51
|
Jones B, Tonniges JR, Debski A, Albert B, Yeung DA, Gadde N, Mahajan A, Sharma N, Calomeni EP, Go MR, Hans CP, Agarwal G. Collagen fibril abnormalities in human and mice abdominal aortic aneurysm. Acta Biomater 2020; 110:129-140. [PMID: 32339711 DOI: 10.1016/j.actbio.2020.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Vascular diseases like abdominal aortic aneurysms (AAA) are characterized by a drastic remodeling of the vessel wall, accompanied with changes in the elastin and collagen content. At the macromolecular level, the elastin fibers in AAA have been reported to undergo significant structural alterations. While the undulations (waviness) of the collagen fibers is also reduced in AAA, very little is understood about changes in the collagen fibril at the sub-fiber level in AAA as well as in other vascular pathologies. In this study we investigated structural changes in collagen fibrils in human AAA tissue extracted at the time of vascular surgery and in aorta extracted from angiotensin II (AngII) infused ApoE-/- mouse model of AAA. Collagen fibril structure was examined using transmission electron microscopy and atomic force microscopy. Images were analyzed to ascertain length and depth of D-periodicity, fibril diameter and fibril curvature. Abnormal collagen fibrils with compromised D-periodic banding were observed in the excised human tissue and in remodeled regions of AAA in AngII infused mice. These abnormal fibrils were characterized by statistically significant reduction in depths of D-periods and an increased curvature of collagen fibrils. These features were more pronounced in human AAA as compared to murine samples. Thoracic aorta from Ang II-infused mice, abdominal aorta from saline-infused mice, and abdominal aorta from non-AAA human controls did not contain abnormal collagen fibrils. The structural alterations in abnormal collagen fibrils appear similar to those reported for collagen fibrils subjected to mechanical overload or chronic inflammation in other tissues. Detection of abnormal collagen could be utilized to better understand the functional properties of the underlying extracellular matrix in vascular as well as other pathologies. STATEMENT OF SIGNIFICANCE: Several vascular diseases including abdominal aortic aneurysm (AAA) are characterized by extensive remodeling in the vessel wall. Although structural alterations in elastin fibers are well characterized in vascular diseases, very little is known about the collagen fibril structure in these diseases. We report here a comprehensive ultrastructural evaluation of the collagen fibrils in AAA, using high-resolution microscopy techniques like transmission electron microscopy (TEM) and atomic force microscopy (AFM). We elucidate how abnormal collagen fibrils with compromised D-periodicity and increased fibril curvature are present in the vascular tissue in both clinical AAA as well as in murine models. We discuss how these abnormal collagen fibrils are likely a consequence of mechanical overload accompanying AAA and could impact the functional properties of the underlying tissue.
Collapse
Affiliation(s)
- Blain Jones
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jeffrey R Tonniges
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Anna Debski
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Benjamin Albert
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - David A Yeung
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Nikhit Gadde
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Advitiya Mahajan
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA; Department of Cardiovascular Medicine, Dalton Cardiovascular Research Center, and Medical Pharmacology and Physiology Columbia, University of Missouri, USA
| | - Neekun Sharma
- Department of Cardiovascular Medicine, Dalton Cardiovascular Research Center, and Medical Pharmacology and Physiology Columbia, University of Missouri, USA
| | - Edward P Calomeni
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael R Go
- Division of Vascular Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chetan P Hans
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA; Department of Cardiovascular Medicine, Dalton Cardiovascular Research Center, and Medical Pharmacology and Physiology Columbia, University of Missouri, USA.
| | - Gunjan Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
52
|
Dalbosco M, Roesler CRDM, Silveira PG, Fancello EA. Numerical study on the effect of stent shape on suture forces in stent-grafts. J Mech Behav Biomed Mater 2020; 110:103852. [PMID: 32957178 DOI: 10.1016/j.jmbbm.2020.103852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Second-generation stent-grafts (SGs) have addressed many of the mechanical problems reported for first-generation endoprostheses, such as graft tear and stent rupture; however, suture wear and detachment due to pulsatile fatigue remains an issue. Numerical studies on the mechanical behavior of these endoprostheses usually model the attachment between stents and graft as a continuous ''tie'' constraint, which does not provide information on the mechanical loads acting on individual sutures. This paper presents a suitable approach for Finite Element (FE) simulations of SGs which allows for a qualitative evaluation of the loads acting on sutures. Attachment between stents and graft is modeled as rigid beams at discrete locations of the endoprostheses, and the reaction forces on the beams are analyzed. This modeling strategy is employed for four different SG models (two Z-stented commercial models and two circular-stented models) subjected to a severe 180° U-bend, followed by intraluminal pressurization. Results show that, for all models, the majority of sutures is experiencing fluctuating forces within a cardiac cycle (between 80 and 120 mmHg), which points to pulsatile fatigue as potential failure mode. In addition, the highest loads are concentrated in kinks and, for Z-stented models, at the apexes of stents. Moreover, suture loads for circular-stented models are lower than for Z-stented models, indicating better resistance to suture detachment. All these observations are in line with experimental results published in the literature, and, therefore, the procedure herein proposed may serve as a valuable tool in the development of new SG models with better suture resistance to pulsatile wear and fatigue.
Collapse
Affiliation(s)
- Misael Dalbosco
- Department of Mechanical Engineering, Brusque University Center, SC, Brazil; GRANTE - Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Carlos Rodrigo de Mello Roesler
- GRANTE - Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; LEBm - University Hospital, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Eduardo Alberto Fancello
- GRANTE - Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; LEBm - University Hospital, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
53
|
Reproducibility assessment of ultrasound-based aortic stiffness quantification and verification using Bi-axial tensile testing. J Mech Behav Biomed Mater 2020; 103:103571. [DOI: 10.1016/j.jmbbm.2019.103571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 09/10/2019] [Accepted: 11/29/2019] [Indexed: 01/04/2023]
|
54
|
Zhang Y, Baloglu FK, Ziemer LEH, Liu Z, Lyu B, Arendt LM, Georgakoudi I. Factors associated with obesity alter matrix remodeling in breast cancer tissues. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-14. [PMID: 31983145 PMCID: PMC6982464 DOI: 10.1117/1.jbo.25.1.014513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Obesity is associated with a higher risk of developing breast cancer and with worse disease outcomes for women of all ages. The composition, density, and organization of the breast tissue stroma are also known to play an important role in the development and progression of the disease. However, the connections between obesity and stromal remodeling are not well understood. We sought to characterize detailed organization features of the collagen matrix within healthy and cancerous breast tissues acquired from mice exposed to either a normal or high fat (obesity inducing) diet. We performed second-harmonic generation and spectral two-photon excited fluorescence imaging, and we extracted the level of collagen-associated fluorescence (CAF) along with metrics of collagen content, three-dimensional, and two-dimensional organization. There were significant differences in the CAF intensity and overall collagen organization between normal and tumor tissues; however, obesity-enhanced changes in these metrics, especially when three-dimensional organization metrics were considered. Thus, our studies indicate that obesity impacts significantly collagen organization and structure and the related pathways of communication may be important future therapeutic targets.
Collapse
Affiliation(s)
- Yang Zhang
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Fatma Kucuk Baloglu
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
- Giresun University, Department of Biology, Giresun, Turkey
| | - Lauren E. Hillers Ziemer
- University of Wisconsin–Madison, Department of Comparative Biosciences, Madison, Wisconsin, United States
| | - Zhiyi Liu
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
- Zhejiang University, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Hangzhou, Zhejiang, China
| | - Boyang Lyu
- Tufts University, Department of Electrical Engineering, Medford, Massachusetts, United States
| | - Lisa M. Arendt
- University of Wisconsin–Madison, Department of Comparative Biosciences, Madison, Wisconsin, United States
| | - Irene Georgakoudi
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
- Tufts University, Program in Cell, Molecular & Developmental Biology, Graduate School of Biomedical Sciences, Boston, Massachusetts, United States
| |
Collapse
|
55
|
Ovariectomy increases the incidence and diameter of abdominal aortic aneurysm in a hypoperfusion-induced abdominal aortic aneurysm animal model. Sci Rep 2019; 9:18330. [PMID: 31797986 PMCID: PMC6892790 DOI: 10.1038/s41598-019-54829-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease characterized by weakening of the vascular walls. Male sex is a risk factor for AAA, and peak AAA incidence occurs in men 10 years earlier than in women. However, the growth rate of AAA is faster in women, and women have a higher mortality due to AAA rupture. The mechanisms underlying sex-related differences in AAA remain unknown. Herein, we evaluated the effects of ovariectomy (OVX) on AAA in rats. Upon evaluation of the effects of OVX and AAA induction, AAA incidence rate and the aneurysm diameter increased in the OVX group. However, the histopathology in the developed AAA wall was not different between groups. When the effects of OVX on the vascular wall without AAA induction were evaluated, elastin and collagen levels were significantly decreased. Furthermore, the level of matrix metalloproteinase-9 significantly increased in the OVX group. According to our results, it is speculated that decreased levels of collagen and elastin fibers induced by OVX might be involved in increased incidence rate and diameter of AAA. Weakening of the vascular wall before the onset of AAA might be one reason for the faster rate of AAA growth in women.
Collapse
|
56
|
Kugo H, Moriyama T, Zaima N. The role of perivascular adipose tissue in the appearance of ectopic adipocytes in the abdominal aortic aneurysmal wall. Adipocyte 2019; 8:229-239. [PMID: 31250691 PMCID: PMC6768265 DOI: 10.1080/21623945.2019.1636625] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease characterized by the dilation of the abdominal aorta, resulting in a high mortality rate caused by vascular rupture. Previous studies have suggested that the abnormal appearance of adipocytes in the vascular wall is associated with the development of AAA. However, the mechanisms underlying the appearance of the ectopic adipocytes remain unknown. In this study, we showed that CD44+CD90+ MSCs express adipogenic transcription factors in the AAA wall of a hypoperfusion-induced AAA model. The number of CD44+CD90+ cells and adipocytes in the AAA wall significantly decreased in the perivascular adipose tissue (PVAT)-removed vascular wall. The AAA diameter significantly decreased in the PVAT-removed vascular wall compared with that in the vascular wall with PVAT. These data suggested that PVAT plays important roles in the differentiation of MSCs into adipocytes in response to vascular hypoperfusion. The decreased number of adipocytes in the PVAT-removed vascular wall might be associated with the decreased AAA diameter.
Collapse
Affiliation(s)
- Hirona Kugo
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|