenchymal stem cells is influenced not only by soluble molecules like growth factors, but also by the cell environment itself. The latter is achieved through both mechanical cues - which act as stimulation factor and influences nutrient transport - and adhesion to extracellular matrix cues - which determine cell shape. Although the effects of soluble molecules and cell environment have been intensively addressed, few observations and conclusions about the interaction between the two have been achieved. In this work, we review the state of the art on the single effects between mechanical and biochemical cues, as well as on the combination of the two. Furthermore, we provide a discussion on the techniques currently used to determine the mechanical properties of materials and tissues generated in vitro, their limitations and the future research needs to properly address the identified problems. STATEMENT OF SIGNIFICANCE The importance of biomechanical cues in chondrogenesis is well known. This paper reviews the existing literature on the effect of mechanical stimulation on chondrogenic differentiation of mesenchymal stem cells in order to regenerate hyaline cartilage. Contradictory results found with respect to the effect of different modes of external loading can be explained by the different properties of the scaffolding system that holds the cells, which determine cell adhesion and morphology and spatial distribution of cells, as well as the stress transmission to the cells. Thus, this review seeks to provide an insight into the interplay between external loading program and scaffold properties during chondrogenic differentiation. The review of the literature reveals an important gap in the knowledge in this field and encourages new experimental studies. The main issue is that in each of the few cases in which the interplay is investigated, just two groups of scaffolds are compared, leaving intermediate adhesion conditions out of study. The authors propose broader studies implementing new high-throughput techniques for mechanical characterization of tissue engineering constructs and the inclusion of fatigue analysis as support methodology to more exhaustive mechanical characterization.
Collapse
|
86
|
Ahn J, Kumar H, Cha BH, Park S, Arai Y, Han I, Park SG, Lee SH. AIMP1 downregulation restores chondrogenic characteristics of dedifferentiated/degenerated chondrocytes by enhancing TGF-β signal. Cell Death Dis 2016; 7:e2099. [PMID: 26890138 PMCID: PMC5399188 DOI: 10.1038/cddis.2016.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022]
Abstract
Dedifferentiation and degeneration of chondrocytes critically influences the efficiency of cartilage repair. One of the causes is the defect of transforming growth factor (TGF)-β signaling that promotes chondrogenic differentiation and degeneration. In the present study, we found that aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) negatively regulates TGF-β signaling via interactions with Smad2 and Smad3 in immunoprecipitation assay and luciferase assay. In addition, we observed that the AIMP1 expression level was significantly increased in osteoarthritis (OA) patient-derived degenerated chondrocytes compared with healthy control. So, we hypothesized that downregulation of AIMP1 using small-interfering RNA (siRNA) technology in dedifferentiated (collected at passage #6) and degenerated (obtained from OA-affected areas) chondrocytes could lead to recover TGF-β signaling in both chondrocytes. Indeed, AIMP1 downregulation restored TGF-β signaling by promoting phosphorylation of Smad2 and Smad3, which shows redifferentiated characteristics in both dedifferentiated and degenerated chondrocytes. Additionally, implantation analyses using in vivo mouse model clearly showed that AIMP1 downregulation resulted in the increased chondrogenic potential as well as the enhanced cartilage tissue formation in both dedifferentiated and degenerated chondrocytes. Histological analyses clarified that AIMP1 downregulation increased expression levels of collagen type II (Col II) and aggrecan, but not Col I expression. Taken together, these data indicate that AIMP1 downregulation using siRNA is a novel tool to restore TGF-β signaling and thereby increases the chondrogenic potential of dedifferentiated/degenerated chondrocytes, which could be further developed as a therapeutic siRNA to treat OA.
Collapse
Affiliation(s)
- J Ahn
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - H Kumar
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Neurosurgery, Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - B-H Cha
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - S Park
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Y Arai
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - I Han
- Department of Neurosurgery, Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - S G Park
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - S-H Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
87
|
Ashraf S, Cha BH, Kim JS, Ahn J, Han I, Park H, Lee SH. Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration. Osteoarthritis Cartilage 2016; 24:196-205. [PMID: 26190795 DOI: 10.1016/j.joca.2015.07.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/11/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023]
Abstract
Adult articular chondrocytes undergo slow senescence and dedifferentiation during in vitro expansion, restricting successful cartilage regeneration. A complete understanding of the molecular signaling pathways involved in the senescence and dedifferentiation of chondrocytes is essential in order to better characterize chondrocytes for cartilage tissue engineering applications. During expansion, cell fate is determined by the change in expression of various genes in response to aspects of the microenvironment, including oxidative stress, mechanical stress, and unsuitable culture conditions. Rapid senescence or dedifferentiation not only results in the loss of the chondrocytic phenotype but also enhances production of inflammatory mediators and matrix-degrading enzymes. This review focuses on the two groups of genes that play direct and indirect roles in the induction of senescence and dedifferentiation. Numerous degenerative signaling pathways associated with these genes have been reported. Upregulation of the genes interleukin 1 beta (IL-1β), p53, p16, p21, and p38 mitogen-activated protein kinase (MAPK) is responsible for the direct induction of senescence, whereas downregulation of the genes transforming growth factor-beta (TGF-β), bone morphogenetic protein-2 (BMP-2), SRY (sex determining region Y)-box 9 (SOX9), and insulin-like growth factor-1 (IGF-1), indirectly induces senescence. In senescent and dedifferentiated chondrocytes, it was found that TGF-β, BMP-2, SOX9, and IGF-1 are downregulated, while the levels of IL-1β, p53, p16, p21, and p38 MAPK are upregulated followed by inhibition of the normal molecular functioning of the chondrocytes. This review helps to elucidate the underlying mechanism in degenerative cartilage disease, which may help to improve cartilage tissue regeneration techniques.
Collapse
Affiliation(s)
- S Ashraf
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea; Department of Biomedical Science, CHA University, Seoul, South Korea.
| | - B-H Cha
- Department of Biomedical Science, CHA University, Seoul, South Korea.
| | - J-S Kim
- Department of Biomedical Science, CHA University, Seoul, South Korea.
| | - J Ahn
- Department of Biomedical Science, CHA University, Seoul, South Korea.
| | - I Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, 59, Yatap-ro Bundang-gu, Seongnam-si, Kyeunggi-do, 463-712, South Korea.
| | - H Park
- School of Integrative Engineering, Chung-Ang University, Seoul, South Korea.
| | - S-H Lee
- Department of Biomedical Science, CHA University, Seoul, South Korea.
| |
Collapse
|
88
|
Dey P, Schneider T, Chiappisi L, Gradzielski M, Schulze-Tanzil G, Haag R. Mimicking of Chondrocyte Microenvironment Using In Situ Forming Dendritic Polyglycerol Sulfate-Based Synthetic Polyanionic Hydrogels. Macromol Biosci 2016; 16:580-90. [DOI: 10.1002/mabi.201500377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/18/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Pradip Dey
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
| | - Tobias Schneider
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
- Klinik für Orthopädische; Unfall- und Wiederherstellungschirurgie; Charité-Universitätsmedizin Berlin Campus Benjamin Franklin; Garystrasse 5 14195 Berlin Germany
| | - Leonardo Chiappisi
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie; Institut für Chemie; Technische Universität Berlin; Straße des 1, Juni 124, Sekr. TC7 10623 Berlin Germany
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie; Institut für Chemie; Technische Universität Berlin; Straße des 1, Juni 124, Sekr. TC7 10623 Berlin Germany
| | - Gundula Schulze-Tanzil
- Department of Anatomy; Paracelsus Medical University; Nuremberg General Hospital; Prof. Ernst Nathan Str. 1 90419 Nuremberg Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 14195 Berlin Germany
| |
Collapse
|
89
|
Li S, Wang X, Cao B, Ye K, Li Z, Ding J. Effects of Nanoscale Spatial Arrangement of Arginine-Glycine-Aspartate Peptides on Dedifferentiation of Chondrocytes. NANO LETTERS 2015; 15:7755-7765. [PMID: 26503136 DOI: 10.1021/acs.nanolett.5b04043] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell dedifferentiation is of much importance in many cases such as the classic problem of dedifferentiation of chondrocytes during in vitro culture in cartilage tissue engineering. While cell differentiation has been much investigated, studies of cell dedifferentiation are limited, and the nanocues of cell dedifferentiation have little been reported. Herein, we prepared nanopatterns and micro/nanopatterns of cell-adhesive arginine-glycine-aspartate (RGD) peptides on nonfouling poly(ethylene glycol) (PEG) hydrogels to examine the effects of RGD nanospacing on adhesion and dedifferentiation of chondrocytes. The relatively larger RGD nanospacing above 70 nm was found to enhance the maintainence of the chondrocyte phenotype in two-dimensional culture, albeit not beneficial for adhesion of chondrocytes. A unique micro/nanopattern was employed to decouple cell spreading, cell shape, and cell-cell contact from RGD nanospacing. Under given spreading size and shape of single cells, the large RGD nanospacing was still in favor of preserving the normal phenotype of chondrocytes. Hence, the nanoscale spatial arrangement of cell-adhesive ligands affords a new independent regulator of cell dedifferentiation, which should be taken into consideration in biomaterial design for regenerative medicine.
Collapse
Affiliation(s)
- Shiyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University , Shanghai 200433, China
| | - Xuan Wang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University , Shanghai 200433, China
| | - Bin Cao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University , Shanghai 200433, China
| | - Kai Ye
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University , Shanghai 200433, China
| | - Zhenhua Li
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University , Shanghai 200433, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University , Shanghai 200433, China
| |
Collapse
|
90
|
BUDA ROBERTO, CAVALLO MARCO, CASTAGNINI FRANCESCO, FERRANTI ENRICO, NATALI SIMONE, GIANNINI SANDRO. Osteochondral repair in hemophilic ankle arthropathy: from current options to future perspectives. JOINTS 2015; 3:201-7. [PMID: 26904526 PMCID: PMC4739540 DOI: 10.11138/jts/2015.3.4.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Young hemophilic patients are frequently affected by ankle arthropathy. At the end stage of the disease, the current treatments are arthrodesis and arthroplasty, which have significant drawbacks. Validated procedures capable of slowing down or even arresting the progression towards the end stage are currently lacking. This review aims to discuss the rationale for and feasibility of applying, in mild hemophilic ankle arthropathy, the main techniques currently used to treat osteochondral defects, focusing in particular on ankle distraction, chondrocyte implantation, mesenchymal stem cell transplantation, allograft transplantation and the use of growth factors. To date, ankle distraction is the only procedure that has been successfully used in hemophilic ankle arthropathy. The use of mesenchymal stem cells have recently been evaluated as feasible for osteochondral repair in hemophilic patients. There may be a rationale for the use of growth factors if they are combined with the previous techniques, which could be useful to arrest the progression of the degeneration or delay end-stage procedures.
Collapse
Affiliation(s)
| | | | - FRANCESCO CASTAGNINI
- Corresponding Author: Francesco Castagnini, MD, I Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via Pupilli 1, 40126 Bologna, Italy, E-mail:
| | | | | | | |
Collapse
|
91
|
An In Vitro Chondrocyte Electrical Stimulation Framework: A Methodology to Calculate Electric Fields and Modulate Proliferation, Cell Death and Glycosaminoglycan Synthesis. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0419-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
92
|
Yuan X, Zhou M, Gough J, Glidle A, Yin H. A novel culture system for modulating single cell geometry in 3D. Acta Biomater 2015; 24:228-240. [PMID: 26086694 DOI: 10.1016/j.actbio.2015.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/14/2015] [Accepted: 06/09/2015] [Indexed: 01/27/2023]
Abstract
Dedifferentiation of chondrocytes during in vitro expansion remains an unsolved challenge for repairing serious articular cartilage defects. In this study, a novel culture system was developed to modulate single cell geometry in 3D and investigate its effects on the chondrocyte phenotype. The approach uses 2D micropatterns followed by in situ hydrogel formation to constrain single cell shape and spreading. This enables independent control of cell geometry and extracellular matrix. Using collagen I matrix, we demonstrated the formation of a biomimetic collagenous "basket" enveloping individual chondrocytes cells. By quantitatively monitoring the production by single cells of chondrogenic matrix (e.g. collagen II and aggrecan) during 21-day cultures, we found that if the cell's volume decreases, then so does its cell resistance to dedifferentiation (even if the cells remain spherical). Conversely, if the volume of spherical cells remains constant (after an initial decrease), then not only do the cells retain their differentiated status, but previously de-differentiated redifferentiate and regain a chondrocyte phenotype. The approach described here can be readily applied to pluripotent cells, offering a versatile platform in the search for niches toward either self-renewal or targeted differentiation.
Collapse
|
93
|
Association of urinary biomarker COLL2-1NO₂ with incident clinical and radiographic knee OA in overweight and obese women. Osteoarthritis Cartilage 2015; 23:1398-404. [PMID: 25891749 DOI: 10.1016/j.joca.2015.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the association between urinary biomarker Coll2-1NO2 (uColl2-1NO2) and incident knee OA after 2.5 years follow-up in middle-aged overweight and obese women at high risk for knee osteoarthritis (OA). DESIGN Data were used from PROOF, a randomized controlled trial with 2.5 years follow-up evaluating the preventive effects of a diet and exercise program and oral glucosamine sulphate (double blind and placebo controlled), on development of incident knee OA in women with body mass index ≥ 27 kg/m(2) without signs of knee OA at baseline. Baseline and 2.5 years uColl2-1NO2 concentrations were assessed with enzyme-linked immunosorbent assay (ELISA). Primary outcome measure was incidence of knee OA in one or both knees, defined as incidence of either Kellgren & Lawrence grade ≥2, joint space narrowing of ≥1.0 mm or knee OA according to the combined clinical and radiographic ACR-criteria. We used binary logistic regression for the association analyses. RESULTS 254 women were available for analyses. At 2.5 years follow-up, incident knee OA was present in 72 of 254 women (28.3%). An inversed association was found between baseline uColl2-1NO2 and incident knee OA at 2.5 years (OR 0.74, 95% CI 0.55-0.99). The concentration at 2.5 years and the change in concentration over 2.5 years did not show significant associations with the outcome. CONCLUSIONS In overweight and obese middle-aged women, not higher but lower baseline uColl2-1NO2 concentration was significantly associated with an increased risk for incident knee OA. This interesting but counterintuitive outcome makes further validation of this biomarker warranted.
Collapse
|
94
|
Abstract
BACKGROUND Articular cartilage has minimal endogenous ability to undergo repair. Multiple chondral restoration strategies have been attempted with varied results. QUESTIONS/PURPOSES The purpose of our review was to determine: (1) Does articular chondrocyte transplantation or matrix-assisted articular chondrocyte transplantation provide better patient-reported outcomes scores, MRI morphologic measurements, or histologic quality of repair tissue compared with microfracture in prospective comparative studies of articular cartilage repair; and (2) which available matrices for matrix-assisted articular chondrocyte transplantation show the best patient-reported outcomes scores, MRI morphologic measurements, or histologic quality of repair tissue? METHODS We conducted a systematic review of PubMed, CINAHL, and MEDLINE from March 2004 to February 2014 using keywords determined to be important for articular cartilage repair, including "cartilage", "chondral", "cell source", "chondrocyte", "matrix", "augment", "articular", "joint", "repair", "treatment", "regeneration", and "restoration" to find articles related to cell-based articular cartilage repair of the knee. The articles were reviewed by two authors (JDW, MKH), our study exclusion criteria were applied, and articles were determined to be relevant (or not) to the research questions. The Methodological Index for Nonrandomized Studies (MINORS) scale was used to judge the quality of nonrandomized manuscripts used in this review and the Jadad score was used to judge the quality of randomized trials. Seventeen articles were reviewed for the first research question and 83 articles were reviewed in the second research question from 301 articles identified in the original systematic search. The average MINORS score was 9.9 (62%) for noncomparative studies and 16.1 (67%) for comparative studies. The average Jadad score was 2.3 for the randomized studies. RESULTS Articular chondrocyte transplantation shows better patient-reported outcomes at 5 years in patients without chronic symptoms preoperatively compared with microfracture (p = 0.026). Matrix-assisted articular chondrocyte transplantation consistently showed improved patient-reported functional outcomes compared with microfracture (p values ranging from < 0.001 to 0.029). Hyalograft C(®) (Anika Therapeutics Inc, Bedford, MA, USA) and Chondro-gide(®) (Genzyme Biosurgery, Kastrup, Denmark) are the matrices with the most published evidence in the literature, but no studies comparing different matrices met our inclusion criteria, because the literature consists only of uncontrolled case series. CONCLUSIONS Matrix-assisted articular chondrocyte transplantation leads to better patient-reported outcomes in cartilage repair compared with microfracture; however, future prospective research is needed comparing different matrices to determine which products optimize cartilage repair. LEVEL OF EVIDENCE Level IV, therapeutic study.
Collapse
|
95
|
Huang Z, Nooeaid P, Kohl B, Roether JA, Schubert DW, Meier C, Boccaccini AR, Godkin O, Ertel W, Arens S, Schulze-Tanzil G. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 50:160-72. [DOI: 10.1016/j.msec.2015.01.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/15/2014] [Accepted: 01/24/2015] [Indexed: 01/14/2023]
|
96
|
Time evolution of in vivo articular cartilage repair induced by bone marrow stimulation and scaffold implantation in rabbits. Int J Artif Organs 2015; 38:210-23. [PMID: 25952995 DOI: 10.5301/ijao.5000404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2015] [Indexed: 11/20/2022]
Abstract
PURPOSE Tissue engineering techniques were used to study cartilage repair over a 12-month period in a rabbit model. METHODS A full-depth chondral defect along with subchondral bone injury were originated in the knee joint, where a biostable porous scaffold was implanted, synthesized of poly(ethyl acrylate-co-hydroxyethyl acrylate) copolymer. Morphological evolution of cartilage repair was studied 1 and 2 weeks, and 1, 3, and 12 months after implantation by histological techniques. The 3-month group was chosen to compare cartilage repair to an additional group where scaffolds were preseeded with allogeneic chondrocytes before implantation, and also to controls, who underwent the same surgery procedure, with no scaffold implantation. RESULTS Neotissue growth was first observed in the deepest scaffold pores 1 week after implantation, which spread thereafter; 3 months later scaffold pores were filled mostly with cartilaginous tissue in superficial and middle zones, and with bone tissue adjacent to subchondral bone. Simultaneously, native chondrocytes at the edges of the defect started to proliferate 1 week after implantation; within a month those edges had grown centripetally and seemed to embed the scaffold, and after 3 months, hyaline-like cartilage was observed on the condylar surface. Preseeded scaffolds slightly improved tissue growth, although the quality of repair tissue was similar to non-preseeded scaffolds. Controls showed that fibrous cartilage was mainly filling the repair area 3 months after surgery. In the 12-month group, articular cartilage resembled the untreated surface. CONCLUSIONS Scaffolds guided cartilaginous tissue growth in vivo, suggesting their importance in stress transmission to the cells for cartilage repair.
Collapse
|
97
|
Bleuel J, Zaucke F, Brüggemann GP, Heilig J, Wolter ML, Hamann N, Firner S, Niehoff A. Moderate cyclic tensile strain alters the assembly of cartilage extracellular matrix proteins in vitro. J Biomech Eng 2015; 137:061009. [PMID: 25782164 DOI: 10.1115/1.4030053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/16/2022]
Abstract
Mechanical loading influences the structural and mechanical properties of articular cartilage. The cartilage matrix protein collagen II essentially determines the tensile properties of the tissue and is adapted in response to loading. The collagen II network is stabilized by the collagen II-binding cartilage oligomeric matrix protein (COMP), collagen IX, and matrilin-3. However, the effect of mechanical loading on these extracellular matrix proteins is not yet understood. Therefore, the aim of this study was to investigate if and how chondrocytes assemble the extracellular matrix proteins collagen II, COMP, collagen IX, and matrilin-3 in response to mechanical loading. Primary murine chondrocytes were applied to cyclic tensile strain (6%, 0.5 Hz, 30 min per day at three consecutive days). The localization of collagen II, COMP, collagen IX, and matrilin-3 in loaded and unloaded cells was determined by immunofluorescence staining. The messenger ribo nucleic acid (mRNA) expression levels and synthesis of the proteins were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and western blots. Immunofluorescence staining demonstrated that the pattern of collagen II distribution was altered by loading. In loaded chondrocytes, collagen II containing fibrils appeared thicker and strongly co-stained for COMP and collagen IX, whereas the collagen network from unloaded cells was more diffuse and showed minor costaining. Further, the applied load led to a higher amount of COMP in the matrix, determined by western blot analysis. Our results show that moderate cyclic tensile strain altered the assembly of the extracellular collagen network. However, changes in protein amount were only observed for COMP, but not for collagen II, collagen IX, or matrilin-3. The data suggest that the adaptation to mechanical loading is not always the result of changes in RNA and/or protein expression but might also be the result of changes in matrix assembly and structure.
Collapse
|
98
|
Restoration of chondrocytic phenotype on a two-dimensional micropatterned surface. Biointerphases 2015; 10:011003. [PMID: 25720765 DOI: 10.1116/1.4913565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chondrocytes within mature cartilage reside in a 3D matrix and adopt a distinctive round morphology. A vast 2D-culture surface is well-known to induce chondrocyte dedifferentiation characterized by the loss of spherical morphology and ceased expression of chondrogenic markers. Methods to restore chondrogenesis so far only occur on a certain level producing varied cell subpopulations and inferior cartilage matrix; the critical parameters, especially for the pericellular microenvironment, are still to be precisely determined. In this study, arrays of 2D circular micropatterns were designed to hold single subcultured chondrocytes with stable adhesion. The chondrocytes rounded up forming a 3D architecture; they remodeled their cytoskeleton to resemble in-situ chondrocytes and expressed collagen II instead of collagen I or fibronectin. This technique suggested that pure physical constraints can induce chondrocytic phenotype restoration on a 2D surface; it also provides a new design pathway to precisely control the microenvironment surrounding every chondrocyte therefore to unify the redifferentiation level of individual cell.
Collapse
|
99
|
Lopa S, Piraino F, Kemp RJ, Di Caro C, Lovati AB, Di Giancamillo A, Moroni L, Peretti GM, Rasponi M, Moretti M. Fabrication of multi-well chips for spheroid cultures and implantable constructs through rapid prototyping techniques. Biotechnol Bioeng 2015; 112:1457-71. [PMID: 25678107 DOI: 10.1002/bit.25557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/29/2023]
Abstract
Three-dimensional (3D) culture models are widely used in basic and translational research. In this study, to generate and culture multiple 3D cell spheroids, we exploited laser ablation and replica molding for the fabrication of polydimethylsiloxane (PDMS) multi-well chips, which were validated using articular chondrocytes (ACs). Multi-well ACs spheroids were comparable or superior to standard spheroids, as revealed by glycosaminoglycan and type-II collagen deposition. Moreover, the use of our multi-well chips significantly reduced the operation time for cell seeding and medium refresh. Exploiting a similar approach, we used clinical-grade fibrin to generate implantable multi-well constructs allowing for the precise distribution of multiple cell types. Multi-well fibrin constructs were seeded with ACs generating high cell density regions, as shown by histology and cell fluorescent staining. Multi-well constructs were compared to standard constructs with homogeneously distributed ACs. After 7 days in vitro, expression of SOX9, ACAN, COL2A1, and COMP was increased in both constructs, with multi-well constructs expressing significantly higher levels of chondrogenic genes than standard constructs. After 5 weeks in vivo, we found that despite a dramatic size reduction, the cell distribution pattern was maintained and glycosaminoglycan content per wet weight was significantly increased respect to pre-implantation samples. In conclusion, multi-well chips for the generation and culture of multiple cell spheroids can be fabricated by low-cost rapid prototyping techniques. Furthermore, these techniques can be used to generate implantable constructs with defined architecture and controlled cell distribution, allowing for in vitro and in vivo investigation of cell interactions in a 3D environment.
Collapse
Affiliation(s)
- Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy
| | - Francesco Piraino
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, 20133, Italy
| | - Raymond J Kemp
- Tissue Regeneration Department, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Clelia Di Caro
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, 20133, Italy
| | - Arianna B Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy
| | | | - Lorenzo Moroni
- Tissue Regeneration Department, University of Twente, 7522 NB, Enschede, The Netherlands
- Department of Complex Tissue Regeneration, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Giuseppe M Peretti
- IRCCS Galeazzi Orthopaedic Institute, Milan, 20161, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, 20161, Italy
| | - Marco Rasponi
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, 20133, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| |
Collapse
|
100
|
Luo L, Wei Q, Liu L, Lin X, Lin C, Zheng LI, Zhao J. Protocatechuic acid benefits proliferation and phenotypic maintenance of rabbit articular chondrocytes: An in vitro study. Exp Ther Med 2015; 9:1865-1870. [PMID: 26136906 DOI: 10.3892/etm.2015.2326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022] Open
Abstract
Numerous antioxidants exhibit antiarthritic effects due to their inhibitory effect on inflammatory factors. Certain antioxidants, such as protocatechuic acid (PCA) and its analogs, have been reported to be effective in the treatment of arthritis. However, the effect of PCA on chondro-protection may be alleviated due to the induction of apoptosis, as has been demonstrated in stomatocytes. To clearly determine the effect of PCA on the biological and cellular metabolism of rabbit articular chondrocytes in vitro, examinations of cytotoxicity, proliferation and morphology were performed, in addition to analyses of glycosaminoglycan (GAG) synthesis and the expression of cartilage-specific genes. The results revealed that PCA effectively promoted chondrocyte growth, the synthesis of the extracellular matrix and the mRNA expression of aggrecan, collagen II and Sox9, while downregulating the expression of the collagen I gene, a marker of chondrocyte dedifferentiation. In addition, hypertrophy, which may result in chondrocyte ossification, was not detected in the groups. Among the doses (range, 0.05-0.3 mmol/l) of PCA that promoted the proliferation of chondrocytes, a concentration of 0.125 mmol/l produced the optimum performance. The results indicated that PCA, particularly at a dose of 0.125 mmol/l, accelerated the proliferation of rabbit articular chondrocytes in vitro and maintained their phenotype. This study may provide a basis for further research concerning the treatment of cartilage defects.
Collapse
Affiliation(s)
- Like Luo
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qingjun Wei
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lei Liu
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China ; Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, Guangxi 530022, P.R. China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - L I Zheng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; The Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China ; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|