51
|
Vijayakumar A, Baskaran R, Baek JH, Sundaramoorthy P, Yoo BK. In Vitro Cytotoxicity and Bioavailability of Ginsenoside-Modified Nanostructured Lipid Carrier Containing Curcumin. AAPS PharmSciTech 2019; 20:88. [PMID: 30675630 DOI: 10.1208/s12249-019-1295-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Our aim was to investigate the cellular uptake, in vitro cytotoxicity and bioavailability of ginsenoside-modified nanostructured lipid carrier loaded with curcumin (G-NLC). The formulation was prepared by melt emulsification technique, in which water was added to the melted lipids and homogenized to give a uniform suspension of NLC (without ginsenoside) and G-NLC. Cellular uptake of curcumin in two colon cancer cell lines (HCT116 and HT29) was increased when administered using both NLC and G-NLC compared to control (curcumin dissolved into DMSO) as measured by fluorescence microscopy. Ginsenoside modification resulted in 2.0-fold and 1.4-fold increases in fluorescence intensity in HCT116 and HT29 cell lines, respectively, compared to plain NLC. In vitro cytotoxicity (assessed by MTT assay) had a dose-dependent relationship with curcumin concentration for both NLC and G-NLC. Although G-NLC was taken up more readily in HCT116 cells, ginsenoside modification did not produce a significant increase in cytotoxic effect; a significant increase was observed in HT29 cells. Oral administration of G-NLC in ten colon cancer patients produced an appreciable plasma level of unbound curcumin (2.9 ng/mL). In conclusion, introduction of ginsenoside into NLC enhanced the cellular uptake and cytotoxicity of curcumin as well as its oral bioavailability, and this strategy can be used to improve clinical outcomes in the treatment of colon cancer with similar genotype to HT29.
Collapse
|
52
|
Hao Y, Gao Y, Wu Y, An C. The AIB1siRNA-loaded hyaluronic acid-assembled PEI/heparin/Ca2+ nanocomplex as a novel therapeutic strategy in lung cancer treatment. Int J Mol Med 2018; 43:861-867. [PMID: 30535446 PMCID: PMC6317651 DOI: 10.3892/ijmm.2018.4014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
In the present study, AIB1siRNA‑loaded polyethyleneimine (PEI)/heparin/Ca2+ nanoparticles (NPs) were successfully prepared and evaluated for their efficacy in lung cancer cells. The results demonstrated that the PEI and heparin complex reduced the toxic effect in cancer cells while maintaining its transfection efficiency. A nanosized particle of ~25 nm was formulated and siRNA was demonstrated to possess excellent binding efficiency in the particles. Confocal microscopy revealed that fluorescein‑labeled (FAM)‑small interfering (si)RNA dissociated from the HA‑PEI/heparin/Ca2+/siRNA (CPH‑siH) NPs and exhibited maximum fluorescence in the cytoplasm, which was important in elucidating its post‑transcriptional activity. CPH‑siH NPs exhibited a typical concentration‑dependent toxicity in cancer cells. Blank PEI/heparin/Ca2+ did not induce any toxicity in cancer cells, indicating its safety and lack of side effects. CPH‑siH (100 nm) induced the maximum apoptosis of cancer cells with nearly ~35% of cells in the early and late apoptosis stages. The expression of the nuclear receptor coactivator 3 (NCOA3, also known as AIB1) protein was knocked down in a concentration‑dependent manner, demonstrating the potent activity of AIB1siRNA in cancer cells. Together, these results indicated that HA‑PEI/heparin/Ca2+ NPs may be a promising carrier for the anticancer activity of AIB1siRNA in lung cancer cells.
Collapse
Affiliation(s)
- Ying Hao
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang 832003, P.R. China
| | - Yongsheng Gao
- Department of Pathology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, P.R. China
| | - Yedan Wu
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Changshan An
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
53
|
Ma Y, Liu X, Ma Q, Liu Y. Near-infrared nanoparticles based on indocyanine green-conjugated albumin: a versatile platform for imaging-guided synergistic tumor chemo-phototherapy with temperature-responsive drug release. Onco Targets Ther 2018; 11:8517-8528. [PMID: 30555242 PMCID: PMC6278719 DOI: 10.2147/ott.s183887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to develop a multifunctional theranostic agent based on BSA nanoparticles (NPs), which loaded artemisinin (ART) and co-conjugated with indocyanine green (ICG) and arginine-glycine-aspartic acid (RGD) peptide (RGD-indocyanine green-Bovine Serum Albumin-artemisinin [IBA] NPs). MATERIALS AND METHODS The physicochemical parameters of RGD-IBA NPs were character-ized in terms of the particle size, zeta potential, morphology, entrapment efficiency, drug loading, in vitro release behavior, photothermal and photodynamic effect, and in vitro anticancer ability. In vivo fluorescence and thermal imaging as well as antitumor studies were also evaluated. RESULTS The tumor chemotherapeutic effects of ART and the ability of fluorescence imaging, hyperthermia generation and reactive oxygen species production of ICG and tumor-targeting RGD were integrated to achieve RGD-IBA NPs for imaging-guided tumor-targeted chemotherapy/photothermal/photodynamic therapy (chemo-phototherapy). The RGD-IBA NPs showed enhanced physiological stability and photo-stability compared with free ART and ICG. In addition, they were temperature-responsive; their sizes increased with increasing temperature between 25°C and 55°C, thereby leading to drug release upon the irradiation with near infrared (NIR) laser. In vivo fluorescence images of tumor-bearing mice showed that the RGD-IBA NPs could highly and passively reach the targeted tumor region with maximum accumulation at 24 hours post-intravenous injection. The in vitro and in vivo results demonstrated that the RGD-IBA NPs not only have good biocompatibility, but also are highly efficient tumor synergistic chemo-phototherapeutic agents. CONCLUSION Through this study, it was found that RGD-IBA NPs could potentially be a very promising tumor theranostic agent.
Collapse
Affiliation(s)
- Yuxin Ma
- Jinan Stomatologic Hospital, Jinan 250001, Shandong, China,
| | - Xiaohua Liu
- Jinan Stomatologic Hospital, Jinan 250001, Shandong, China,
| | - Qianli Ma
- School and Hospital of Stomatology, Shandong University, Jinan 250001, Shandong, China
| | - Yizhi Liu
- Binzhou Medical School, Binzhou 256603, Shandong, China
| |
Collapse
|
54
|
Feng Y, Gao Y, Wang D, Xu Z, Sun W, Ren P. Autophagy Inhibitor (LY294002) and 5-fluorouracil (5-FU) Combination-Based Nanoliposome for Enhanced Efficacy Against Esophageal Squamous Cell Carcinoma. NANOSCALE RESEARCH LETTERS 2018; 13:325. [PMID: 30328537 PMCID: PMC6192941 DOI: 10.1186/s11671-018-2716-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/11/2018] [Indexed: 05/25/2023]
Abstract
In this study, 5-fluorouracil (5-FU) and LY294002 (LY)-loaded PEGylated nanoliposome was prepared to target esophageal squamous cell carcinoma (ESCC). The particles were characterized in terms of physicochemical and biological parameters. The co-delivery of autophagy inhibitor and chemotherapeutic drug in a single carrier was successfully accomplished. The two components from 5-FU and LY-loaded PEGylated nanoliposome (FLNP) released in a controlled manner with LY relatively released faster compared to that of 5-FU. FLNP showed a receptor-mediated cellular uptake that will allow the gradual release of drug in the acidic environment. The cellular uptake of nanoparticles (NP) was further confirmed by FACS analysis. The combination of 5-FU and LY resulted in higher cytotoxic effect compared to that of individual drugs. Most importantly, FLNP exhibited a significantly higher anticancer effect in cancer cells compared to that of free cocktail combinations. The faster release of LY from FLNP leads to autophagy inhibition that improves the sensitivity of cancer cells towards 5-FU, resulting in more cell death. Consistently, FLNP induced a greater apoptosis (~ 48%) of cancer cells compared to that of any other groups. Western blot analysis clearly showed that 5-FU and LY individually increased the expression of caspase-3 and PARP, while as expected FLNP induced a remarkable expression of these protein markers indicating the superior anticancer effect. We believe that the programmed release of autophagy inhibitor and chemotherapeutic drug from a single nanocarrier will increase the prospect of anticancer therapy in ESCC.
Collapse
Affiliation(s)
- Ye Feng
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, 130033 China
| | - Yongjian Gao
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, 130033 China
| | - Dayu Wang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, 130033 China
| | - Zhonghang Xu
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, 130033 China
| | - Weixuan Sun
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital of Jilin University, Changchun, Jilin, 130033 China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130033 China
| |
Collapse
|
55
|
Fang Y, Wang H, Dou HJ, Fan X, Fei XC, Wang L, Cheng S, Janin A, Wang L, Zhao WL. Doxorubicin-loaded dextran-based nano-carriers for highly efficient inhibition of lymphoma cell growth and synchronous reduction of cardiac toxicity. Int J Nanomedicine 2018; 13:5673-5683. [PMID: 30288040 PMCID: PMC6161723 DOI: 10.2147/ijn.s161203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Cardiac side effects of doxorubicin (Dox) have limited its clinical application. The aim of this study was to explore new Dox-loaded dextran-based nano-carriers (NCs) in efficiently targeting tumor growth with less cardiac toxicity. Methods Inspired by recent reports that polymeric NCs could function as sustained, controlled and targeted drug delivery systems, we developed Dox-loaded NCs which displayed a 2-fold release ratio of Dox in the mimic tumor site condition (pH 5.0 with 10 mM glutathione, GSH) as much as that in systemic circulation condition (pH 7.4). Results Lymphoma cells treated with Dox-NCs had significantly higher intracellular Dox concentrations and more apoptotic induction, with lower P-gp expression, when compared with those treated with Dox alone. The identified mechanism of action, apoptosis, was triggered through survivin reduction and caspase-3 activation. Even in the Dox-resistant cells, Dox-NCs could significantly inhibit cell growth and induce apoptosis. In murine lymphoma xenograft models, Dox-NCs also remarkably significantly retarded tumor growth, assessed by murine weight, and demonstrated less cytotoxicity. Noticeably, apoptotic myocardial cells were decreased in the Dox-NCs-treated group, when compared with the control group, which was consistent with low intracellular Dox concentration in the cardiac cell line H9C2. Conclusion Dox-NCs showed an anti-lymphoma effect with reduced cardiac toxicity in both in vivo and in vitro models and, therefore, could be a potential therapeutic agent in the treatment of lymphoma.
Collapse
Affiliation(s)
- Ying Fang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ;
| | - Hao Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Jing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Fan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ;
| | - Xiao-Chun Fei
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ;
| | - Anne Janin
- Sino-French Research Center of Life Science and Genomics, Laboratory of Molecular Pathology, Shanghai, China, ; .,Joint Research Unit 1165, Inserm, University Paris VII, Saint-Louis Hospital, Paris, France
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ; .,Sino-French Research Center of Life Science and Genomics, Laboratory of Molecular Pathology, Shanghai, China, ;
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, ; .,Sino-French Research Center of Life Science and Genomics, Laboratory of Molecular Pathology, Shanghai, China, ;
| |
Collapse
|
56
|
Dai Y, Huang J, Xiang B, Zhu H, He C. Antiproliferative and Apoptosis Triggering Potential of Paclitaxel-Based Targeted-Lipid Nanoparticles with Enhanced Cellular Internalization by Transferrin Receptors-a Study in Leukemia Cells. NANOSCALE RESEARCH LETTERS 2018; 13:271. [PMID: 30191515 PMCID: PMC6127072 DOI: 10.1186/s11671-018-2688-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2018] [Indexed: 02/05/2023]
Abstract
Leukemia is a typical blood cancer that is characterized by the numerous duplication and proliferation of white blood cells. The main aim of this study was to develop PTX-loaded multifunctional nanoparticles and target to leukemia cells. In this study, transferrin-decorated paclitaxel-loaded lipid nanoparticle (TPLN) was prepared with an aim to increase the chemotherapeutic efficacy in the leukemia cells. Results clearly showed the superior targeting potential of TPLN to the HL-60 cancer cells compared to that of the paclitaxel-loaded nanoparticles (PLN). To be specific, TPLN showed a significantly higher cytotoxic effect in the cancer cells compared to that of the PLN indicating the superior targeting efficiency of the Tf-decorated nanoparticle system. The IC50 value of TPLN was 0.45 μg/ml compared to 2.8 μg/ml for PLN. TPLN induced a most remarkable apoptosis of the cancer cells and much of the cells were distorted with huge presence of the apoptotic body formation. Importantly, TPLN showed a remarkable reduction in the viable cells proportion to ~ 65% with around ~ 30% apoptosis cells (early and late apoptosis). Overall, results clearly showed the targeting potential of ligand-conjugated lipid nanoparticle system to the leukemia cells that might pave the way for the successful cancer treatment.
Collapse
Affiliation(s)
- Yang Dai
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jingcao Huang
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Bing Xiang
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Huanling Zhu
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan, 610041, People's Republic of China
| | - Chuan He
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, No. 37 GuoXue Xiang, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
57
|
Fang J, Zhang S, Xue X, Zhu X, Song S, Wang B, Jiang L, Qin M, Liang H, Gao L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int J Nanomedicine 2018; 13:5113-5126. [PMID: 30233175 PMCID: PMC6135215 DOI: 10.2147/ijn.s170862] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Effective gastric carcinoma (GC) chemotherapy is subject to many in vitro and in vivo barriers, such as tumor microenvironment and multidrug resistance. MATERIALS AND METHODS Herein, we developed a hyaluronic acid (HA)-modified silica nanoparticle (HA-SiLN/QD) co-delivering quercetin and doxorubicin (DOX) to enhance the efficacy of GC therapy (HA-SiLN/QD). The HA modification was done to recognize overexpressed CD44 receptors on GC cells and mediate selective tumor targeting. In parallel, quercetin delivery decreased the expression of Wnt16 and P-glycoprotein, thus remodeling the tumor microenvironment and reversed multidrug resistance to facilitate DOX activity. RESULTS Experimental results demonstrated that HA-SiLN/QD was nanoscaled particles with preferable stability and sustained release property. In vitro cell experiments on SGC7901/ADR cells showed selective uptake and increased DOX retention as compared to the DOX mono-delivery system (HA-SiLN/D). CONCLUSION In vivo anticancer assays on the SGC7901/ADR tumor-bearing mice model also revealed significantly enhanced efficacy of HA-SiLN/QD than mono-delivery systems (HA-SiLN/Q and HA-SiLN/D).
Collapse
Affiliation(s)
- Jian Fang
- Department of General Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Shangwu Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Xiaofeng Xue
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| | - Shiduo Song
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| | - Bin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| | - Mingde Qin
- Department of General Surgery, The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Hansi Liang
- Department of General Surgery, The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China,
| |
Collapse
|
58
|
Zhang D, Xu Q, Wang N, Yang Y, Liu J, Yu G, Yang X, Xu H, Wang H. A complex micellar system co-delivering curcumin with doxorubicin against cardiotoxicity and tumor growth. Int J Nanomedicine 2018; 13:4549-4561. [PMID: 30127606 PMCID: PMC6091483 DOI: 10.2147/ijn.s170067] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Dose-dependent irreversible cardiac toxicity of doxorubicin (DOX) becomes a major obstacle for the clinical use. Nowadays much attention is being paid to combination therapy with DOX and antioxidant agents, which would improve the clinical efficacy by protecting from cardiotoxicity along with the maintained performance as an antitumor drug. With the assistance of nanoscience and polymer engineering, herein a complex polymeric micellar system was developed for co-loading DOX and a premium natural antioxidant curcumin (CUR), and we investigated whether this new formulation for DOX delivery could achieve such a goal. Methods The dually loaded micelles co-encapsulating DOX and CUR (CPMDC) were prepared through thin-film rehydration by using the amphiphilic diblock copolymer monomethoxy poly(ethylene glycol) (mPEG)–poly(ε-caprolactone) (PCL)–N-t-butoxycarbonyl-phenylalanine (BP) synthesized by end-group modification of mPEG–PCL with BP. Quantitative analysis was conducted by HPLC methods for drugs in micelles or biosamples. Molecular dynamics simulation was performed using HyperChem software to illustrate interactions among copolymer and active pharmaceutical ingredients. The safety and antitumor efficacy were evaluated by in vitro viability of H9C2 cells, and tumor growth inhibition in tumor-bearing mice respectively. The protection effects against DOX-induced cardiotoxicity were investigated according to several physiological, histopathological and biochemical markers concerning systemic and cardiac toxicity. Results CPMDC were obtained with favorable physicochemical properties meeting the clinical demand, including uniform particle size, fairly high encapsulation efficiency and drug loadings, as well as good drug release profiles and colloidal stability. The result from molecular dynamics simulation indicated a great impact of the interactions among copolymer and small molecules on the ratiometrical co-encapsulation of both drugs. MTT assay of in vitro H9C2 cells viability demonstrated good safety of the CPMDC formulation, which also showed definite signs of decrease in xenograft tumor growth. The studies on pharmacokinetics and tissue distribution further revealed that DOX delivered by CPMDC could result in prolonged systemic circulation and increased DOX accumulation in tumor but decreased level of the toxic metabolite doxorubicinol in heart tissue compared to free DOX alone or the cocktail combination. Conclusion The findings from present study substantiated that such a complex micellar system codelivering DOX with CUR does produce the effect of killing two birds with one stone via distinctive nanocarrier-modified drug-drug interactions.
Collapse
Affiliation(s)
- Di Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Qian Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Ning Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Yanting Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Guohua Yu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| | - Hui Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| |
Collapse
|
59
|
Chitosan hydrochloride/hyaluronic acid nanoparticles coated by mPEG as long-circulating nanocarriers for systemic delivery of mitoxantrone. Int J Biol Macromol 2018; 113:345-353. [PMID: 29486258 DOI: 10.1016/j.ijbiomac.2018.02.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
|
60
|
Wang X, Wu F, Li G, Zhang N, Song X, Zheng Y, Gong C, Han B, He G. Lipid-modified cell-penetrating peptide-based self-assembly micelles for co-delivery of narciclasine and siULK1 in hepatocellular carcinoma therapy. Acta Biomater 2018; 74:414-429. [PMID: 29787814 DOI: 10.1016/j.actbio.2018.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/05/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and one therapeutic approach is to target both the AMPK and autophagy pathways in order to synergistically promote programmed cell death. Here, a series of amphiphilic, lipid-modified cell-penetrating peptides were synthesized and allowed to self-assemble into micelles loaded with the AMPK activator narciclasine (Narc) and short interfering RNA targeting the unc-51-like kinase 1 (siULK1). The size of these micelles, their efficiency of transfection into cells, and their ability to release drug or siRNA cargo in vitro were pH-sensitive, such that drug release was facilitated in the acidic microenvironment of the tumor. Transfecting the micelles into HCC cells significantly inhibited protective autophagy within tumor cells, and delivering the micelles into mice carrying HCC xenografts induced apoptosis, slowed tumor growth, and inhibited autophagy. Our results indicate that co-delivering Narc and siULK1 in biocompatible micelles can safely inhibit tumor growth and protective autophagy, justifying further studies into this promising therapeutic approach against HCC. STATEMENT OF SIGNIFICANCE We have focused on the targeted therapy of HCC via synergistically inhibiting the autophagy and inducing apoptosis. The lipid-modified cell-penetrating peptide can not only aggregate into micelles to load natural product narciclasine and ULK1 siRNA simultaneously, but also facilitate uptake and endosome escape with a pH-sensitive manner in HepG2 cells. HepG2 cell treated with siULK1-M-Narc has increased apoptotic levels and declined autophagy via the targeted regulation of AMPK-ULK1 signaling axis. The in vivo studies have confirmed that siULK1-M-Narc efficiently reduce the growth of tumor on HCC xenograft models with good safety. Thus, we suppose the lipid-modified cell-penetrating peptide has good application prospects in the targeted combinational therapy of HCC.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Fengbo Wu
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Guoyou Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610065, China.
| | - Nan Zhang
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiangrong Song
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yu Zheng
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Changyang Gong
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bo Han
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu He
- Department of Pharmacy and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
61
|
Sundaramoorthy P, Gasparetto C, Kang Y. The combination of a sphingosine kinase 2 inhibitor (ABC294640) and a Bcl-2 inhibitor (ABT-199) displays synergistic anti-myeloma effects in myeloma cells without a t(11;14) translocation. Cancer Med 2018; 7:3257-3268. [PMID: 29761903 PMCID: PMC6051232 DOI: 10.1002/cam4.1543] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease in need of the development of novel therapeutic agents and drug combinations. ABT‐199 is a specific Bcl‐2 inhibitor in clinical trials for MM; however, its activity as a single agent was limited to myeloma patients with the t(11;14) translocation who acquire resistance due to co‐expression of Mcl‐1 and Bcl‐xL. These limitations preclude its use in a broader patient population. We have recently found that a sphingosine kinase 2‐specific inhibitor (ABC294640) induces apoptosis in primary human CD138+ cells and MM cell lines. ABC294640 is currently in phase I/II clinical trials for myeloma (clinicaltrials.gov: #NCT01410981). Interestingly, ABC294640 down‐regulates c‐Myc and Mcl‐1, but does not have any effects on Bcl‐2. We first evaluated the combinatorial anti‐myeloma effect of ABC294640 and ABT‐199 in vitro in 7 MM cell lines, all of which harbor no t(11;14) translocation. Combination index calculation demonstrated a synergistic anti‐myeloma effect of the combination of ABC294640 and ABT‐199. This synergistic anti‐myeloma effect was maintained even in the presence of bone marrow (BM) stromal cells. The combination of ABC294640 and ABT‐199 led to enhanced cleavage of PARP and caspase‐3/9 and increased Annexin‐V expression, consistent with the induction of apoptosis by the combination treatment. In addition, the combination of ABC294640 and ABT‐199 resulted in the down‐regulation of the anti‐apoptotic proteins Mcl‐1, Bcl‐2, and Bcl‐xL and the cleavage of Bax and Bid. The combination induced both the mitochondrial mediated‐ and caspase‐mediated apoptosis pathways. Finally, the combination of ABC294640 and ABT‐199 resulted in augmented anti‐myeloma effect in vivo in a mouse xenograft model. These findings demonstrate that the co‐administration of ABC294640 and ABT‐199 exhibits synergistic anti‐myeloma activity in vitro and in vivo, providing justification for a clinical study of this novel combination in patients with relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- Pasupathi Sundaramoorthy
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Cristina Gasparetto
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | - Yubin Kang
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
62
|
Yang W, Hu Q, Xu Y, Liu H, Zhong L. Antibody fragment-conjugated gemcitabine and paclitaxel-based liposome for effective therapeutic efficacy in pancreatic cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:328-335. [PMID: 29752104 DOI: 10.1016/j.msec.2018.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/27/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022]
Abstract
In this study, we have developed an antibody fragment (AF)-conjugated gemcitabine (GEM) and paclitaxel (PTX)-loaded liposome (AF-GPL) to enhance the therapeutic efficacy in pancreatic cancer treatment. The maleimide-thiol chemistry was utilized to conjugate AF on the liposome surface. The dual-drug loaded liposome was nanosized and exhibited a controlled release of both the drugs. Importantly, two drugs have different release pattern over a period of time. The AF-conjugated liposome showed enhanced cellular uptake in pancreatic cancer cells compared to that of non-targeted liposome. Two-fold higher internalization of particles might increase the intracellular concentration of anticancer drugs that might further increase the therapeutic efficacy in pancreatic cancer cells. AF-GPL showed significantly higher cytotoxic effect in pancreatic cancer cell compared to that of non-targeted GPL. The IC50 value of GEM, PTX, GPL and AF-GPL were 5.9 μg/ml, 4.2 μg/ml, 1.92 μg/ml, and 0.45 μg/ml, respectively. Consistently, AF-GPL (4.12) showed significantly higher ratio of Bax/Bcl-2 compared to that of non-targeted GPL (2.8). Importantly, AF-GPL induced a significant apoptosis of cancer cells with predominant amount of cells in late apoptosis cells. Overall, AF-conjugated nanosystem could potentially improve the therapeutic efficacy in pancreatic cancers.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China
| | - Qian Hu
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China
| | - Yanmei Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China
| | - Hailang Liu
- Department of Organ Transplant, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China
| | - Lin Zhong
- Department of Organ Transplant, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, China.
| |
Collapse
|
63
|
Zhang L, Chang J, Zhao Y, Xu H, Wang T, Li Q, Xing L, Huang J, Wang Y, Liang Q. Fabrication of a triptolide-loaded and poly-γ-glutamic acid-based amphiphilic nanoparticle for the treatment of rheumatoid arthritis. Int J Nanomedicine 2018; 13:2051-2064. [PMID: 29670349 PMCID: PMC5894725 DOI: 10.2147/ijn.s151233] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Triptolide (TP) exhibits immunosuppressive, cartilage-protective and anti-inflammatory effects in rheumatoid arthritis. However, the toxicity of TP limits its widespread use. To decrease the toxic effects, we developed a novel nano-drug carrier system containing TP using poly-γ-glutamic acid-grafted di-tert-butyl L-aspartate hydrochloride (PAT). PAT had an average diameter of 79±18 nm, a narrow polydispersity index (0.18), a strong zeta potential (−32 mV) and a high drug encapsulation efficiency (EE1=48.6%) and loading capacity (EE2=19.2%), and exhibited controlled release (t1/2=29 h). The MTT assay and flow cytometry results indicated that PAT could decrease toxicity and apoptosis induced by free TP on RAW264.7 cells. PAT decreased lipopolysaccharides/interferon γ-induced cytokines expression of macrophage (P<0.05). In vivo, PAT accumulated at inflammatory joints, improved the survival rate and had fewer side effects on tumor necrosis factor α transgenic mice, compared to TP. The blood biochemical indexes revealed that PAT did not cause much damage to the kidney (urea nitrogen and creatinine) and liver (alanine aminotransferase and aspartate aminotransferase). In addition, PAT reduced inflammatory synovial tissue area (P<0.05), cartilage loss (P<0.05), tartrate-resistant acid phosphatase-positive osteoclast area (P<0.05) and bone erosion (P<0.05) in both knee and ankle joints, and showed similar beneficial effect as free TP. In summary, our newly formed nanoparticle, PAT, can reduce the toxicity and guarantee the efficacy of TP, which represents an effective drug candidate for RA with low adverse side effect.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Junli Chang
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yongjian Zhao
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hao Xu
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Tengteng Wang
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qiang Li
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jing Huang
- School of Life Science, East China Normal University
| | - Yongjun Wang
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qianqian Liang
- Department of Orthopaedics, Longhua Hospital.,Institute of Spine.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
64
|
Ramasamy T, Ruttala HB, Sundaramoorthy P, Poudel BK, Youn YS, Ku SK, Choi HG, Yong CS, Kim JO. Multimodal selenium nanoshell-capped Au@mSiO2 nanoplatform for NIR-responsive chemo-photothermal therapy against metastatic breast cancer. NPG ASIA MATERIALS 2018; 10:197-216. [DOI: 10.1038/s41427-018-0034-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/27/2017] [Accepted: 12/03/2017] [Indexed: 01/04/2025]
|
65
|
Kim SW, Park JY, Lee S, Kim SH, Khang D. Destroying Deep Lung Tumor Tissue through Lung-Selective Accumulation and by Activation of Caveolin Uptake Channels Using a Specific Width of Carbon Nanodrug. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4419-4428. [PMID: 29309112 DOI: 10.1021/acsami.7b16153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The main difficulty with current anticancer nanotherapeutics comes from the low efficiency of tumor targeting. Although many strategies have been investigated, including cancer-specific antibody conjugation, lung tumors remain one of the invulnerable types of cancer that must be overcome in the near future. Meanwhile, despite their advantageous physiochemical properties, carbon nanotube structures are not considered safe medical drug delivery agents, but are considered a hazardous source that may cause pulmonary toxicity. However, high-aspect-ratio (width vs. length) nanostructures can be used as very efficient drug delivery agents due to their lung tissue accumulation property. Furthermore, selection of a specific width of the carbon nanostructures can activate additional caveolin uptake channels in cancer cells, thereby maximizing internalization of the nanodrug. The present study aimed to evaluate the therapeutic potential of carbon nanotube-based nanodrugs having various widths (10-30 nm, 60-100 nm, and 125-150 nm) as a delivery agent to treat lung tumors. The results of the present study provided evidence that both lung tissue accumulation (passive targeting) and caveolin-assisted uptake (active targeting) can simultaneously contribute to the destruction of lung tumor tissues of carbon nanotube.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon 21999, South Korea
| | - Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon 21999, South Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeonbuk 56212, South Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, Kyungpook National University , Daegu 41566, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon 21999, South Korea
- Department of Physiology, Gachon University , Incheon 21999, South Korea
| |
Collapse
|
66
|
Dian LH, Hu YJ, Lin JY, Zhang JY, Yan Y, Cui YN, Su ZB, Lu WL. Fabrication of paclitaxel hybrid nanomicelles to treat resistant breast cancer via oral administration. Int J Nanomedicine 2018; 13:719-731. [PMID: 29440897 PMCID: PMC5799853 DOI: 10.2147/ijn.s150140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aim Oral chemotherapy using anticancer drugs would improve the clinical practice and the life quality of patients. The aim of the present study was to develop paclitaxel hybrid nanomicelles for oral administration to treat resistant breast cancer. Methods Evaluations were performed on human breast cancer MCF-7 cells, drug-resistant breast cancer MCF-7/Adr cells, and in MCF-7/Adr-xenografted BALB/c nude mice. The nanomicelles were composed of the polymer soluplus, d-α-tocopheryl polyethyleneglycol 1000 succinate (TPGS1000), and dequalinium (DQA). The constructed paclitaxel hybrid nanomicelles were ~65 nm in size. Results The nanomicelles improved cellular uptake and anticancer efficacy in the resistant breast cancer cells and induced mitochondria-mediated apoptosis. The mechanism of the apoptosis-inducing effect was related to the co-localization of the nanomicelles with mitochondria; the activation of pro-apoptotic protein Bax, cytochrome C, and apoptotic enzymes caspase 9 and 3; and the inhibition of anti-apoptotic proteins Bcl-2 and Mcl-1. Oral administration of paclitaxel hybrid nanomicelles had the same anticancer efficacy as the intravenous injection of taxol in resistant breast cancer-bearing mice. The oral suitability of this formulation was associated with the nanostructure and the actions of TPGS1000 and DQA. Conclusion The fabricated paclitaxel hybrid nanomicelles could provide a promising oral formulation to treat drug-resistant breast cancer.
Collapse
Affiliation(s)
- Ling-Hui Dian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing.,School of Pharmaceutical Sciences, Guangdong Medical University, Dongguan, China
| | - Ying-Jie Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Jia-Ye Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Jing-Ying Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Yan Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Yi-Nuo Cui
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Zhan-Bo Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing
| |
Collapse
|
67
|
Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, Choi HG, Yong CS, Kim JO. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch Pharm Res 2017; 41:111-129. [PMID: 29214601 DOI: 10.1007/s12272-017-0995-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023]
|
68
|
Ruttala HB, Chitrapriya N, Kaliraj K, Ramasamy T, Shin WH, Jeong JH, Kim JR, Ku SK, Choi HG, Yong CS, Kim JO. Facile construction of bioreducible crosslinked polypeptide micelles for enhanced cancer combination therapy. Acta Biomater 2017; 63:135-149. [PMID: 28890258 DOI: 10.1016/j.actbio.2017.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/14/2017] [Accepted: 09/02/2017] [Indexed: 12/27/2022]
Abstract
In this study, we developed pH and redox-responsive crosslinked polypeptide-based combination micelles for enhanced chemotherapeutic efficacy and minimized side effects. The stability and drug release properties of the polypeptide micelles were efficiency balanced by the corona-crosslinking of the triblock copolymer, poly(ethylene glycol)-b-poly(aspartic acid)-b-poly(tyrosine) (PEG-b-pAsp-b-pTyr) with coordinated redox and pH dual-sensitivity by introducing disulfide crosslinkages. Because of the crosslinking of the middle shell of the triblock polypeptide micelles, their robust structure was maintained in strong destabilization conditions and exhibited excellent stability. GSH concentrations were significantly higher in tumor tissue than in normal tissue, which formed the basis for our design. Drug release was elevated under redox and low acidic conditions. Furthermore, crosslinked micelles showed a superior anticancer effect compared to that of non-crosslinked micelles. Incorporation of docetaxel (DTX) and lonidamine (LND) in crosslinked polypeptide micelles increased the intracellular reactive oxygen species (ROS) level and oxidative stress and caused damage to intracellular components that resulted in greater apoptosis of cancer cells than when DTX or LND was used alone. The combination of DTX and LND in crosslinked micelles exhibited efficacious inhibition of tumor growth with an excellent safety profile compared to that reported for drug cocktail combinations and non-crosslinked micelles. Overall, redox/pH-responsive polypeptide micelles could be an interesting platform for efficient chemotherapy. STATEMENT OF SIGNIFICANCE We have synthesized a biodegradable polypeptide block copolymer to construct a facile pH and redox-responsive polymeric micelle asan advanced therapeutic system for cancer therapy. We have designed a corona-crosslinked triblock copolymer (poly (ethylene glycol)-b-poly(aspartic acid)-b-poly(tyrosine) (PEG-b-pAsp-b-pTyr)) micelles co-loaded with docetaxel and lonidamine (cl-M/DL). The corona of triblock polymer was crosslinked to maintain its structural integrity in the physiological environment. The mitochondrial targeting LND is expected to generate ROS, oxidative stress and thereby synergize the chemotherapeutic efficacy of DTX in killing cancer cells. Consistently, cl-M/DL exhibited excellent antitumor efficacy in xenograft tumor model with remarkable tumor regression. Overall, we demonstrated the construction of bioreducible nanosystem for the effective synergistic delivery of DTX/LND in tumor tissues towards cancer treatment.
Collapse
|
69
|
Ramasamy T, Sundaramoorthy P, Ruttala HB, Choi Y, Shin WH, Jeong JH, Ku SK, Choi HG, Kim HM, Yong CS, Kim JO. Polyunsaturated fatty acid-based targeted nanotherapeutics to enhance the therapeutic efficacy of docetaxel. Drug Deliv 2017; 24:1262-1272. [PMID: 28891336 PMCID: PMC8241009 DOI: 10.1080/10717544.2017.1373163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/23/2022] Open
Abstract
Since breast cancer is one of the most lethal malignancies, targeted strategies are urgently needed. In this study, we report the enhanced therapeutic efficacy of docetaxel (DTX) when combined with polyunsaturated fatty acids (PUFA) for effective treatment of multi-resistant breast cancers. Folic acid (FA)-conjugated PUFA-based lipid nanoparticles (FA-PLN/DTX) was developed. The physicochemical properties, in vitro uptake, in vitro cytotoxicity, and in vivo anticancer activity of FA-PLN/DTX were evaluated. FA-PLN/DTX could efficiently target and treat human breast tumor xenografts in vivo. They showed high payload carrying capacity with controlled release characteristics and selective endocytic uptake in folate receptor-overexpressing MCF-7 and MDA-MB-231 cells. PUFA synergistically improved the anticancer efficacy of DTX in both tested cancer cell lines by inducing a G2/M phase arrest and cell apoptosis. Combination of PUFA and DTX remarkably downregulated the expression levels of pro-apoptotic and anti-apoptotic markers, and blocked the phosphorylation of AKT signaling pathways. Compared to DTX alone, FA-PLN/DTX showed superior antitumor efficacy, with no signs of toxic effects in cancer xenograft animal models. We propose that PUFA could improve the therapeutic efficacy of anticancer agents in cancer therapy. Further studies are necessary to fully understand these findings and achieve clinical translation.
Collapse
Affiliation(s)
- Thiruganesh Ramasamy
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- Department of Medicine, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pasupathi Sundaramoorthy
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
- Division of Hematologic Malignancies & Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | | | - Yongjoo Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Woo Hyun Shin
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
70
|
Multiple polysaccharide–drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting. Carbohydr Polym 2017; 173:57-66. [PMID: 28732901 DOI: 10.1016/j.carbpol.2017.05.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
|
71
|
Zhang L, Yao M, Yan W, Liu X, Jiang B, Qian Z, Gao Y, Lu XJ, Chen X, Wang QL. Delivery of a chemotherapeutic drug using novel hollow carbon spheres for esophageal cancer treatment. Int J Nanomedicine 2017; 12:6759-6769. [PMID: 28932119 PMCID: PMC5600264 DOI: 10.2147/ijn.s142916] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Low toxicity and high efficacy are the key factors influencing the real-world clinical applications of nanomaterial-assisted drug delivery. In this study, novel hollow carbon spheres (HCSs) with narrow size distribution were developed. In addition to demonstrating their ease of synthesis for large-scale production, we also demonstrated in vitro that the HCSs possessed high drug-loading capacity, lower cell toxicity, and optimal drug release profile at low pH, similar to the pH in the tumor microenvironment. The HCSs also displayed excellent immunocompatibility and could rapidly distribute themselves in the cytoplasm to escape lysosomal clearance. More importantly, the HCSs could efficiently deliver doxorubicin (a representative chemotherapeutic drug) to tumor sites, which resulted in significant inhibition of tumor growth in an esophageal xenograft cancer model. This also prolonged the circulation time and altered the biodistribution of the drug. In conclusion, this study revealed a novel drug delivery system for targeted tumor therapy.
Collapse
Affiliation(s)
| | - Mengchu Yao
- Department of Clinical Oncology.,Huai'an Key Laboratory of Esophageal Cancer Biobank
| | - Wei Yan
- Department of Gastroenterology
| | | | - Baofei Jiang
- Department of Gastrointestinal Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an
| | - Zhaoye Qian
- Department of Clinical Oncology.,Huai'an Key Laboratory of Esophageal Cancer Biobank
| | - Yong Gao
- Department of Clinical Oncology.,Huai'an Key Laboratory of Esophageal Cancer Biobank
| | - Xiao-Jie Lu
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Qi-Long Wang
- Department of Clinical Oncology.,Huai'an Key Laboratory of Esophageal Cancer Biobank.,Department of Central Laboratory
| |
Collapse
|
72
|
A R, Jagadeesan S, Cho YJ, Lim JH, Choi KH. Synthesis and evaluation of the cytotoxic and anti-proliferative properties of ZnO quantum dots against MCF-7 and MDA-MB-231 human breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:551-560. [PMID: 28888009 DOI: 10.1016/j.msec.2017.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
Abstract
Current trends in therapeutic research are the application of nanomaterial carriers for cancer therapy. One such molecule, ZnO, originally used in diagnosis and as a drug carrier, is gaining importance for its biological properties. Here, we report for the first time, the scope of ZnO QDs for enhanced cytotoxicity against MCF-7 and metastatic MDA-MB-231 human breast cancer cells. Unlike other ZnO nanostructures, ZnO QDs are dispersed and small sized (8-10nm) which is believed to greatly increase the cellular uptake. Furthermore, the acidic tumor microenvironment attracts ZnO QDs enhancing targeted therapy while leaving normal cells less affected. Results from MTT assay demonstrated that ZnO QDs induced cytotoxicity to MCF-7 and metastatic MDA-MB-231 breast cancer cells at very low concentrations (10 and 15μg/ml) as compared to other reported ZnO nanostructures. HEK-293 cells showed less toxicity at these concentrations. Confocal microscope images from DAPI staining and TUNEL assay demonstrated that ZnO QDs induced nuclear fragmentation and apoptosis in MCF-7 and MDA-MB-231. FACS results suggested ZnO QDs treatment induced cell cycle arrest at the G0/G1 phase in these cells. ZnO QDs drastically decreased the proliferation and migration of MCF-7 and MDA-MB-231 as seen from the results of the clonogenic and wound healing assays respectively. Furthermore, our data suggested that ZnO QDs regulated apoptosis via Bax and Bcl-2 proteins as validated by immunofluorescence and western blot. Taken together, our findings demonstrate that these ultra-small sized ZnO QDs destabilize cancer cells by using its acidic tumor microenvironment thereby inducing apoptosis and controlling the cell proliferation and migration at low dosages.
Collapse
Affiliation(s)
- Roshini A
- Department of Mechatronics Engineering, Jeju National University, 63243, Republic of Korea
| | - Srikanth Jagadeesan
- Department of Advanced Convergence Technology and Science, Jeju National University, 63243, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 13620, Republic of Korea
| | - Jong-Hwan Lim
- Department of Mechatronics Engineering, Jeju National University, 63243, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, 63243, Republic of Korea; Department of Advanced Convergence Technology and Science, Jeju National University, 63243, Republic of Korea.
| |
Collapse
|
73
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [PMID: 28472638 DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
74
|
Halamoda-Kenzaoui B, Ceridono M, Urbán P, Bogni A, Ponti J, Gioria S, Kinsner-Ovaskainen A. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J Nanobiotechnology 2017. [PMID: 28651541 PMCID: PMC5485545 DOI: 10.1186/s12951-017-0281-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called “critical quality attributes”, that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. Results We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. Conclusions We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0281-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Blanka Halamoda-Kenzaoui
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Mara Ceridono
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Patricia Urbán
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Alessia Bogni
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Jessica Ponti
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Sabrina Gioria
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Agnieszka Kinsner-Ovaskainen
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy.
| |
Collapse
|
75
|
Lv L, Zhuang YX, Zhang HW, Tian NN, Dang WZ, Wu SY. Capsaicin-loaded folic acid-conjugated lipid nanoparticles for enhanced therapeutic efficacy in ovarian cancers. Biomed Pharmacother 2017; 91:999-1005. [PMID: 28525949 DOI: 10.1016/j.biopha.2017.04.097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/29/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022] Open
Abstract
In this study, folic acid-conjugated lipid nanoparticles were successfully prepared to enhance the active targeting of capsaicin (CAP) in ovarian cancers. The particles were nanosized and exhibited a controlled release of drug in the physiological conditions. The folic acid (FA)-conjugated system exhibited a remarkably higher uptake of nanoparticles in the cancer cells compared to that of non-targeted system. The folate-conjugated CAP-loaded lipid nanoparticles (CFLN) upon interacting with cancer cells were internalized via receptor-mediated endocytosis mechanism and resulted in higher concentration in the cancer cells. Consistently, CFLN showed a remarkably higher toxic effect compared to that of non-targeted nanoparticle system. CFLN showed significantly higher cancer cell apoptosis with nearly 39% of cells in apoptosis chamber (early and late) compared to only ∼21% and ∼11% for CAP-loaded lipid nanoparticles (CLN) and CAP. The loading of drug in the lipid nanoparticle system extended the drug retention in the blood circulation and allowed the active targeting to specific cancer cells. The prolonged circulation of drug attributed to the antifouling property of polyethylene glycol molecule in the structure. Overall, study highlights that using targeting moiety could enhance the therapeutic response of nanomedicines in the treatment of solid tumors.
Collapse
Affiliation(s)
- Lin Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Yu-Xin Zhuang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Hui-Wu Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Nan-Nan Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Wen-Zhen Dang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Shao-Yu Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
76
|
PEGylated polypeptide lipid nanocapsules to enhance the anticancer efficacy of erlotinib in non-small cell lung cancer. Colloids Surf B Biointerfaces 2017; 150:393-401. [PMID: 27825759 DOI: 10.1016/j.colsurfb.2016.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022]
|
77
|
Ramasamy T, Ruttala HB, Chitrapriya N, Poudal BK, Choi JY, Kim ST, Youn YS, Ku SK, Choi HG, Yong CS, Kim JO. Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors. Acta Biomater 2017; 48:131-143. [PMID: 27794477 DOI: 10.1016/j.actbio.2016.10.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
Abstract
In this study, we report a facile method to construct a bioactive (poly(phenylalanine)-b-poly(l-histidine)-b-poly(ethylene glycol) polypeptide nanoconstruct to co-load doxorubicin (DOX) and quercetin (QUR) (DQ-NV). The smart pH-sensitive nanovehicle was fabricated with precisely tailored drug-to-carrier ratio that resulted in accelerated, sequential drug release. As a result of ratiometric loading, QUR could significantly enhance the cytotoxic potential of DOX, induced marked cell apoptosis; change cell cycle patterns, inhibit the migratory capacity of sensitive and resistant cancer cells. In particular, pro-oxidant QUR from DQ-NV remarkably reduced the GSH/GSSG ratio, indicating high oxidative stress and damage to cellular components. DQ-NV induced tumor shrinkage more effectively than the single drugs in mice carrying subcutaneous SCC-7 xenografts. DQ-NV consistently induced high expression of caspase-3 and PARP and low expression of Ki67 and CD31 immunomarkers. In summary, we demonstrate the development of a robust polypeptide-based intracellular nanovehicle for synergistic delivery of DOX/QUR in cancer chemotherapy. STATEMENT OF SIGNIFICANCE In this study, we report a facile method to construct bioactive and biodegradable polypeptide nanovehicles as an advanced platform technology for application in cancer therapy. We designed a robust (poly(phenylalanine)-b-poly(l-histidine)-b-poly(ethylene glycol) nanoconstruct to co-load doxorubicin (DOX) and quercetin (QUR) (DQ-NV). The conformational changes of the histidine block at tumor pH resulted in accelerated, sequential drug release. QUR could significantly enhance the cytotoxic potential of DOX, induce marked cell apoptosis, change cell cycle patterns, and inhibit the migratory capacity of sensitive and resistant cancer cells. DQ-NV induced tumor shrinkage more effectively than the single drugs and the 2-drug cocktail in tumor xenografts. In summary, we demonstrate the development of an intracellular nanovehicle for synergistic delivery of DOX/QUR in cancer chemotherapy.
Collapse
Affiliation(s)
- Thiruganesh Ramasamy
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Hima Bindu Ruttala
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Nataraj Chitrapriya
- Biophysical Chemistry Lab, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Bijay Kumar Poudal
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Ju Yeon Choi
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Ssang Tae Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, SungKyunKwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea.
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
78
|
DuPont JJ, McCurley A, Davel AP, McCarthy J, Bender SB, Hong K, Yang Y, Yoo JK, Aronovitz M, Baur WE, Christou DD, Hill MA, Jaffe IZ. Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging. JCI Insight 2016; 1:e88942. [PMID: 27683672 DOI: 10.1172/jci.insight.88942] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypertension is nearly universal yet poorly controlled in the elderly despite proven benefits of intensive treatment. Mice lacking mineralocorticoid receptors in smooth muscle cells (SMC-MR-KO) are protected from rising blood pressure (BP) with aging, despite normal renal function. Vasoconstriction is attenuated in aged SMC-MR-KO mice, thus they were used to explore vascular mechanisms that may contribute to hypertension with aging. MicroRNA (miR) profiling identified miR-155 as the most down-regulated miR with vascular aging in MR-intact but not SMC-MR-KO mice. The aging-associated decrease in miR-155 in mesenteric resistance vessels was associated with increased mRNA abundance of MR and of predicted miR-155 targets Cav1.2 (L-type calcium channel (LTCC) subunit) and angiotensin type-1 receptor (AgtR1). SMC-MR-KO mice lacked these aging-associated vascular gene expression changes. In HEK293 cells, MR repressed miR-155 promoter activity. In cultured SMCs, miR-155 decreased Cav1.2 and AgtR1 mRNA. Compared to MR-intact littermates, aged SMC-MR-KO mice had decreased systolic BP, myogenic tone, SMC LTCC current, mesenteric vessel calcium influx, LTCC-induced vasoconstriction and angiotensin II-induced vasoconstriction and oxidative stress. Restoration of miR-155 specifically in SMCs of aged MR-intact mice decreased Cav1.2 and AgtR1 mRNA and attenuated LTCC-mediated and angiotensin II-induced vasoconstriction and oxidative stress. Finally, in a trial of MR blockade in elderly humans, changes in serum miR-155 predicted the BP treatment response. Thus, SMC-MR regulation of miR-155, Cav1.2 and AgtR1 impacts vasoconstriction with aging. This novel mechanism identifies potential new treatment strategies and biomarkers to improve and individualize antihypertensive therapy in the elderly.
Collapse
Affiliation(s)
- Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Amy McCurley
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ana P Davel
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, São Paulo, Brazil
| | - Joseph McCarthy
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Shawn B Bender
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Kwangseok Hong
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Yan Yang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Jeung-Ki Yoo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Wendy E Baur
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Michael A Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|