51
|
Hoffman AH, Teng Z, Zheng J, Wu Z, Woodard PK, Billiar KL, Wang L, Tang D. Stiffness Properties of Adventitia, Media, and Full Thickness Human Atherosclerotic Carotid Arteries in the Axial and Circumferential Directions. J Biomech Eng 2018; 139:2653366. [PMID: 28857112 DOI: 10.1115/1.4037794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 11/08/2022]
Abstract
Arteries can be considered as layered composite material. Experimental data on the stiffness of human atherosclerotic carotid arteries and their media and adventitia layers are very limited. This study used uniaxial tests to determine the stiffness (tangent modulus) of human carotid artery sections containing American Heart Association type II and III lesions. Axial and circumferential oriented adventitia, media, and full thickness specimens were prepared from six human carotid arteries (total tissue strips: 71). Each artery yielded 12 specimens with two specimens in each of the following six categories; axial full thickness, axial adventitia (AA), axial media (AM), circumferential full thickness, circumferential adventitia (CA), and circumferential media (CM). Uniaxial testing was performed using Inspec 2200 controlled by software developed using labview. The mean stiffness of the adventitia was 3570 ± 667 and 2960 ± 331 kPa in the axial and circumferential directions, respectively, while the corresponding values for the media were 1070 ± 186 and 1800 ± 384 kPa. The adventitia was significantly stiffer than the media in both the axial (p = 0.003) and circumferential (p = 0.010) directions. The stiffness of the full thickness specimens was nearly identical in the axial (1540 ± 186) and circumferential (1530 ± 389 kPa) directions. The differences in axial and circumferential stiffness of media and adventitia were not statistically significant.
Collapse
Affiliation(s)
- Allen H Hoffman
- Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Zhongzhao Teng
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609.,Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110
| | - Zheyang Wu
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110
| | - Kristen L Billiar
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609 e-mail:
| |
Collapse
|
52
|
Chhai P, Rhee K. Effect of distal thickening and stiffening of plaque cap on arterial wall mechanics. Med Biol Eng Comput 2018; 56:2003-2013. [PMID: 29736635 DOI: 10.1007/s11517-018-1839-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/29/2018] [Indexed: 10/17/2022]
Abstract
To investigate the effect of longitudinal variations of cap thickness and tissue properties on wall stresses and strains along the atherosclerotic stenosis, stenotic plaque models (uniformly thick, distally thickened, homogenous, and distally stiffened) were constructed and subjected to computational stress analyses with due consideration of fluid-structure interactions (FSI). The analysis considered three different cap thicknesses-45, 65, and 200 μm-and tissue properties-soft, fibrous, and hard. The maximum peak cap stress (PCS) and strain were observed in the upstream throat section and demonstrated increases of the order of 345 and 190%, respectively, as the cap thickness was reduced from 200 to 45 μm in uniformly thick models. Distal stiffening increased PCS in the downstream region; however, the overall effect of this increase was rather small. Distal thickening did not affect maximum PCS and strain values for cap thicknesses exceeding 65 μm; however, a noticeable increase in maximum PCS and corresponding longitudinal variation (or spatial gradient) in stress was observed in the very thin (45-μm-thick) cap. It was, therefore, inferred that existence of a rather thin upstream cap demonstrating distal cap thickening indicates an increased risk of plaque progression and rupture. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Pengsrorn Chhai
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, South Korea
| | - Kyehan Rhee
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, 17058, South Korea.
| |
Collapse
|
53
|
Guo X, Giddens DP, Molony D, Yang C, Samady H, Zheng J, Mintz GS, Maehara A, Wang L, Pei X, Li ZY, Tang D. Combining IVUS and Optical Coherence Tomography for More Accurate Coronary Cap Thickness Quantification and Stress/Strain Calculations: A Patient-Specific Three-Dimensional Fluid-Structure Interaction Modeling Approach. J Biomech Eng 2018; 140:2659953. [PMID: 29059332 PMCID: PMC5816254 DOI: 10.1115/1.4038263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/04/2017] [Indexed: 12/26/2022]
Abstract
Accurate cap thickness and stress/strain quantifications are of fundamental importance for vulnerable plaque research. Virtual histology intravascular ultrasound (VH-IVUS) sets cap thickness to zero when cap is under resolution limit and IVUS does not see it. An innovative modeling approach combining IVUS and optical coherence tomography (OCT) is introduced for cap thickness quantification and more accurate cap stress/strain calculations. In vivo IVUS and OCT coronary plaque data were acquired with informed consent obtained. IVUS and OCT images were merged to form the IVUS + OCT data set, with biplane angiography providing three-dimensional (3D) vessel curvature. For components where VH-IVUS set zero cap thickness (i.e., no cap), a cap was added with minimum cap thickness set as 50 and 180 μm to generate IVUS50 and IVUS180 data sets for model construction, respectively. 3D fluid-structure interaction (FSI) models based on IVUS + OCT, IVUS50, and IVUS180 data sets were constructed to investigate cap thickness impact on stress/strain calculations. Compared to IVUS + OCT, IVUS50 underestimated mean cap thickness (27 slices) by 34.5%, overestimated mean cap stress by 45.8%, (96.4 versus 66.1 kPa). IVUS50 maximum cap stress was 59.2% higher than that from IVUS + OCT model (564.2 versus 354.5 kPa). Differences between IVUS and IVUS + OCT models for cap strain and flow shear stress (FSS) were modest (cap strain <12%; FSS <6%). IVUS + OCT data and models could provide more accurate cap thickness and stress/strain calculations which will serve as basis for further plaque investigations.
Collapse
Affiliation(s)
- Xiaoya Guo
- Department of Mathematics, Southeast University, Nanjing 210096, China
| | - Don P Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - David Molony
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307
| | - Chun Yang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110
| | - Gary S Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY 10022
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY 10022
| | - Liang Wang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Xuan Pei
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhi-Yong Li
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing 210096, China
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609
| |
Collapse
|
54
|
Syaifudin A, Takeda R, Sasaki K. Development of asymmetric stent for treatment of eccentric plaque. Biomed Mater Eng 2018; 29:299-317. [PMID: 29578470 DOI: 10.3233/bme-181737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The selection of stent and balloon type is decisive in the stenting process. In the treatment of an eccentric plaque obstruction, a symmetric expansion from stent dilatation generates nonuniform stress distribution, which may aggravate fibrous cap prone to rupture. This paper developed a new stent design to treat eccentric plaque using structural transient dynamic analysis in ANSYS. A non-symmetric structural geometry of stent is generated to obtain reasonable stress distribution safe for the arterial layer surrounding the stent. To derive the novel structural geometry, a Sinusoidal stent type is modified by varying struts length and width, adding bridges, and varying curvature width of struts. An end ring of stent struts was also modified to eliminate dogboning phenomenon and to reduce the Ectropion angle. Two balloon types were used to deploy the stent, an ordinary cylindrical and offset balloon. Positive modification results were used to construct the final non-symmetric stent design, called an Asymmetric stent. Analyses of the deformation characteristics, changes in surface roughness and induced stresses within intact arterial layer were subsequently examined. Interaction between the stent and vessel wall was implemented by means of changes in surface roughness and stress distribution analyses. The Palmaz and the Sinusoidal stent were used for a comparative study. This study indicated that the Asymmetric stent types reduced the central radial recoiling and the dogboning phenomenon. In terms of changes in surface roughness and induced stresses, the Asymmetric stent has a comparable effect with that of the Sinusoidal stent. In addition, it could enhance the distribution of surface roughening as expanded by an offset balloon.
Collapse
Affiliation(s)
- Achmad Syaifudin
- Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Ryo Takeda
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Katsuhiko Sasaki
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
55
|
Wang L, Tang D, Maehara A, Wu Z, Yang C, Muccigrosso D, Zheng J, Bach R, Billiar KL, Mintz GS. Fluid-structure interaction models based on patient-specific IVUS at baseline and follow-up for prediction of coronary plaque progression by morphological and biomechanical factors: A preliminary study. J Biomech 2017; 68:43-50. [PMID: 29274686 DOI: 10.1016/j.jbiomech.2017.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 11/26/2022]
Abstract
Plaque morphology and biomechanics are believed to be closely associated with plaque progression. In this paper, we test the hypothesis that integrating morphological and biomechanical risk factors would result in better predictive power for plaque progression prediction. A sample size of 374 intravascular ultrasound (IVUS) slices was obtained from 9 patients with IVUS follow-up data. 3D fluid-structure interaction models were constructed to obtain both structural stress/strain and fluid biomechanical conditions. Data for eight morphological and biomechanical risk factors were extracted for each slice. Plaque area increase (PAI) and wall thickness increase (WTI) were chosen as two measures for plaque progression. Progression measure and risk factors were fed to generalized linear mixed models and linear mixed-effect models to perform prediction and correlation analysis, respectively. All combinations of eight risk factors were exhausted to identify the optimal predictor(s) with highest prediction accuracy defined as sum of sensitivity and specificity. When using a single risk factor, plaque wall stress (PWS) at baseline was the best predictor for plaque progression (PAI and WTI). The optimal predictor among all possible combinations for PAI was PWS + PWSn + Lipid percent + Min cap thickness + Plaque Area (PA) + Plaque Burden (PB) (prediction accuracy = 1.5928) while Wall Thickness (WT) + Plaque Wall Strain (PWSn) + Plaque Area (PA) was the best for WTI (1.2589). This indicated that PAI was a more predictable measure than WTI. The combination including both morphological and biomechanical parameters had improved prediction accuracy, compared to predictions using only morphological features.
Collapse
Affiliation(s)
- Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, MA, USA
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, MA, USA.
| | - Akiko Maehara
- Columbia University, The Cardiovascular Research Foundation, NY, NY, USA
| | - Zheyang Wu
- Mathematical Sciences Department, Worcester Polytechnic Institute, MA, USA
| | - Chun Yang
- Mathematical Sciences Department, Worcester Polytechnic Institute, MA, USA
| | - David Muccigrosso
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Richard Bach
- Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Gary S Mintz
- Columbia University, The Cardiovascular Research Foundation, NY, NY, USA
| |
Collapse
|
56
|
Dong P, Prabhu D, Wilson DL, Bezerra HG, Gu L. OCT-BASED THREE DIMENSIONAL MODELING OF STENT DEPLOYMENT. INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION : [PROCEEDINGS]. INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2017; 3:V003T04A029. [PMID: 29607444 PMCID: PMC5871921 DOI: 10.1115/imece2017-72146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stent deployment has been widely used to treat narrowed coronary artery. Its acute outcome in terms of stent under expansion and malapposition depends on the extent and shape of calcifications. However, no clear understanding as to how to quantify or categorize the impact of calcification. We have conducted ex vivo stenting characterized by the optical coherence tomography (OCT). The goal of this work is to capture the ex vivo stent deployment and quantify the effect of calcium morphology on the stenting. A three dimensional model of calcified plaque was reconstructed from ex vivo OCT images. The crimping, balloon expansion and recoil process of the Express stent were characterized. Three cross-sections with different calcium percentages were chosen to evaluated the effect of the calcium in terms of stress/strain, lumen gains and malapposition. Results will be used to the pre-surgical planning.
Collapse
Affiliation(s)
- Pengfei Dong
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - David Prabhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hiram G Bezerra
- Department of Medicine-Cardiovascular Medicine UH Cleveland Medical Center Cleveland, OH 44106, USA
| | - Linxia Gu
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
57
|
Fan Z, Liu X, Sun A, Zhang N, Fan Z, Fan Y, Deng X. Effect of longitudinal anatomical mismatch of stenting on the mechanical environment in human carotid artery with atherosclerotic plaques. Med Eng Phys 2017; 48:114-119. [DOI: 10.1016/j.medengphy.2017.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/23/2017] [Accepted: 06/02/2017] [Indexed: 12/01/2022]
|
58
|
Patel AK, Suri HS, Singh J, Kumar D, Shafique S, Nicolaides A, Jain SK, Saba L, Gupta A, Laird JR, Giannopoulos A, Suri JS. A Review on Atherosclerotic Biology, Wall Stiffness, Physics of Elasticity, and Its Ultrasound-Based Measurement. Curr Atheroscler Rep 2017; 18:83. [PMID: 27830569 DOI: 10.1007/s11883-016-0635-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Functional and structural changes in the common carotid artery are biomarkers for cardiovascular risk. Current methods for measuring functional changes include pulse wave velocity, compliance, distensibility, strain, stress, stiffness, and elasticity derived from arterial waveforms. The review is focused on the ultrasound-based carotid artery elasticity and stiffness measurements covering the physics of elasticity and linking it to biological evolution of arterial stiffness. The paper also presents evolution of plaque with a focus on the pathophysiologic cascade leading to arterial hardening. Using the concept of strain, and image-based elasticity, the paper then reviews the lumen diameter and carotid intima-media thickness measurements in combined temporal and spatial domains. Finally, the review presents the factors which influence the understanding of atherosclerotic disease formation and cardiovascular risk including arterial stiffness, tissue morphological characteristics, and image-based elasticity measurement.
Collapse
Affiliation(s)
- Anoop K Patel
- Department of Computer Engineering, NIT, Kurukshetra, India
| | | | - Jaskaran Singh
- Department of Computer Engineering, NIT, Kurukshetra, India
| | - Dinesh Kumar
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | | | | | - Sanjay K Jain
- Department of Computer Engineering, NIT, Kurukshetra, India
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | - Ajay Gupta
- Radiology Department, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - John R Laird
- UC Davis Vascular Center, University of California, Davis, CA, USA
| | | | - Jasjit S Suri
- Vascular Diagnostic Center, University of Cyprus, Nicosia, Cyprus. .,Monitoring and Diagnostic Division, AtheroPointâ„¢, Roseville, CA, USA. .,Department of Electrical Engineering, University of Idaho (Affl.), Moscow, ID, USA. .,Diagnosis and Stroke Monitoring Division, AtheroPointâ„¢, Roseville, CA, USA.
| |
Collapse
|
59
|
MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up. PLoS One 2017; 12:e0180829. [PMID: 28715441 PMCID: PMC5513425 DOI: 10.1371/journal.pone.0180829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Background Image-based computational models are widely used to determine atherosclerotic plaque stress/strain conditions and investigate their association with plaque progression and rupture. However, patient-specific vessel material properties are in general lacking in those models, limiting the accuracy of their stress/strain measurements. A noninvasive approach of combining in vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) and computational modeling was introduced to quantify patient-specific carotid plaque material properties for potential plaque model improvements. Vessel material property variation in patients, along vessel segment, and between baseline and follow up were investigated. Methods In vivo 3D multi-contrast and Cine MRI carotid plaque data were acquired from 8 patients with follow-up (18 months) with written informed consent obtained. 3D thin-layer models and an established iterative procedure were used to determine parameter values of the Mooney-Rivlin models for the 81slices from 16 plaque samples. Effective Young’s Modulus (YM) values were calculated for comparison and analysis. Results Average Effective Young’s Modulus (YM) and circumferential shrinkage rate (C-Shrink) value of the 81 slices was 411kPa and 5.62%, respectively. Slice YM value varied from 70 kPa (softest) to 1284 kPa (stiffest), a 1734% difference. Average slice YM values by vessel varied from 109 kPa (softest) to 922 kPa (stiffest), a 746% difference. Location-wise, the maximum slice YM variation rate within a vessel was 311% (149 kPa vs. 613 kPa). The average slice YM variation rate for the 16 vessels was 134%. The average variation of YM values for all patients from baseline to follow up was 61.0%. The range of the variation of YM values was [-28.4%, 215%]. For plaque progression study, YM at follow-up showed negative correlation with plaque progression measured by wall thickness increase (WTI) (r = -0.7764, p = 0.0235). Wall thickness at baseline correlated with WTI negatively, with r = -0.5253 (p = 0.1813). Plaque burden at baseline correlated with YM change between baseline and follow-up, with r = 0.5939 (p = 0.1205). Conclusion In vivo carotid vessel material properties have large variations from patient to patient, along the diseased segment within a patient, and with time. The use of patient-specific, location specific and time-specific material properties in plaque models could potentially improve the accuracy of model stress/strain calculations.
Collapse
|
60
|
Brown AJ, Teng Z, Calvert PA, Rajani NK, Hennessy O, Nerlekar N, Obaid DR, Costopoulos C, Huang Y, Hoole SP, Goddard M, West NEJ, Gillard JH, Bennett MR. Plaque Structural Stress Estimations Improve Prediction of Future Major Adverse Cardiovascular Events After Intracoronary Imaging. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.115.004172. [PMID: 27307548 DOI: 10.1161/circimaging.115.004172] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/09/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although plaque rupture is responsible for most myocardial infarctions, few high-risk plaques identified by intracoronary imaging actually result in future major adverse cardiovascular events (MACE). Nonimaging markers of individual plaque behavior are therefore required. Rupture occurs when plaque structural stress (PSS) exceeds material strength. We therefore assessed whether PSS could predict future MACE in high-risk nonculprit lesions identified on virtual-histology intravascular ultrasound. METHODS AND RESULTS Baseline nonculprit lesion features associated with MACE during long-term follow-up (median: 1115 days) were determined in 170 patients undergoing 3-vessel virtual-histology intravascular ultrasound. MACE was associated with plaque burden ≥70% (hazard ratio: 8.6; 95% confidence interval, 2.5-30.6; P<0.001) and minimal luminal area ≤4 mm(2) (hazard ratio: 6.6; 95% confidence interval, 2.1-20.1; P=0.036), although absolute event rates for high-risk lesions remained <10%. PSS derived from virtual-histology intravascular ultrasound was subsequently estimated in nonculprit lesions responsible for MACE (n=22) versus matched control lesions (n=22). PSS showed marked heterogeneity across and between similar lesions but was significantly increased in MACE lesions at high-risk regions, including plaque burden ≥70% (13.9±11.5 versus 10.2±4.7; P<0.001) and thin-cap fibroatheroma (14.0±8.9 versus 11.6±4.5; P=0.02). Furthermore, PSS improved the ability of virtual-histology intravascular ultrasound to predict MACE in plaques with plaque burden ≥70% (adjusted log-rank, P=0.003) and minimal luminal area ≤4 mm(2) (P=0.002). Plaques responsible for MACE had larger superficial calcium inclusions, which acted to increase PSS (P<0.05). CONCLUSIONS Baseline PSS is increased in plaques responsible for MACE and improves the ability of intracoronary imaging to predict events. Biomechanical modeling may complement plaque imaging for risk stratification of coronary nonculprit lesions.
Collapse
Affiliation(s)
- Adam J Brown
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Zhongzhao Teng
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Patrick A Calvert
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Nikil K Rajani
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Orla Hennessy
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Nitesh Nerlekar
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Daniel R Obaid
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Charis Costopoulos
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Yuan Huang
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Stephen P Hoole
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Martin Goddard
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Nick E J West
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Jonathan H Gillard
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom
| | - Martin R Bennett
- From the Division of Cardiovascular Medicine (A.J.B., P.A.C., N.K.R., O.H., D.R.O., C.C., M.R.B.), Department of Radiology (Z.T., Y.H., J.H.G.), and Department of Engineering (Z.T.), University of Cambridge, United Kingdom; MonashHEART, Monash Medical Centre, Clayton, Australia (N.N.); and Department of Interventional Cardiology (P.A.C., S.P.H., N.E.J.W.) and Department of Pathology (M.G.), Papworth Hospital NHS Trust, United Kingdom.
| |
Collapse
|
61
|
Douglas GR, Brown AJ, Gillard JH, Bennett MR, Sutcliffe MPF, Teng Z. Impact of Fiber Structure on the Material Stability and Rupture Mechanisms of Coronary Atherosclerotic Plaques. Ann Biomed Eng 2017; 45:1462-1474. [PMID: 28361184 PMCID: PMC5415591 DOI: 10.1007/s10439-017-1827-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
The rupture of an atherosclerotic plaque in the coronary circulation remains the main cause of heart attack. As a fiber-oriented structure, the fiber structure, in particular in the fibrous cap (FC), may affect both loading and material strength in the plaque. However, the role of fiber orientation and dispersion in plaque rupture is unclear. Local orientation and dispersion of fibers were calculated for the shoulder regions, mid FC, and regions with intimal thickening (IT) from histological images of 16 human coronary atherosclerotic lesions. Finite element analysis was performed to assess the effect of these properties on mechanical conditions. Fibers in shoulder regions had markedly reduced alignment (Median [interquartile range] 12.9° [6.6, 18.0], p < 0.05) compared with those in mid FC (6.1° [5.5, 9.0]) and IT regions (6.7° [5.1, 8.6]). Fiber dispersion was highest in shoulders (0.150 [0.121, 0.192]), intermediate in IT (0.119 [0.103, 0.144]), and lowest in mid FC regions (0.093 [0.081, 0.105], p < 0.05). When anisotropic properties were considered, stresses were significantly higher for the mid FC (p = 0.030) and IT regions (p = 0.002) and no difference was found for the shoulder or global regions. Shear (sliding) stress between fibers in each region and their proportion of maximum principal stress were: shoulder (25.8 kPa [17.1, 41.2], 12.4%), mid FC (13.9 kPa [5.8, 29.6], 13.8%), and IT (36.5 kPa [25.9, 47.3], 15.5%). Fiber structure within the FC has a marked effect on principal stresses, resulting in considerable shear stress between fibers. Fiber structure including orientation and dispersion may determine mechanical strength and thus rupture of atherosclerotic plaques.
Collapse
Affiliation(s)
- Graeham R Douglas
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Adam J Brown
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan H Gillard
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Michael P F Sutcliffe
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK.
| | - Zhongzhao Teng
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK. .,Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
62
|
Cervical Rotatory Manipulation Decreases Uniaxial Tensile Properties of Rabbit Atherosclerotic Internal Carotid Artery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5189356. [PMID: 28303160 PMCID: PMC5337804 DOI: 10.1155/2017/5189356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the effects of one of the Chinese massage therapies, cervical rotatory manipulation (CRM), on uniaxial tensile properties of rabbit atherosclerotic internal carotid artery (ICA). Methods. 40 male purebred New Zealand white rabbits were randomly divided into CRM-Model group, Non-CRM-Model group, CRM-Normal group, and Non-CRM-Normal group. After modeling (atherosclerotic model) and intervention (CRM or Non-CRM), uniaxial tensile tests were performed on the ICAs to assess the differences in tensile mechanical properties between the four groups. Results. Both CRM and modeling were the main effects affecting physiological elastic modulus (PEM) of ICA. PEM in CRM-Model group was 1.81 times as much as Non-CRM-Model group, while the value in CRM-Model group was 1.34 times as much as CRM-Normal group. Maximum elastic modulus in CRM-Model group was 1.80 times as much as CRM-Normal group. Max strains in CRM-Model group and Non-CRM-Model group were 30.98% and 28.71% lower than CRM-Normal group and Non-CRM-Normal group, respectively. However, whether treated with CRM or not, the uniaxial tensile properties of healthy ICAs were not statistically different. Conclusion. CRM may decrease the uniaxial tensile properties of rabbit arteriosclerotic ICA, but with no effect on normal group. The study will aid in the meaningful explanation of the controversy about the harmfulness of CRM and the suitable population of CRM.
Collapse
|
63
|
Merei B, Badel P, Davis L, Sutton MA, Avril S, Lessner SM. Atherosclerotic plaque delamination: Experiments and 2D finite element model to simulate plaque peeling in two strains of transgenic mice. J Mech Behav Biomed Mater 2017; 67:19-30. [DOI: 10.1016/j.jmbbm.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023]
|
64
|
Araki T, Jain PK, Suri HS, Londhe ND, Ikeda N, El-Baz A, Shrivastava VK, Saba L, Nicolaides A, Shafique S, Laird JR, Gupta A, Suri JS. Stroke Risk Stratification and its Validation using Ultrasonic Echolucent Carotid Wall Plaque Morphology: A Machine Learning Paradigm. Comput Biol Med 2016; 80:77-96. [PMID: 27915126 DOI: 10.1016/j.compbiomed.2016.11.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/20/2016] [Accepted: 11/25/2016] [Indexed: 01/26/2023]
Abstract
Stroke risk stratification based on grayscale morphology of the ultrasound carotid wall has recently been shown to have a promise in classification of high risk versus low risk plaque or symptomatic versus asymptomatic plaques. In previous studies, this stratification has been mainly based on analysis of the far wall of the carotid artery. Due to the multifocal nature of atherosclerotic disease, the plaque growth is not restricted to the far wall alone. This paper presents a new approach for stroke risk assessment by integrating assessment of both the near and far walls of the carotid artery using grayscale morphology of the plaque. Further, this paper presents a scientific validation system for stroke risk assessment. Both these innovations have never been presented before. The methodology consists of an automated segmentation system of the near wall and far wall regions in grayscale carotid B-mode ultrasound scans. Sixteen grayscale texture features are computed, and fed into the machine learning system. The training system utilizes the lumen diameter to create ground truth labels for the stratification of stroke risk. The cross-validation procedure is adapted in order to obtain the machine learning testing classification accuracy through the use of three sets of partition protocols: (5, 10, and Jack Knife). The mean classification accuracy over all the sets of partition protocols for the automated system in the far and near walls is 95.08% and 93.47%, respectively. The corresponding accuracies for the manual system are 94.06% and 92.02%, respectively. The precision of merit of the automated machine learning system when compared against manual risk assessment system are 98.05% and 97.53% for the far and near walls, respectively. The ROC of the risk assessment system for the far and near walls is close to 1.0 demonstrating high accuracy.
Collapse
Affiliation(s)
- Tadashi Araki
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Pankaj K Jain
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA
| | - Harman S Suri
- Monitoring and Diagnostic Division, AtheroPointâ„¢, Roseville, CA, USA
| | - Narendra D Londhe
- Department of Electrical Engineering, NIT Raipur, Chhattisgarh, India
| | - Nobutaka Ikeda
- Cardiovascular Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, USA
| | | | - Luca Saba
- Department of Radiology, University of Cagliari, Italy
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, London, England; Vascular Diagnostic Centre, University of Cyprus, Nicosia, Cyprus
| | - Shoaib Shafique
- CorVasc Vascular Laboratory, 8433 Harcourt Rd #100, Indianapolis, IN, USA
| | - John R Laird
- UC Davis Vascular Centre, University of California, Davis, CA, USA
| | - Ajay Gupta
- Brain and Mind Research Institute and Department of Radiology, Weill Cornell Medical College, NY, USA
| | - Jasjit S Suri
- Point-of-Care Devices, Global Biomedical Technologies, Inc., Roseville, CA, USA; Monitoring and Diagnostic Division, AtheroPointâ„¢, Roseville, CA, USA; Department of Electrical Engineering, University of Idaho (Affl.), ID, USA.
| |
Collapse
|
65
|
Guo X, Zhu J, Maehara A, Monoly D, Samady H, Wang L, Billiar KL, Zheng J, Yang C, Mintz GS, Giddens DP, Tang D. Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study. Biomech Model Mechanobiol 2016; 16:333-344. [PMID: 27561649 DOI: 10.1007/s10237-016-0820-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/17/2016] [Indexed: 01/09/2023]
Abstract
Computational models have been used to calculate plaque stress and strain for plaque progression and rupture investigations. An intravascular ultrasound (IVUS)-based modeling approach is proposed to quantify in vivo vessel material properties for more accurate stress/strain calculations. In vivo Cine IVUS and VH-IVUS coronary plaque data were acquired from one patient with informed consent obtained. Cine IVUS data and 3D thin-slice models with axial stretch were used to determine patient-specific vessel material properties. Twenty full 3D fluid-structure interaction models with ex vivo and in vivo material properties and various axial and circumferential shrink combinations were constructed to investigate the material stiffness impact on stress/strain calculations. The approximate circumferential Young's modulus over stretch ratio interval [1.0, 1.1] for an ex vivo human plaque sample and two slices (S6 and S18) from our IVUS data were 1631, 641, and 346Â kPa, respectively. Average lumen stress/strain values from models using ex vivo, S6 and S18 materials with 5Â % axial shrink and proper circumferential shrink were 72.76, 81.37, 101.84Â kPa and 0.0668, 0.1046, and 0.1489, respectively. The average cap strain values from S18 material models were 150-180Â % higher than those from the ex vivo material models. The corresponding percentages for the average cap stress values were 50-75Â %. Dropping axial and circumferential shrink consideration led to stress and strain over-estimations. In vivo vessel material properties may be considerably softer than those from ex vivo data. Material stiffness variations may cause 50-75Â % stress and 150-180Â % strain variations.
Collapse
Affiliation(s)
- Xiaoya Guo
- Department of Mathematics, Southeast University, Nanjing, 210096, China
| | - Jian Zhu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY, 10022, USA
| | - David Monoly
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA
| | - Liang Wang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Kristen L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Chun Yang
- Network Technology Research Institute, China United Network Communications Co., Ltd., Beijing, China
| | - Gary S Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY, 10022, USA
| | - Don P Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30307, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, 210096, China. .,Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
66
|
Waffenschmidt T, Cilla M, Sáez P, Pérez MM, MartÃnez MA, Menzel A, Peña E. Towards the modelling of ageing and atherosclerosis effects in ApoE(-/-) mice aortic tissue. J Biomech 2016; 49:2390-7. [PMID: 26924660 DOI: 10.1016/j.jbiomech.2016.01.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/28/2016] [Indexed: 02/05/2023]
Abstract
The goal of this work consists in a quantitative analysis and constitutive modelling of ageing processes associated to plaque formation in mice arteries. Reliable information on the characteristic evolution of pressure-stretch curves due to the ageing effects is extracted from previous inflation test experiments. Furthermore, characteristic age-dependent material parameters are identified on the basis of a continuum-mechanics-based parameter optimisation technique. The results indicate that the aorta-stiffness of the healthy control mice remains basically constant irrespective of the diet-time and age. In contrast, significant differences exist within the material response and in consequence within the material parameters between the ApoE(-/-) and the control mice as well as for the different locations over the aorta which is underlined by our experimental observations. With regard to the temporal evolution of the material parameters, we observe that the material parameters for the ApoE(-/-) mice aortas exhibit a saturation-type increase with respect to age.
Collapse
Affiliation(s)
- Tobias Waffenschmidt
- Institute of Mechanics, Department of Mechanical Engineering, TU Dortmund, Germany; 3M Deutschland GmbH, Carl-Schurz-Str. 1, D-41453 Neuss, Germany
| | - Myriam Cilla
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain
| | - Pablo Sáez
- Laboratori de Calcul Numeric (LaCaN), Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Marta M Pérez
- Department of Anatomy, Embryology and Genetics, Veterinary Faculty, University of Zaragoza, Spain
| | - Miguel A MartÃnez
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, CIBER de BioingenierÃa, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Andreas Menzel
- Institute of Mechanics, Department of Mechanical Engineering, TU Dortmund, Germany; Division of Solid Mechanics, Lund University, Sweden
| | - EstefanÃa Peña
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, CIBER de BioingenierÃa, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| |
Collapse
|
67
|
Huang X, Yang C, Zheng J, Bach R, Muccigrosso D, Woodard PK, Tang D. 3D MRI-based multicomponent thin layer structure only plaque models for atherosclerotic plaques. J Biomech 2016; 49:2726-2733. [PMID: 27344199 DOI: 10.1016/j.jbiomech.2016.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/22/2016] [Accepted: 06/01/2016] [Indexed: 01/13/2023]
Abstract
MRI-based fluid-structure interactions (FSI) models for atherosclerotic plaques have been developed to perform mechanical analysis to investigate the association of plaque wall stress (PWS) with cardiovascular disease. However, the time consuming 3D FSI model construction process is a great hinder for its clinical implementations. In this study, a 3D thin-layer structure only (TLS) plaque model was proposed as an approximation with much less computational cost to 3D FSI models for better clinical implementation potential. 192 TLS models were constructed based on 192 ex vivo MRI Images of 12 human coronary atherosclerotic plaques. Plaque stresses were extracted from all lumen nodal points. The maximum value of Plaque wall stress (MPWS) and average value of plaque wall stress (APWS) of each slice were used to compare with those from corresponding FSI models. The relative errors for MPWS and APWS were 9.76% and 9.89%, respectively. Both MPWS and APWS values obtained from TLS models showed very good correlation with those from 3D FSI models. Correlation results from TLS models were in consistent with FSI models. Our results indicated that the proposed 3D TLS plaque models may be used as a good approximation to 3D FSI models with much less computational cost. With further validation, 3D TLS models may be possibly used to replace FSI models to save time and perform mechanical analysis for atherosclerotic plaques for clinical implementation.
Collapse
Affiliation(s)
- Xueying Huang
- School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China; Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen, Fujian 361005 China; Department of Mathematical Sciences, Worcester Polytechnic Institute, MA 01609, USA.
| | - Chun Yang
- Department of Mathematical Sciences, Worcester Polytechnic Institute, MA 01609, USA; Network Technology Research Institute, China United Network Communications Co., Ltd., Beijing, China
| | - Jie Zheng
- Mallinkcrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Richard Bach
- Cardiovascular Division, Washington University, St. Louis, MO 63110, USA
| | - David Muccigrosso
- Mallinkcrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Pamela K Woodard
- Mallinkcrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Dalin Tang
- Department of Mathematical Sciences, Worcester Polytechnic Institute, MA 01609, USA; School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
68
|
Barrett H, Cunnane E, Kavanagh E, Walsh M. On the effect of calcification volume and configuration on the mechanical behaviour of carotid plaque tissue. J Mech Behav Biomed Mater 2016; 56:45-56. [DOI: 10.1016/j.jmbbm.2015.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/15/2022]
|
69
|
Abstract
Atherosclerosis remains a major cause of morbidity and mortality worldwide, and a thorough understanding of the underlying pathophysiological mechanisms is crucial for the development of new therapeutic strategies. Although atherosclerosis is a systemic inflammatory disease, coronary atherosclerotic plaques are not uniformly distributed in the vascular tree. Experimental and clinical data highlight that biomechanical forces, including wall shear stress (WSS) and plaque structural stress (PSS), have an important role in the natural history of coronary atherosclerosis. Endothelial cell function is heavily influenced by changes in WSS, and longitudinal animal and human studies have shown that coronary regions with low WSS undergo increased plaque growth compared with high WSS regions. Local alterations in WSS might also promote transformation of stable to unstable plaque subtypes. Plaque rupture is determined by the balance between PSS and material strength, with plaque composition having a profound effect on PSS. Prospective clinical studies are required to ascertain whether integrating mechanical parameters with medical imaging can improve our ability to identify patients at highest risk of rapid disease progression or sudden cardiac events.
Collapse
|
70
|
Speelman L, Teng Z, Nederveen AJ, van der Lugt A, Gillard JH. MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment. Thromb Haemost 2016; 115:493-500. [PMID: 26791734 DOI: 10.1160/th15-09-0712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/13/2015] [Indexed: 12/18/2022]
Abstract
Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio.
Collapse
Affiliation(s)
- Lambert Speelman
- Dr. Lambert Speelman, Department of Biomedical Engineering, Ee 23.38B, P.O Box 2040, 3000 CA Rotterdam, the Netherlands, Tel.: +31 10 70 44039, Fax: +31 10 70 44720, E-mail:
| | | | | | | | | |
Collapse
|
71
|
Bukala J, Kwiatkowski P, Malachowski J. Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon. Biocybern Biomed Eng 2016. [DOI: 10.1016/j.bbe.2015.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
72
|
Previtera ML, Sengupta A. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages. PLoS One 2015; 10:e0145813. [PMID: 26710072 PMCID: PMC4692401 DOI: 10.1371/journal.pone.0145813] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow-derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness-regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p-NF-κB p65, MyD88, and p-IκBα expression as well as p-NF-κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages.
Collapse
Affiliation(s)
- Michelle L. Previtera
- JFK Neuroscience Institute, JFK Medical Center, 65 James Street, Edison, New Jersey, 08820, United States of America
- Department of Neuroscience, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey, 07079, United States of America
| | - Amitabha Sengupta
- JFK Neuroscience Institute, JFK Medical Center, 65 James Street, Edison, New Jersey, 08820, United States of America
| |
Collapse
|
73
|
Effect of Diet and Age on Arterial Stiffening Due to Atherosclerosis in ApoE(-/-) Mice. Ann Biomed Eng 2015; 44:2202-17. [PMID: 26502169 DOI: 10.1007/s10439-015-1486-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/13/2015] [Indexed: 01/20/2023]
Abstract
This work analyzes the progressive stiffening of the aorta due to atherosclerosis development of both ApoE(-/-) and C57BL/6J mice fed on a Western (n = 5) and a normal (n = 5) chow diet for the ApoE(-/-) group and on a normal chow diet (n = 5) for the C57BL/6J group. Sets of 5 animals from the three groups were killed after 10, 20, 30 and 40 weeks on their respective diets (corresponding to 17, 27, 37 and 47 weeks of age). Mechanical properties (inflation test and axial residual stress measurements) and histological properties were compared for both strains, ApoE(-/-) on the hyper-lipidic diet and both ApoE(-/-) and C57BL/6J on the normal diet, after the same period and after different periods of diet. The results indicated that the aorta stiffness in the ApoE(-/-) and C57BL/6J mice under normal diet remained approximately constant irrespective of their age. However, the arterial stiffness in the ApoE(-/-) on the hyper-lipidic diet increased over time. Statistical differences were found between the group after 10 weeks and the groups after 30 and 40 weeks of a hyper-lipidic diet. Comparing the hyper-lipidic and normal diet mice, statistical differences were also found between both diets in all cases after 40 weeks of diet, frequently after 30 weeks, and in some cases after 20 weeks. The early stages of lesion corresponded to the first 2 weeks of diet. Advanced lesions were found at 30 weeks and, finally, the aorta was completely damaged after 40 weeks of diet. In conclusion, we found substantial changes in the mechanical properties of the aorta walls of the ApoE(-/-) mice fed with the hyper-lipidic diet compared to the normal chow diet groups for both the ApoE(-/-) and C57BL/6J groups. These findings could serve as a reference for the study of changes in the arterial wall properties in cases of atherosclerosis.
Collapse
|
74
|
Teng Z, Yuan J, Feng J, Zhang Y, Brown AJ, Wang S, Lu Q, Gillard JH. The influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques. J Biomech 2015; 48:3912-21. [PMID: 26472305 PMCID: PMC4655867 DOI: 10.1016/j.jbiomech.2015.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 01/01/2023]
Abstract
Calculating high stress concentration within carotid atherosclerotic plaques has been shown to be complementary to anatomical features in assessing vulnerability. Reliability of stress calculation may depend on the constitutive laws/strain energy density functions (SEDFs) used to characterize tissue material properties. Different SEDFs, including neo-Hookean, one-/two-term Ogden, Yeoh, 5-parameter Mooney–Rivlin, Demiray and modified Mooney–Rivlin, have been used to describe atherosclerotic tissue behavior. However, the capacity of SEDFs to fit experimental data and the difference in the stress calculation remains unexplored. In this study, seven SEDFs were used to fit the stress–stretch data points of media, fibrous cap, lipid and intraplaque hemorrhage/thrombus obtained from 21 human carotid plaques. Semi-analytic solution, 2D structure-only and 3D fully coupled fluid-structure interaction (FSI) analyses were used to quantify stress using different SEDFs and the related material stability examined. Results show that, except for neo-Hookean, all other six SEDFs fitted the experimental points well, with vessel stress distribution in the circumferential and radial directions being similar. 2D structural-only analysis was successful for all seven SEDFs, but 3D FSI were only possible with neo-Hookean, Demiray and modified Mooney–Rivlin models. Stresses calculated using Demiray and modified Mooney–Rivlin models were nearly identical. Further analyses indicated that the energy contours of one-/two-term Ogden and 5-parameter Mooney–Rivlin models were not strictly convex and the material stability indictors under homogeneous deformations were not always positive. In conclusion, considering the capacity in characterizing material properties and stabilities, Demiray and modified Mooney–Rivlin SEDF appear practical choices for mechanical analyses to predict the critical mechanical conditions within carotid atherosclerotic plaques.
Collapse
Affiliation(s)
- Zhongzhao Teng
- Department of Radiology, University of Cambridge, UK; Department of Engineering, University of Cambridge, UK.
| | - Jianmin Yuan
- Department of Radiology, University of Cambridge, UK
| | - Jiaxuan Feng
- Department of Vascular Surgery, Changhai Hospital, Shanghai, China
| | - Yongxue Zhang
- Department of Vascular Surgery, Changhai Hospital, Shanghai, China
| | - Adam J Brown
- Division of Cardiovascular Medicine, University of Cambridge, UK
| | - Shuo Wang
- Department of Radiology, University of Cambridge, UK
| | - Qingsheng Lu
- Department of Vascular Surgery, Changhai Hospital, Shanghai, China
| | | |
Collapse
|
75
|
Teng Z, Feng J, Zhang Y, Sutcliffe MPF, Huang Y, Brown AJ, Jing Z, Lu Q, Gillard JH. A uni-extension study on the ultimate material strength and extreme extensibility of atherosclerotic tissue in human carotid plaques. J Biomech 2015; 48:3859-67. [PMID: 26472304 PMCID: PMC4655866 DOI: 10.1016/j.jbiomech.2015.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 12/26/2022]
Abstract
Atherosclerotic plaque rupture occurs when mechanical loading exceeds its material strength. Mechanical analysis has been shown to be complementary to the morphology and composition for assessing vulnerability. However, strength and stretch thresholds for mechanics-based assessment are currently lacking. This study aims to quantify the ultimate material strength and extreme extensibility of atherosclerotic components from human carotid plaques. Tissue strips of fibrous cap, media, lipid core and intraplaque hemorrhage/thrombus were obtained from 21 carotid endarterectomy samples of symptomatic patients. Uni-extension test with tissue strips was performed until they broke or slid. The Cauchy stress and stretch ratio at the peak loading of strips broken about 2 mm away from the clamp were used to characterize their ultimate strength and extensibility. Results obtained indicated that ultimate strength of fibrous cap and media were 158.3 [72.1, 259.3] kPa (Median [Inter quartile range]) and 247.6 [169.0, 419.9] kPa, respectively; those of lipid and intraplaque hemorrhage/thrombus were 68.8 [48.5, 86.6] kPa and 83.0 [52.1, 124.9] kPa, respectively. The extensibility of each tissue type were: fibrous cap – 1.18 [1.10, 1.27]; media – 1.21 [1.17, 1.32]; lipid – 1.25 [1.11, 1.30] and intraplaque hemorrhage/thrombus – 1.20 [1.17, 1.44]. Overall, the strength of fibrous cap and media were comparable and so were lipid and intraplaque hemorrhage/thrombus. Both fibrous cap and media were significantly stronger than either lipid or intraplaque hemorrhage/thrombus. All atherosclerotic components had similar extensibility. Moreover, fibrous cap strength in the proximal region (closer to the heart) was lower than that of the distal. These results are helpful in understanding the material behavior of atherosclerotic plaques.
Collapse
Affiliation(s)
- Zhongzhao Teng
- Department of Radiology, University of Cambridge, UK; Department of Engineering, University of Cambridge, UK.
| | - Jiaxuan Feng
- Department of Vascular Surgery, Changhai Hospital, Shanghai, China
| | - Yongxue Zhang
- Department of Vascular Surgery, Changhai Hospital, Shanghai, China
| | | | - Yuan Huang
- Department of Radiology, University of Cambridge, UK
| | - Adam J Brown
- Division of Cardiovascular Medicine, University of Cambridge, UK
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, Shanghai, China
| | - Qingsheng Lu
- Department of Vascular Surgery, Changhai Hospital, Shanghai, China
| | | |
Collapse
|
76
|
Yuan J, Teng Z, Feng J, Zhang Y, Brown AJ, Gillard JH, Jing Z, Lu Q. Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: a 3D fluid-structure interaction analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:e02722. [PMID: 25940741 PMCID: PMC4528233 DOI: 10.1002/cnm.2722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/10/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Mechanical analysis has been shown to be complementary to luminal stenosis in assessing atherosclerotic plaque vulnerability. However, patient-specific material properties are not available and the effect of material properties variability has not been fully quantified. Media and fibrous cap (FC) strips from carotid endarterectomy samples were classified into hard, intermediate and soft according to their incremental Young's modulus. Lipid and intraplaque haemorrhage/thrombus strips were classified as hard and soft. Idealised geometry-based 3D fluid-structure interaction analyses were performed to assess the impact of material property variability in predicting maximum principal stress (Stress-P1 ) and stretch (Stretch-P1 ). When FC was thick (1000 or 600 µm), Stress-P1 at the shoulder was insensitive to changes in material stiffness, whereas Stress-P1 at mid FC changed significantly. When FC was thin (200 or 65 µm), high stress concentrations shifted from the shoulder region to mid FC, and Stress-P1 became increasingly sensitive to changes in material properties, in particular at mid FC. Regardless of FC thickness, Stretch-P1 at these locations was sensitive to changes in material properties. Variability in tissue material properties influences both the location and overall stress/stretch value. This variability needs to be accounted for when interpreting the results of mechanical modelling.
Collapse
Affiliation(s)
- Jianmin Yuan
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Zhongzhao Teng
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Jiaxuan Feng
- Department of Vascular Surgery, Changhai Hospital, Changhai Road, Shanghai, 200433, China
| | - Yongxue Zhang
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Vascular Surgery, Changhai Hospital, Changhai Road, Shanghai, 200433, China
| | - Adam J Brown
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Jonathan H Gillard
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, Changhai Road, Shanghai, 200433, China
| | - Qingsheng Lu
- Department of Vascular Surgery, Changhai Hospital, Changhai Road, Shanghai, 200433, China
| |
Collapse
|
77
|
Teng Z, Feng J, Zhang Y, Huang Y, Sutcliffe MPF, Brown AJ, Jing Z, Gillard JH, Lu Q. Layer- and Direction-Specific Material Properties, Extreme Extensibility and Ultimate Material Strength of Human Abdominal Aorta and Aneurysm: A Uniaxial Extension Study. Ann Biomed Eng 2015; 43:2745-59. [PMID: 25905688 PMCID: PMC4611020 DOI: 10.1007/s10439-015-1323-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/12/2015] [Indexed: 11/26/2022]
Abstract
Mechanical analysis has the potential to provide complementary information to aneurysm morphology in assessing its vulnerability. Reliable calculations require accurate material properties of individual aneurysmal components. Quantification of extreme extensibility and ultimate material strength of the tissue are important if rupture is to be modelled. Tissue pieces from 11 abdomen aortic aneurysm (AAA) from patients scheduled for elective surgery and from 8 normal aortic artery (NAA) from patients who scheduled for kidney/liver transplant were collected at surgery and banked in liquid nitrogen with the use of Cryoprotectant solution to minimize frozen damage. Prior to testing, specimen were thawed and longitudinal and circumferential tissue strips were cut from each piece and adventitia, media and thrombus if presented were isolated for the material test. The incremental Young’s modulus of adventitia of NAA was direction-dependent at low stretch levels, but not the media. Both adventitia and media had a similar extreme extensibility in the circumferential direction, but the adventitia was much stronger. For aneurysmal tissues, no significant differences were found when the incremental moduli of adventitia, media or thrombus in both directions were compared. Adventitia and media from AAA had similar extreme extensibility and ultimate strength in both directions and thrombus was the weakest material. Adventitia and media from AAA were less extensible compared with those of NAA, but the ultimate strength remained similar. The material properties, including extreme extensibility and ultimate strength, of both healthy aortic and aneurysmal tissues were layer-dependent, but not direction-dependent.
Collapse
Affiliation(s)
- Zhongzhao Teng
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
- Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Jiaxuan Feng
- Department of Vascular Surgery, Changhai Hospital, 168 Changhai Rd., Shanghai, 200433, China
| | - Yongxue Zhang
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Department of Vascular Surgery, Changhai Hospital, 168 Changhai Rd., Shanghai, 200433, China
| | - Yuan Huang
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | | | - Adam J Brown
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, 168 Changhai Rd., Shanghai, 200433, China
| | - Jonathan H Gillard
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Qingsheng Lu
- Department of Vascular Surgery, Changhai Hospital, 168 Changhai Rd., Shanghai, 200433, China.
| |
Collapse
|