51
|
Chen J, Zhao Y, Zhou A, Zhang Y, Xu Y, Ning X. Alginate functionalized biomimetic 3D scaffold improves cell culture and cryopreservation for cellular therapy. Int J Biol Macromol 2022; 211:159-169. [PMID: 35568149 DOI: 10.1016/j.ijbiomac.2022.05.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
The clinical translation of cellular therapy is hampered by the scarcity of reliable and consistent cell sources. In this study, we developed an exquisite scaffold featuring the hierarchical structure and biofunctions of silkworm cocoons (CryoSiCo), for boosting cell manufacture and cryopreservation. CryoSiCo was constructed by a creative bottom-up fabrication technique integrating electrospinning, in situ surface functionalization and freeze-shaping, generating a 3D cocoon-mimicking fibrous scaffold composed of graphene oxide-incorporated polylactic acid/gelatin inner fiber core and alginate outer fiber shell. CryoSiCo provided rapid and uniform rewarming for cryopreserved cells, and maximally maintained cell viability and proliferation capability, allowing for effective cryopreservation. Importantly, CryoSiCo could cryopreserve stem cell-scaffold constructs with high cell survival and functions, which can be directly implanted to restore tissue defects. Thus, CryoSiCo represents an appealing biomimetic strategy for storing precious cells and tissue engineered constructs, showing a broad application for fundamental research and applied medicine.
Collapse
Affiliation(s)
- Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yinfeng Zhao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, School of Physics, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yu Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
52
|
Electrospun Membrane Surface Modification by Sonocoating with HA and ZnO:Ag Nanoparticles—Characterization and Evaluation of Osteoblasts and Bacterial Cell Behavior In Vitro. Cells 2022; 11:cells11091582. [PMID: 35563888 PMCID: PMC9103553 DOI: 10.3390/cells11091582] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Guided tissue regeneration and guided bone regeneration membranes are some of the most common products used for bone regeneration in periodontal dentistry. The main disadvantage of commercially available membranes is their lack of bone cell stimulation and easy bacterial colonization. The aim of this work was to design and fabricate a new membrane construct composed of electrospun poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) fibers sonocoated with layers of nanoparticles with specific properties, i.e., hydroxyapatite and bimetallic nanocomposite of zinc oxide–silver. Thus, within this study, four different variants of biomaterials were evaluated, namely: poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) biomaterial, poly(D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite biomaterial, poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano zinc oxide–silver biomaterial, and poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite/nano zinc oxide–silver biomaterial. First, it was demonstrated that the wettability of biomaterials—a prerequisite property important for ensuring desired biological response—was highly increased after the sonocoating process. Moreover, it was indicated that biomaterials composed of poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) with or without a nano hydroxyapatite layer allowed proper osteoblast growth and proliferation, but did not have antibacterial properties. Addition of a nano zinc oxide–silver layer to the biomaterial inhibited growth of bacterial cells around the membrane, but at the same time induced very high cytotoxicity towards osteoblasts. Most importantly, enrichment of this biomaterial with a supplementary underlayer of nano hydroxyapatite allowed for the preservation of antibacterial properties and also a decrease in the cytotoxicity towards bone cells, associated with the presence of a nano zinc oxide–silver layer. Thus, the final structure of the composite poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite/nano zinc oxide–silver seems to be a promising construct for tissue engineering products, especially guided tissue regeneration/guided bone regeneration membranes. Nevertheless, additional research is needed in order to improve the developed construct, which will simultaneously protect the biomaterial from bacterial colonization and enhance the bone regeneration properties.
Collapse
|
53
|
Bilal B, Niazi R, Nadeem S, Farid MA, Nazir MS, Akhter T, Javed M, Mohyuddin A, Rauf A, Ali Z, Naqvi SAR, Muhammad N, Elkaeed EB, Ibrahium HA, Awwad NS, Hassan SU. Fabrication of Guided Tissue Regeneration Membrane Using Lignin-Mediated ZnO Nanoparticles in Biopolymer Matrix for Antimicrobial Activity. Front Chem 2022; 10:837858. [PMID: 35518713 PMCID: PMC9063929 DOI: 10.3389/fchem.2022.837858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Periodontal disease is a common complication, and conventional periodontal surgery can lead to severe bleeding. Different membranes have been used for periodontal treatment with limitations, such as improper biodegradation, poor mechanical property, and no effective hemostatic property. Guided tissue regeneration (GTR) membranes favoring periodontal regeneration were prepared to overcome these shortcomings. The mucilage of the chia seed was extracted and utilized to prepare the guided tissue regeneration (GTR) membrane. Lignin having antibacterial properties was used to synthesize lignin-mediated ZnO nanoparticles (∼Lignin@ZnO) followed by characterization with analytical techniques like Fourier-transform infrared spectroscopy (FTIR), UV–visible spectroscopy, and scanning electron microscope (SEM). To fabricate the GTR membrane, extracted mucilage, Lignin@ZnO, and polyvinyl alcohol (PVA) were mixed in different ratios to obtain a thin film. The fabricated GTR membrane was evaluated using a dynamic fatigue analyzer for mechanical properties. Appropriate degradation rates were approved by degradability analysis in water for different intervals of time. The fabricated GTR membrane showed excellent antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacterial species.
Collapse
Affiliation(s)
- Bushra Bilal
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Rimsha Niazi
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Muhammad Asim Farid
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Shahid Nazir
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Toheed Akhter
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Abdul Rauf
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| | - Zulfiqar Ali
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, , Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Semi Pilot Plant, Nuclear Materials Authority, Cairo, Egypt
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
54
|
Bee SL, Hamid ZAA. Asymmetric resorbable-based dental barrier membrane for periodontal guided tissue regeneration and guided bone regeneration: A review. J Biomed Mater Res B Appl Biomater 2022; 110:2157-2182. [PMID: 35322931 DOI: 10.1002/jbm.b.35060] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are two common dental regenerative treatments targeted at reconstructing damaged periodontal tissue and bone caused by periodontitis. During GTR/GBR treatment, a barrier membrane is placed in the interface between the soft tissue and the periodontal defect to inhibit soft tissue ingrowth and creating a space for the infiltration of slow-growing bone cells into the defect site. Recently, asymmetric resorbable-based barrier membrane has received a considerable attention as a new generation of GTR/GBR membrane. Despite numerous literatures about asymmetric-based membrane that had been published, there is lacks comprehensive review on asymmetric barrier membrane that particularly highlight the importance of membrane structure for periodontal regeneration. In this review, we systematically cover the latest development and advancement of various kinds of asymmetric barrier membranes used in periodontal GTR/GBR application. Herein, the ideal requirements for constructing a barrier membrane as well as the rationale behind the asymmetric design, are firstly presented. Various innovative methods used in fabricating asymmetric barrier membrane are being further discussed. Subsequently, the application and evaluation of various types of asymmetric barrier membrane used for GTR/GBR are compiled and extensively reviewed based on the recent literatures reported. Based on the existing gap in this field, the future research directions of asymmetric resorbable-based barrier membrane such as its combination potential with bone grafts, are also presented.
Collapse
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
55
|
Development and Characterization of Multifunctional Wound Dressing with the Property of Anti-bacteria and Angiogenesis. Probiotics Antimicrob Proteins 2022:10.1007/s12602-022-09914-8. [PMID: 35235199 DOI: 10.1007/s12602-022-09914-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
Overcoming the bacterial infection and promoting angiogenesis are challenge and imperious demands in wound healing and skin regeneration. Hereby, we developed a multifunctional AMP/S1P@PLA/gelatin wound dressing fabricated by electrospinning poly (L-lactic acid) (PLA)/gelatin with antimicrobial polypeptides (AMPs) and sphingosine-1-phosphate (S1P) in order to inhibit the bacteria growth and induce angiogenesis. In our work, AMP/S1P@PLA/gelatin wound dressing was obtained by two-step method of electrospinning and dopamine adsorption. Our results showed that incorporating AMP into PLA/gelatin nanofibrous membranes significantly improved antibacterial properties against both Escherichia coli and Staphylococcus aureus. S1P releasing from AMP/S1P@PLA/gelatin nanofibrous membranes could significantly enhance tube formation. Simultaneously, we found that the AMP/S1P@PLA/gelatin nanofibrous membranes facilitated the adhesion, proliferation, and migration of human umbilical vein endothelial cells (HUVECs) and murine fibroblast (L929). AMP/S1P@PLA/gelatin membranes could also accelerate infected wound healing and skin regeneration by antibacterial and pro-angiogenesis effects. In summary, our developed AMP/S1P@PLA/gelatin nanofibrous membranes could be multifunctional dressing for infected wound healing and skin regeneration. Schematic figure to describe the characterizations and preparation of AMP/S1P@PLA/gelatin nanofibrous membranes.
Collapse
|
56
|
Zhang M, Yang Q, Hu T, Tang L, Ni Y, Chen L, Wu H, Huang L, Ding C. Adhesive, Antibacterial, Conductive, Anti-UV, Self-Healing, and Tough Collagen-Based Hydrogels from a Pyrogallol-Ag Self-Catalysis System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8728-8742. [PMID: 35143167 DOI: 10.1021/acsami.1c21200] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, versatile hydrogels with multifunctionality have been widely developed with emerging applications as wearable and implantable devices. In this work, we reported novel versatile hydrogels by self-catalyzing the gelation of an interpenetrating polymer network consisting of acrylic acid (AA) monomers and GA-modified collagen (GCOL) in situ decorated silver nanoparticles (AgNPs). The resultant hydrogel, namely AgNP@GCOL/PAA, has many desirable features, including good mechanical properties (such as 123 kPa, 916%, and 1961 J m-2 for the fracture stress, strain and tearing energy) that match with those of animal skin, excellent self-healing performance, favorable conductivity and strain sensitivity as a flexible biosensor, and excellent antibacterial and anti-UV properties, as well as the strong adhesiveness on skin. Moreover, AgNP@GCOL/PAA showed excellent biocompatibility via in vitro cell culture. Remarkably, AgNP@GCOL/PAA displayed superior hemostatic properties with sharply decreasing blood loss for a mouse liver incision, closely related to its strong self-adhesion which produced anchoring strength to the bleeding site and thus formed a network barrier with liver tissue. This study provides new opportunities for the facile preparation of widely used multifunctional collagen-based hydrogels based on a simple pyrogallol-Ag system.
Collapse
Affiliation(s)
- Min Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou 350002, PR China
| | - Qili Yang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tianshuo Hu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lele Tang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yonghao Ni
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- Department of Chemical Engineering and Limerick Pulp & Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Hui Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liulian Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, PR China
| |
Collapse
|
57
|
Wan X, Zhao Y, Li Z, Li L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. EXPLORATION (BEIJING, CHINA) 2022; 2:20210029. [PMID: 37324581 PMCID: PMC10191062 DOI: 10.1002/exp.20210029] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 06/15/2023]
Abstract
Electrospinning (e-spin) technique has emerged as a versatile and feasible pathway for constructing diverse polymeric fabric structures, which show potential applications in many biological and biomedical fields. Owing to the advantages of adjustable mechanics, designable structures, versatile surface multi-functionalization, and biomimetic capability to natural tissue, remarkable progress has been made in flexible bioelectronics and tissue engineering for the sensing and therapeutic purposes. In this perspective, we review recent works on design of the hierarchically structured e-spin fibers, as well as, the fabrication strategies from one-dimensional individual fiber (1D) to three-dimensional (3D) fiber arrangements adaptive to specific applications. Then, we focus on the most cutting-edge progress of their applications in flexible bioelectronics and tissue engineering. Finally, we propose future challenges and perspectives for promoting electrospun fiber-based products toward industrialized, intelligent, multifunctional, and safe applications.
Collapse
Affiliation(s)
- Xingyi Wan
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Yunchao Zhao
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy for SciencesBeijingP. R. China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanningP. R. China
| |
Collapse
|
58
|
Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112723. [DOI: 10.1016/j.msec.2022.112723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
|
59
|
Sun M, Liu Y, Jiao K, Jia W, Jiang K, Cheng Z, Liu G, Luo Y. A periodontal tissue regeneration strategy via biphasic release of zeolitic imidazolate framework-8 and FK506 using a uniaxial electrospun Janus nanofiber. J Mater Chem B 2022; 10:765-778. [PMID: 35040470 DOI: 10.1039/d1tb02174e] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Guided tissue regeneration (GTR) strategies are an effective approach to repair periodontal defects by using GTR membranes. However, commercial GTR membranes still have limitations in periodontal tissue regeneration owing to lack of antibacterial and osteogenic properties. The development of novel Janus nanofibers with biphasic release characteristics based on the therapeutic needs of GTR is essential to tackle this issue. Here, we developed a multifunctional Janus nanofiber via uniaxial electrospinning, with zeolitic imidazolate framework-8 nanoparticle (ZIF-8 NP) loading in the hydrophilic polyvinylpyrrolidone (PVP) part and FK506 embedding in the hydrophobic polycaprolactone (PCL) part. The release of Zn2+ conformed to the Ritger-Peppas kinetics which could effectively prevent bacterial infection, and the release profile of FK506 was fitted to a first-order equation which could provide persistent osteogenic stimulation for osteogenesis. The periodontal tissue regeneration data from a rat periodontitis model revealed that the multifunctional electrospun Janus nanofibers could be used as an effective bioplatform to restore alveolar bone impairment, compared with the control group. In summary, the Janus nanofibers with biphasic release characteristics quickly exert antibacterial function as well as continuously provide a microenvironment beneficial to the osteogenesis process, demonstrating its great potential for GTR treatment in dental clinic applications.
Collapse
Affiliation(s)
- Maolei Sun
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yun Liu
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Kun Jiao
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Wenyuan Jia
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Kongzhao Jiang
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agriculture University, Changchun 130118, P. R. China
| | - Guomin Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yungang Luo
- Department of Stomatology, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
60
|
He Y, Wang X, He Y, Zhao X, Lin J, Feng Y, Chen J, Luo F, Li Z, Li J, Tan H. A bioinspired Janus polyurethane membrane for potential periodontal tissue regeneration. J Mater Chem B 2022; 10:2602-2616. [PMID: 34989756 DOI: 10.1039/d1tb02068d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Guided tissue regeneration (GTR) is the main therapeutic method for periodontal tissue regeneration. The key to the GTR strategy is the membrane which can assist the reconstruction of bone tissue in the periodontal defect and prevent the migration of epithelium and fibroblasts to the defect. However, the existing periodontal membrane cannot effectively promote periodontal tissue regeneration due to the limited bioactivity and physicochemical function. Here, we developed a bioinspired degradable polyurethane membrane with Janus surface morphology by integrating bioactive dopamine (DA) and an antibacterial Gemini quaternary ammonium salt (QAS). The Janus surface of the membrane is fabricated through spontaneous microphase separation, resulting from the different migration of functional segments between the air-contact upper surface with enriched antibacterial QAS and the substrate-contact bottom with enriched bioactive DA. The smooth surface of the upper membrane used to face the soft tissues can reduce cell adhesion to suppress the migration of fibroblasts, while the rough surface with a topological micro-pit structure of the bottom side facing the bone has excellent function of autonomic mineralization and cell adhesion to promote bone tissue reconstruction. In addition, the membrane containing the antibacterial QAS shows excellent antibacterial effect on common oral pathogens, such as S. aureus and S. mutans. Moreover, the specific dopamine group also endows the membrane with excellent antioxidant efficiency. In vivo research shows that this Janus polyurethane membrane can effectively promote periodontal tissue regeneration in a rat periodontal defect model. Combined with its excellent mechanical properties and biocompatibility, the polyurethane membrane is a promising material for potential periodontal tissue regeneration.
Collapse
Affiliation(s)
- Yushui He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xin Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jingjing Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Chen
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
61
|
In Vivo Study of Nasal Bone Reconstruction with Collagen, Elastin and Chitosan Membranes in Abstainer and Alcoholic Rats. Polymers (Basel) 2022; 14:polym14010188. [PMID: 35012210 PMCID: PMC8747723 DOI: 10.3390/polym14010188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to evaluate the use of collagen, elastin, or chitosan biomaterial for bone reconstruction in rats submitted or not to experimental alcoholism. Wistar male rats were divided into eight groups, submitted to chronic alcohol ingestion (G5 to G8) or not (G1 to G4). Nasal bone defects were filled with clot in animals of G1 and G5 and with collagen, elastin, and chitosan grafts in G2/G6, G3/G7, and G4/G8, respectively. Six weeks after, all specimens underwent radiographic, tomographic, and microscopic evaluations. Bone mineral density was lower in the defect area in alcoholic animals compared to the abstainer animals. Bone neoformation was greater in the abstainer groups receiving the elastin membrane and in abstainer and alcoholic rats receiving the chitosan membrane (15.78 ± 1.19, 27.81 ± 0.91, 47.29 ± 0.97, 42.69 ± 1.52, 13.81 ± 1.60, 18.59 ± 1.37, 16.54 ± 0.89, and 37.06 ± 1.17 in G1 to G8, respectively). In conclusion, osteogenesis and bone density were more expressive after the application of the elastin matrix in abstainer animals and of the chitosan matrix in both abstainer and alcoholic animals. Chronic alcohol ingestion resulted in lower bone formation and greater formation of fibrous connective tissue.
Collapse
|
62
|
Ren S, Zhou Y, Zheng K, Xu X, Yang J, Wang X, Miao L, Wei H, Xu Y. Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioact Mater 2022; 7:242-253. [PMID: 34466730 PMCID: PMC8379477 DOI: 10.1016/j.bioactmat.2021.05.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Bone regeneration is a crucial part in the treatment of periodontal tissue regeneration, in which new attempts come out along with the development of nanomaterials. Herein, the effect of cerium oxide nanoparticles (CeO2 NPs) on the cell behavior and function of human periodontal ligament stem cells (hPDLSCs) was investigated. Results of CCK-8 and cell cycle tests demonstrated that CeO2 NPs not only had good biocompatibility, but also promoted cell proliferation. Furthermore, the levels of alkaline phosphatase activity, mineralized nodule formation and expressions of osteogenic genes and proteins demonstrated CeO2 NPs could promote osteogenesis differentiation of hPDLSCs. Then we chose electrospinning to fabricate fibrous membranes containing CeO2 NPs. We showed that the composite membranes improved mechanical properties as well as realized release of CeO2 NPs. We then applied the composite membranes to in vivo study in rat cranial defect models. Micro-CT and histopathological evaluations revealed that nanofibrous membranes with CeO2 NPs further accelerated new bone formation. Those exciting results demonstrated that CeO2 NPs and porous membrane contributed to osteogenic ability, and CeO2 NPs contained electrospun membrane may be a promising candidate material for periodontal bone regeneration.
Collapse
Affiliation(s)
- Shuangshuang Ren
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yi Zhou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Xuanwen Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jie Yang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Leiying Miao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
63
|
Huang Q, Huang X, Gu L. Periodontal Bifunctional Biomaterials: Progress and Perspectives. MATERIALS 2021; 14:ma14247588. [PMID: 34947197 PMCID: PMC8709483 DOI: 10.3390/ma14247588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022]
Abstract
Periodontitis is a chronic infectious disease that destroys periodontal supportive tissues and eventually causes tooth loss. It is attributed to microbial and immune factors. The goal of periodontal therapy is to achieve complete alveolar bone regeneration while keeping inflammation well-controlled. To reach this goal, many single or composite biomaterials that produce antibacterial and osteogenic effects on periodontal tissues have been developed, which are called bifunctional biomaterials. In this review, we summarize recent progress in periodontal bifunctional biomaterials including bioactive agents, guided tissue regeneration/guided bone regeneration (GTR/GBR) membranes, tissue engineering scaffolds and drug delivery systems and provide novel perspectives. In conclusion, composite biomaterials have been greatly developed and they should be chosen with care due to the risk of selection bias and the lack of evaluation of the validity of the included studies.
Collapse
Affiliation(s)
- Qiuxia Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xin Huang
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.H.); (L.G.)
| | - Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
- Correspondence: (X.H.); (L.G.)
| |
Collapse
|
64
|
Liu M, Wang R, Liu J, Zhang W, Liu Z, Lou X, Nie H, Wang H, Mo X, Abd-Elhamid AI, Zheng R, Wu J. Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112609. [DOI: 10.1016/j.msec.2021.112609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023]
|
65
|
Wang X, Ding Y, Li H, Mo X, Wu J. Advances in electrospun scaffolds for meniscus tissue engineering and regeneration. J Biomed Mater Res B Appl Biomater 2021; 110:923-949. [PMID: 34619021 DOI: 10.1002/jbm.b.34952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 01/14/2023]
Abstract
The meniscus plays a critical role in maintaining the homeostasis, biomechanics, and structural stability of the knee joint. Unfortunately, it is predisposed to damages either from sports-related trauma or age-related degeneration. The meniscus has an inherently limited capacity for tissue regeneration. Self-healing of injured adult menisci only occurs in the peripheral vascularized portion, while the spontaneous repair of the inner avascular region seems never happens. Repair, replacement, and regeneration of menisci through tissue engineering strategies are promising to address this problem. Recently, many scaffolds for meniscus tissue engineering have been proposed for both experimental and preclinical investigations. Electrospinning is a feasible and versatile technique to produce nano- to micro-scale fibers that mimic the microarchitecture of native extracellular matrix and is an effective approach to prepare nanofibrous scaffolds for constructing engineered meniscus. Electrospun scaffolds are reported to be capable of inducing colonization of meniscus cells by modulating local extracellular density and stimulating endogenous regeneration by driving reprogramming of meniscus wound microenvironment. Electrospun nanofibrous scaffolds with tunable mechanical properties, controllable anisotropy, and various porosities have shown promises for meniscus repair and regeneration and will undoubtedly inspire more efforts in exploring effective therapeutic approaches towards clinical applications. In this article, we review the current advances in the use of electrospun nanofibrous scaffolds for meniscus tissue engineering and repair and discuss prospects for future studies.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yangfan Ding
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Haiyan Li
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China.,Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
66
|
Woo HN, Cho YJ, Tarafder S, Lee CH. The recent advances in scaffolds for integrated periodontal regeneration. Bioact Mater 2021; 6:3328-3342. [PMID: 33817414 PMCID: PMC7985477 DOI: 10.1016/j.bioactmat.2021.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
The periodontium is an integrated, functional unit of multiple tissues surrounding and supporting the tooth, including but not limited to cementum (CM), periodontal ligament (PDL) and alveolar bone (AB). Periodontal tissues can be destructed by chronic periodontal disease, which can lead to tooth loss. In support of the treatment for periodontally diseased tooth, various biomaterials have been applied starting as a contact inhibition membrane in the guided tissue regeneration (GTR) that is the current gold standard in dental clinic. Recently, various biomaterials have been prepared in a form of tissue engineering scaffold to facilitate the regeneration of damaged periodontal tissues. From a physical substrate to support healing of a single type of periodontal tissue to multi-phase/bioactive scaffold system to guide an integrated regeneration of periodontium, technologies for scaffold fabrication have emerged in last years. This review covers the recent advancements in development of scaffolds designed for periodontal tissue regeneration and their efficacy tested in vitro and in vivo. Pros and Cons of different biomaterials and design parameters implemented for periodontal tissue regeneration are also discussed, including future perspectives.
Collapse
Affiliation(s)
| | | | - Solaiman Tarafder
- Center for Dental and Craniofacial Research, Columbia University Medical Center, 630 W. 168 St., VC12-212, New York, NY, 10032, USA
| | - Chang H. Lee
- Center for Dental and Craniofacial Research, Columbia University Medical Center, 630 W. 168 St., VC12-212, New York, NY, 10032, USA
| |
Collapse
|
67
|
Xie X, Li D, Chen Y, Shen Y, Yu F, Wang W, Yuan Z, Morsi Y, Wu J, Mo X. Conjugate Electrospun 3D Gelatin Nanofiber Sponge for Rapid Hemostasis. Adv Healthc Mater 2021; 10:e2100918. [PMID: 34235873 DOI: 10.1002/adhm.202100918] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Indexed: 12/15/2022]
Abstract
Developing an excellent hemostatic material with good biocompatibility and high blood absorption capacity for rapid hemostasis of deep non-compressible hemorrhage remains a significant challenge. Herein, a novel conjugate electrospinning strategy to prepare an ultralight 3D gelatin sponge consisting of continuous interconnected nanofibers. This unique fluffy nanofiber structure endows the sponge with low density, high surface area, compressibility, and ultrastrong liquid absorption capacity. In vitro assessments show the gelatin nanofiber sponge has good cytocompatibility, high cell permeability, and low hemolysis ratio. The rat subcutaneous implantation studies demonstrate good biocompatibility and biodegradability of gelatin nanofiber sponge. Gelatin nanofiber sponge aggregates and activates platelets in large quantities to accelerate the formation of platelet embolism, and simultaneously escalates other extrinsic and intrinsic coagulation pathways, which collectively contribute to its superior hemostatic capacity. In vivo studies on an ear artery injury model and a liver trauma model of rabbits demonstrate that the gelatin nanofiber sponge rapidly induce stable blood clots with least blood loss compared to gelatin nanofiber membrane, medical gauze, and commercial gelatin hemostatic sponge. Hence, the gelatin nanofiber sponge holds great potential as an absorbable hemostatic agent for rapid hemostasis.
Collapse
Affiliation(s)
- Xianrui Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Dan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Yihong Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Fan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Wei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Yosry Morsi
- Faculty of Engineering and Industrial Sciences Swinburne University of Technology Boroondara VIC 3122 Australia
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Shanghai Engineering Research Center of Nano‐Biomaterials and Regenerative Medicine College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 P. R. China
| |
Collapse
|
68
|
王 聪, 桑 伟, 陈 燕, 宋 滇. [Electrospun PLGA scaffold loaded with osteogenic growth peptide accelerates cranial bone repair in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1183-1190. [PMID: 34549709 PMCID: PMC8527238 DOI: 10.12122/j.issn.1673-4254.2021.08.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the feasibility of electrospun poly(D, L-lactide-co-glycolide) (PLGA) scaffold loaded with osteogenic growth peptide (OGP) for bone tissue engineering. METHODS PLGA scaffolds were prepared by electrospinning PLGA solution without OGP(control group)or with 0.1%, 0.2%and 0.4%OGP(0.1%OGP@PLGA, 0.2%OGP@PLGA, and 0.4%OGP@PLGA scaffolds, respectively).The microstructure of the scaffolds was observed by scanning electron microscopy(SEM).The scaffolds were soaked in PBS to confirm the release pattern of OGP.The biocompatibility of the scaffolds was evaluated using CCK-8 assay and live/dead staining after a 7-day coculture with rat bone marrow-derived mesenchymal stem cells(BMSCs).ALP assay and ARS staining were used to evaluate osteoinduction capacity of the scaffolds co-cultured with rat BMSCs for 14 days.In a male SD rat model of skull defect(5 mm in diameter), bone defect repair was evaluated 8 weeks after implantation of the scaffolds using Micro-CT, HE and Masson staining. RESULTS The electrospun scaffolds had a fibrous structure similar to extracellular matrix(ECM)and were capable of sustained release of OGP for at least one month.Co-culture with 0.2%OGP@PLGA and 0.4%OGP@PLGA scaffolds, as compared with pure PLGA scaffold, significantly promoted the growth of rat BMSCs ((P < 0.01).The cells co-cultured with 0.4%OGP@PLGA scaffold showed the highest ALP activity and the greatest number of calcium nodules, indicating its strong osteoinduction ability (P < 0.01).Micro-CT and HE and Masson staining results showed that 0.4%OGP@PLGA scaffold had significantly better ability for promoting bone repair than the other two OGP-loaded scaffolds(P < 0.01). CONCLUSION The electrospun PLGA scaffold loaded with OGP effectively mimics the structure of ECM and has a good biocompatibility and osteoinduction ability, suggesting its potential as a new bone tissue engineering scaffold for bone defect repair.
Collapse
Affiliation(s)
- 聪 王
- 南京医科大学附属上海一院临床医学院骨科, 上海 201620Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - 伟林 桑
- 南京医科大学附属上海一院临床医学院骨科, 上海 201620Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - 燕敏 陈
- 上海市第一人民医院教育处, 上海 201620Department of Education, Shanghai First People′s Hospital, Shanghai 201620, China
| | - 滇文 宋
- 南京医科大学附属上海一院临床医学院骨科, 上海 201620Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| |
Collapse
|
69
|
Jain P, Hassan N, Khatoon K, Mirza MA, Naseef PP, Kuruniyan MS, Iqbal Z. Periodontitis and Systemic Disorder-An Overview of Relation and Novel Treatment Modalities. Pharmaceutics 2021; 13:1175. [PMID: 34452136 PMCID: PMC8398110 DOI: 10.3390/pharmaceutics13081175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Periodontitis, a major oral disease, affects a vast majority of the population but has been often ignored without realizing its long-fetched effects on overall human health. A realization in recent years of its association with severe diseases such as carditis, low birth weight babies, and preeclampsia has instigated dedicated research in this area. In the arena of periodontal medicines, the studies of past decades suggest a link between human periodontal afflictions and certain systemic disorders such as cardiovascular diseases, diabetes mellitus, respiratory disorders, preterm birth, autoimmune disorders, and cancer. Although, the disease appears as a locoregional infection, the periodontal pathogens, in addition their metabolic products and systemic mediators, receive access to the bloodstream, thereby contributing to the development of systemic disorders. Mechanism-based insights into the disease pathogenesis and association are highly relevant and shall be useful in avoiding any systemic complications. This review presents an update of the mechanisms and relationships between chronic periodontal infection and systemic disorders. Attention is also given to highlighting the incidence in support of this relationship. In addition, an attempt is made to propose the various periodonto-therapeutic tools to apprise the readers about the availability of appropriate treatment for the disease at the earliest stage without allowing it to progress and cause systemic adverse effects.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | - Karishma Khatoon
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | - Mohd. Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | | | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| |
Collapse
|
70
|
Sharma D, Mathur VP, Satapathy BK. Biodegradable and Biocompatible 3D Constructs for Dental Applications: Manufacturing Options and Perspectives. Ann Biomed Eng 2021; 49:2030-2056. [PMID: 34318403 DOI: 10.1007/s10439-021-02839-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Designing 3D constructs with appropriate materials and structural frameworks for complex dental restorative/regenerative procedures has always remained a multi-criteria optimization challenge. In this regard, 3D printing has long been known to be a potent tool for various tissue regenerative applications, however, the preparation of biocompatible, biodegradable, and stable inks is yet to be explored and revolutionized for overall performance improvisation. The review reports the currently employed manufacturing processes for the development of engineered self-supporting, easily processable, and cost-effective 3D constructs with target-specific tuneable mechanics, bioactivity, and degradability aspects in the oral cavity for their potential use in numerous dental applications ranging from soft pulp tissues to hard alveolar bone tissues. A hybrid synergistic approach, comprising of development of multi-layered, structurally stable, composite building blocks with desired physicomechanical performance and bioactivity presents an optimal solution to circumvent the major limitations and develop new-age advanced dental restorations and implants. Further, the review summarizes some manufacturing perspectives which may inspire the readers to design appropriate structures for clinical trials so as to pave the way for their routine applications in dentistry in the near future.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vijay Prakash Mathur
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
71
|
Liu Z, Liu X, Bao L, Liu J, Zhu X, Mo X, Tang R. The evaluation of functional small intestinal submucosa for abdominal wall defect repair in a rat model: Potent effect of sequential release of VEGF and TGF-β1 on host integration. Biomaterials 2021; 276:120999. [PMID: 34273685 DOI: 10.1016/j.biomaterials.2021.120999] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Ineffective vessel penetration and extracellular matrix (ECM) remodeling are responsible for the failure of porcine small intestinal submucosa (SIS)-repaired abdominal wall defects. Combined growth factors could be used as directing signals in a nature-mimicking strategy to improve this repair through mesh functionalization. In this work, vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1) were incorporated into a silk fibroin membrane via coaxial aqueous electrospinning to exploit their benefits of biological interactions. The membrane was sandwiched into the SIS bilayer as a functional mesh to repair partial-thickness defects in a rat model. Membrane characterization demonstrated that the core-shell structure ensured the independent distribution and sequential release of two regulators and protection of their bioactivities, which were confirmed by cell viability and protein expression. The mesh was further assessed to facilitate vasculature formation and collagen secretion in vitro, and exhibited better host integration than VEGF- or TGF-β1-containing mesh and developed reinforced mechanical properties compared with the VEGF-containing mesh after 28 days in vivo. Determination of the underlying biological interactions revealed that rapid VEGF release promotes angiogenesis and collagen secretion but initially potentiates the inflammatory response. Sustained TGF-β1 release at relatively low concentrations promoted VEGF for vessel permeation and maturation and steadily induced ECM remodeling under milder foreign body reactions. The functionalization of SIS improves repair by sufficient integration with timely remodeling and helps elucidate the related regulatory interactions.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Xuezhe Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Luhan Bao
- Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Xiaoqiang Zhu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, PR China.
| |
Collapse
|
72
|
Zhou T, Chen S, Ding X, Hu Z, Cen L, Zhang X. Fabrication and Characterization of Collagen/PVA Dual-Layer Membranes for Periodontal Bone Regeneration. Front Bioeng Biotechnol 2021; 9:630977. [PMID: 34178953 PMCID: PMC8219956 DOI: 10.3389/fbioe.2021.630977] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Guided tissue regeneration (GTR) is a promising treatment for periodontal tissue defects, which generally uses a membrane to build a mechanical barrier from the gingival epithelium and hold space for the periodontal regeneration especially the tooth-supporting bone. However, existing membranes possess insufficient mechanical properties and limited bioactivity for periodontal bone regenerate. Herein, fish collagen and polyvinyl alcohol (Col/PVA) dual-layer membrane were developed via a combined freezing/thawing and layer coating method. This dual-layer membrane had a clear but contact boundary line between collagen and PVA layers, which were both hydrophilic. The dual membrane had an elongation at break of 193 ± 27% and would undergo an in vitro degradation duration of more than 17 days. Further cell experiments showed that compared with the PVA layer, the collagen layer not only presented good cytocompatibility with rat bone marrow-derived mesenchymal stem cells (BMSCs), but also promoted the osteogenic genes (RUNX2, ALP, OCN, and COL1) and protein (ALP) expression of BMSCs. Hence, the currently developed dual-layer membranes could be used as a stable barrier with a stable degradation rate and selectively favor the bone tissue to repopulate the periodontal defect. The membranes could meet the challenges encountered by GTR for superior defect repair, demonstrating great potential in clinical applications.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siwei Chen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Xinxin Ding
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Implant Dentistry, Shanghai Ninth Peoples’ Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihuan Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaomeng Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Implant Dentistry, Shanghai Ninth Peoples’ Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
73
|
Zare MR, Khorram M, Barzegar S, Asadian F, Zareshahrabadi Z, Saharkhiz MJ, Ahadian S, Zomorodian K. Antimicrobial core-shell electrospun nanofibers containing Ajwain essential oil for accelerating infected wound healing. Int J Pharm 2021; 603:120698. [PMID: 33989750 DOI: 10.1016/j.ijpharm.2021.120698] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 01/05/2023]
Abstract
Treatment of skin injuries is still facing major challenges, such as chronicity and infections, particularly those caused by multi-drug resistance pathogens. An effective treatment of such wounds should accelerate the wound healing process while preventing bacterial contamination. Here, a novel core-shell nanofiber mat was fabricated comprising gelatin/polyvinyl alcohol (as a core) and aloe vera/arabinose/polyvinylpyrrolidone (as a shell) for accelerating the healing process of bacteria-infected wounds. Trachyspermum Ammi (Ajwain) essential oil (EO), as a potent and natural antimicrobial agent against microorganisms, was incorporated into the core of nanofiber mats using coaxial electrospinning. The microscopy images demonstrated the successful fabrication of the core-shell structure with a uniform fiber size of 564 ± 106.35 nm. Moreover, Ajwain EO-loaded nanofiber mat (core-shell/EO) provided excellent antimicrobial activity and antioxidant ability. The in vitro and ex vivo release of Ajwain EO from the fabricated nanofiber mat corroborated a prolonged release profile. Furthermore, in vivo antibacterial activity, wound closure, and histomorphological examinations showed the high efficacy of the core-shell/EO mat in the treatment of Staphylococcus aureus-infected full-thickness rat wounds compared to standard control treatment with a gauze. Overall, these results represent the core-shell/EO mat's potential as a newly developed wound dressing for bacteria-infected full-thickness skin injuries.
Collapse
Affiliation(s)
- Mohammad Reza Zare
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Mohammad Khorram
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran.
| | - Sajjad Barzegar
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Fatemeh Asadian
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Zahra Zareshahrabadi
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Sciences, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.
| |
Collapse
|
74
|
Liu M, Wang X, Li H, Xia C, Liu Z, Liu J, Yin A, Lou X, Wang H, Mo X, Wu J. Magnesium oxide-incorporated electrospun membranes inhibit bacterial infections and promote the healing process of infected wounds. J Mater Chem B 2021; 9:3727-3744. [PMID: 33904568 DOI: 10.1039/d1tb00217a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial infections cause severe secondary damage to wounds and hinder wound healing processes. We prepared magnesium oxide (MgO) nanoparticle-incorporated nanofibrous membranes by electrospinning and investigated their potential for wound dressing and fighting bacterial infection. MgO-Incorporated membranes possessed good elasticity and flexibility similar to native skin tissue and were hydrophilic, ensuring comfortable contact with wound beds. The cytocompatibility of membranes was dependent on the amounts of incorporated MgO nanoparticles: lower amounts promoted while higher amounts suppressed the proliferation of fibroblasts, endothelial cells, and macrophages. The antibacterial capacity of membranes was proportional to the amounts of incorporated MgO nanoparticles and they inhibited more than 98% E. coli, 90% S. aureus, and 94% S. epidermidis. MgO nanoparticle-incorporated membranes effectively suppressed bacterial infection and significantly promoted the healing processes of infected full-thickness wounds in a rat model. Subcutaneous implantation demonstrated that the incorporation of MgO nanoparticles into electrospun membranes elevated their bioactivity as evidenced by considerable cell infiltration into their dense nanofiber configuration and enhanced the remodeling of implanted membranes. This study highlights the potential of MgO-incorporated electrospun membranes in preventing bacterial infections of wounds.
Collapse
Affiliation(s)
- Mingyue Liu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Xiaoyu Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Haiyan Li
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, P. R. China
| | - Jiajie Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai, 200120, P. R. China
| | - Anlin Yin
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Xiangxin Lou
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Hongsheng Wang
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile & Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China. and Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
75
|
Yao X, Wang X, Ding J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater 2021; 126:92-108. [PMID: 33684535 DOI: 10.1016/j.actbio.2021.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Consistent left-right (LR) asymmetry or chirality is critical for embryonic development and function maintenance. While chirality on either molecular or organism level has been well established, that on the cellular level has remained an open question for a long time. Although it remains unclear whether chirality exists universally on the cellular level, valuable efforts have recently been made to explore this fundamental topic pertinent to both cell biology and biomaterial science. The development of material fabrication techniques, surface patterning, in particular, has afforded a unique platform to study cell-material interactions. By using patterning techniques, chirality on the cellular level has been examined for cell clusters and single cells in vitro in well-designed experiments. In this review, we first introduce typical fabrication techniques of surface patterning suitable for cell studies and then summarize the main aspects of preliminary evidence of cell chirality on patterned surfaces to date. We finally indicate the limitations of the studies conducted thus far and describe the perspectives of future research in this challenging field. STATEMENT OF SIGNIFICANCE: While both biomacromolecules and organisms can exhibit chirality, it is not yet conclusive whether a cell has left-right (LR) asymmetry. It is important yet challenging to study and reveal the possible existence of cell chirality. By using the technique of surface patterning, the recent decade has witnessed progress in the exploration of possible cell chirality within cell clusters and single cells. Herein, some important preliminary evidence of cell chirality is collected and analyzed. The open questions and perspectives are also described to promote further investigations of cell chirality in biomaterials.
Collapse
|
76
|
Research status of biodegradable metals designed for oral and maxillofacial applications: A review. Bioact Mater 2021; 6:4186-4208. [PMID: 33997502 PMCID: PMC8099919 DOI: 10.1016/j.bioactmat.2021.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 01/08/2023] Open
Abstract
The oral and maxillofacial regions have complex anatomical structures and different tissue types, which have vital health and aesthetic functions. Biodegradable metals (BMs) is a promising bioactive materials to treat oral and maxillofacial diseases. This review summarizes the research status and future research directions of BMs for oral and maxillofacial applications. Mg-based BMs and Zn-based BMs for bone fracture fixation systems, and guided bone regeneration (GBR) membranes, are discussed in detail. Zn-based BMs with a moderate degradation rate and superior mechanical properties for GBR membranes show great potential for clinical translation. Fe-based BMs have a relatively low degradation rate and insoluble degradation products, which greatly limit their application and clinical translation. Furthermore, we proposed potential future research directions for BMs in the oral and maxillofacial regions, including 3D printed BM bone scaffolds, surface modification for BMs GBR membranes, and BMs containing hydrogels for cartilage regeneration, soft tissue regeneration, and nerve regeneration. Taken together, the progress made in the development of BMs in oral and maxillofacial regions has laid a foundation for further clinical translation.
Collapse
|
77
|
Nanofiber Configuration of Electrospun Scaffolds Dictating Cell Behaviors and Cell-scaffold Interactions. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
78
|
Peng W, Ren S, Zhang Y, Fan R, Zhou Y, Li L, Xu X, Xu Y. MgO Nanoparticles-Incorporated PCL/Gelatin-Derived Coaxial Electrospinning Nanocellulose Membranes for Periodontal Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:668428. [PMID: 33842452 PMCID: PMC8026878 DOI: 10.3389/fbioe.2021.668428] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Electrospinning technique has attracted considerable attention in fabrication of cellulose nanofibrils or nanocellulose membranes, in which polycaprolactone (PCL) could be used as a promising precursor to prepare various cellulose nanofibril membranes for periodontal tissue regeneration. Conventional bio-membranes and cellulose films used in guided tissue regeneration (GTR) can prevent the downgrowth of epithelial cells, fibroblasts, and connective tissue in the area of tooth root but have limitations related to osteogenic and antimicrobial properties. Cellulose nanofibrils can be used as an ideal drug delivery material to encapsulate and carry some drugs. In this study, magnesium oxide (MgO) nanoparticles-incorporated PCL/gelatin core-shell nanocellulose periodontal membranes were fabricated using coaxial electrospinning technique, which was termed as Coaxial-MgO. The membranes using single-nozzle electrospinning technique, namely Blending-MgO and Blending-Blank, were used as control. The morphology and physicochemical property of these nanocellulose membranes were characterized by scanning electron microscopy (SEM), energy-dispersive spectrum of X-ray (EDS), transmission electron microscopy (TEM), contact angle, and thermogravimetric analysis (TGA). The results showed that the incorporation of MgO nanoparticles barely affected the morphology and mechanical property of nanocellulose membranes. Coaxial-MgO with core-shell fiber structure had better hydrophilic property and sustainable release of magnesium ion (Mg2+). CCK-8 cell proliferation and EdU staining demonstrated that Coaxial-MgO membranes showed better human periodontal ligament stem cells (hPDLSCs) proliferation rates compared with the other group due to its gelatin shell with great biocompatibility and hydrophilicity. SEM and immunofluorescence assay results illustrated that the Coaxial-MgO scaffold significantly enhanced hPDLSCs adhesion. In vitro osteogenic and antibacterial properties showed that Coaxial-MgO membrane enhanced alkaline phosphatase (ALP) activity, formation of mineralized nodules, osteogenic-related genes [ALP, collagen type 1 (COL1), runt-related transcription factor 2 (Runx2)], and high antibacterial properties toward Escherichia coli (E. coli) and Actinobacillus actinomycetemcomitans (A. a) when compared with controls. Our findings suggested that MgO nanoparticles-incorporated coaxial electrospinning PCL-derived nanocellulose periodontal membranes might have great prospects for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yibo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruyi Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
79
|
Dziemidowicz K, Sang Q, Wu J, Zhang Z, Zhou F, Lagaron JM, Mo X, Parker GJM, Yu DG, Zhu LM, Williams GR. Electrospinning for healthcare: recent advancements. J Mater Chem B 2021; 9:939-951. [DOI: 10.1039/d0tb02124e] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This perspective explores recent developments and innovations in the electrospinning technique and their potential applications in biomedicine.
Collapse
Affiliation(s)
| | - Qingqing Sang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Jinglei Wu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Ziwei Zhang
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
| | - Fenglei Zhou
- UCL School of Pharmacy
- University College London
- London WC1N 1AX
- UK
- Centre for Medical Image Computing, UCL Computer Science
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology
- Spanish Council for Scientific Research
- Valencia 46100
- Spain
| | - Xiumei Mo
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, UCL Computer Science
- University College London
- London WC1V 6LJ
- UK
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Li-Min Zhu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | | |
Collapse
|
80
|
Xu Y, Zhao S, Weng Z, Zhang W, Wan X, Cui T, Ye J, Liao L, Wang X. Jelly-Inspired Injectable Guided Tissue Regeneration Strategy with Shape Auto-Matched and Dual-Light-Defined Antibacterial/Osteogenic Pattern Switch Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54497-54506. [PMID: 33226209 DOI: 10.1021/acsami.0c18070] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Periodontitis is a bacterial infectious disease leading to the loss of periodontal supporting tissues and teeth. The current guided tissue regeneration (GTR) membranes for periodontitis treatments cannot effectively promote tissue regeneration for the limited antibacterial properties and the excessively fast degradation rate. Besides, they need extra tailoring according to variform defects before implantation, leading to imprecise match. This study proposed an injectable sodium alginate hydrogel composite (CTP-SA) doped with cubic cuprous oxide (Cu2O) and polydopamine-coated titanium dioxide (TiO2@PDA) nanoparticles for GTR. Inspired by the gelation process of the jelly, the phase change (liquid to solid) of CTP-SA after injection could automatch variform bone defects. Meanwhile, CTP-SA exhibited broad-spectrum antibacterial capabilities under blue light (BL) irradiation, including Streptococcus mutans (one of the most abundant bacteria in oral biofilms). Moreover, the reactive oxygen species released under BL excitation could accelerate the oxidation of Cu+ to Cu2+. Afterward, osteogenesis could be enhanced through two factors simultaneously: the stimulation of newly formed Cu2+ and the photothermal effect of CTP-SA under near-infrared (NIR) irradiation. Collectively, through this dual-light (blue and NIR) noninvasive regulation, CTP-SA could switch antibacterial and osteogenic modes to address requirements of patients at different healing stages, thereby realizing the customized GTR procedures.
Collapse
Affiliation(s)
- Yingying Xu
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, P. R. China
| | - Siyu Zhao
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, P. R. China
| | - Zhenzhen Weng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Wei Zhang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Xinyi Wan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Tongcan Cui
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Jing Ye
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| | - Lan Liao
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
- Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, P. R. China
| | - Xiaolei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330088, P. R. China
| |
Collapse
|
81
|
Lian M, Han Y, Sun B, Xu L, Wang X, Ni B, Jiang W, Qiao Z, Dai K, Zhang X. A multifunctional electrowritten bi-layered scaffold for guided bone regeneration. Acta Biomater 2020; 118:83-99. [PMID: 32853801 DOI: 10.1016/j.actbio.2020.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
The guided bone regeneration (GBR) concept has been extensively utilized to treat maxillofacial bone defects in clinical practice. However, the repair efficacy of currently available GBR membranes is often compromised by their limited bone regeneration potential and deficient antibacterial activity. In this study, inspired by the bi-layered structure design of the commonly used Bio-GideⓇmembrane, we designed and fabricated a new kind of multifunctional bi-layered "GBR scaffold" combining solution electrospinning writing (SEW) and solution electrospinning (SES) techniques using a single SEW printer. Copper-loaded mesoporous silica nanoparticles (Cu@MSNs) were incorporated into the poly(lactic-co-glycolic acid)/gelatin (PLGA/Gel, denoted as PG) fiber matrix to construct a composite PG-Cu@MSNs fibrous scaffold. The obtained GBR scaffold consisted of a loose and porous SEW layer to support and facilitate bone ingrowth, and a dense and compact SES layer to resist non-osteoblast interference. The resulting enhanced mechanical properties, coordinated degradation profile, and facile preparation procedure imparted the composite scaffold with good clinical feasibility. In vitro biological experiments indicate that the PG-Cu@MSNs composite scaffold exhibited favorable osteogenic and antibacterial properties. Furthermore, an in vivo rat periodontal defect model further confirmed the promising bone regeneration efficacy of the PG-Cu@MSNs scaffold. In conclusion, the developed electrowritten Cu@MSNs-incorporated bi-layered scaffold with hierarchical architecture and concurrent osteogenic and antibacterial functions may hold great potential for application in GBR.
Collapse
Affiliation(s)
- Meifei Lian
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Han
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China
| | - Binbin Sun
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China
| | - Ling Xu
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaofeng Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Excellent Science and Technology Innovation Group of Jiangsu Province, Nanjing, 211171, China
| | - Bing Ni
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Wenbo Jiang
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China
| | - Zhiguang Qiao
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China; Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, China.
| | - Kerong Dai
- Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong university School of Medicine, Shanghai 200125, China.
| | - Xiuyin Zhang
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
82
|
Zhang C, Wang J, Xie Y, Wang L, Yang L, Yu J, Miyamoto A, Sun F. Development of FGF-2-loaded electrospun waterborne polyurethane fibrous membranes for bone regeneration. Regen Biomater 2020; 8:rbaa046. [PMID: 33732492 PMCID: PMC7947599 DOI: 10.1093/rb/rbaa046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Guided bone regeneration (GBR) membrane has been used to improve functional outcomes for periodontal regeneration. However, few studies have focused on the biomimetic membrane mimicking the vascularization of the periodontal membrane. This study aimed to fabricate waterborne polyurethane (WPU) fibrous membranes loaded fibroblast growth factor-2 (FGF-2) via emulsion electrospinning, which can promote regeneration of periodontal tissue via the vascularization of the biomimetic GBR membrane. A biodegradable WPU was synthesized by using lysine and dimethylpropionic acid as chain extenders according to the rule of green chemical synthesis technology. The WPU fibers with FGF-2 was fabricated via emulsion electrospinning. The results confirmed that controlled properties of the fibrous membrane had been achieved with controlled degradation, suitable mechanical properties and sustained release of the factor. The immunohistochemical expression of angiogenic-related factors was positive, meaning that FGF-2 loaded in fibers can significantly promote cell vascularization. The fiber scaffold loaded FGF-2 has the potential to be used as a functional GBR membrane to promote the formation of extraosseous blood vessels during periodontal repairing.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Jianxiong Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Yujie Xie
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Li Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Lishi Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Jihua Yu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Akira Miyamoto
- Faculty of Rehabilitation, Department of Physical Therapy, Kobe International University, Kobe, Japan
| | - Fuhua Sun
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
- Correspondence address. Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, P.R. China. Tel.: +81-18428397607; E-mail:
| |
Collapse
|
83
|
Wang X, Zhu J, Sun B, Jin Q, Li H, Xia C, Wang H, Mo X, Wu J. Harnessing electrospun nanofibers to recapitulate hierarchical fibrous structures of meniscus. J Biomed Mater Res B Appl Biomater 2020; 109:201-213. [DOI: 10.1002/jbm.b.34692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai PR China
| | - Jingjing Zhu
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai PR China
| | - Binbin Sun
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai PR China
| | - Qiu Jin
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai PR China
| | - Haiyan Li
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai PR China
| | - Changlei Xia
- Co‐Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering Nanjing Forestry University Nanjing PR China
| | - Hongsheng Wang
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai PR China
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai PR China
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai PR China
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai PR China
| |
Collapse
|
84
|
Wang Z, Cui W. Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhen Wang
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|