51
|
Franklin M, Sperry M, Phillips E, Granquist E, Marcolongo M, Winkelstein BA. Painful temporomandibular joint overloading induces structural remodeling in the pericellular matrix of that joint's chondrocytes. J Orthop Res 2022; 40:348-358. [PMID: 33830541 PMCID: PMC8497636 DOI: 10.1002/jor.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Mechanical stress to the temporomandibular joint (TMJ) is an important factor in cartilage degeneration, with both clinical and preclinical studies suggesting that repeated TMJ overloading could contribute to pain, inflammation, and/or structural damage in the joint. However, the relationship between pain severity and early signs of cartilage matrix microstructural dysregulation is not understood, limiting the advancement of diagnoses and treatments for temporomandibular joint-osteoarthritis (TMJ-OA). Changes in the pericellular matrix (PCM) surrounding chondrocytes may be early indicators of OA. A rat model of TMJ pain induced by repeated jaw loading (1 h/day for 7 days) was used to compare the extent of PCM modulation for different loading magnitudes with distinct pain profiles (3.5N-persistent pain, 2N-resolving pain, or unloaded controls-no pain) and macrostructural changes previously indicated by Mankin scoring. Expression of PCM structural molecules, collagen VI and aggrecan NITEGE neo-epitope, were evaluated at Day 15 by immunohistochemistry within TMJ fibrocartilage and compared between pain conditions. Pericellular collagen VI levels increased at Day 15 in both the 2N (p = 0.003) and 3.5N (p = 0.042) conditions compared to unloaded controls. PCM width expanded to a similar extent for both loading conditions at Day 15 (2N, p < 0.001; 3.5N, p = 0.002). Neo-epitope expression increased in the 3.5N group over levels in the 2N group (p = 0.041), indicating pericellular changes that were not identified in the same groups by Mankin scoring of the pericellular region. Although remodeling occurs in both pain conditions, the presence of pericellular catabolic neo-epitopes may be involved in the macrostructural changes and behavioral sensitivity observed in persistent TMJ pain.
Collapse
Affiliation(s)
- Melissa Franklin
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, 19104
| | - Megan Sperry
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104,Corresponding Author(s): Megan Sperry, PhD, Wyss Institute at Harvard University, 3 Blackfan Circle, Boston, MA 02115, , 978-387-3763
| | - Evan Phillips
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104
| | - Eric Granquist
- Oral & Maxillofacial Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Michele Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
52
|
Kahle ER, Han B, Chandrasekaran P, Phillips ER, Mulcahey MK, Lu XL, Marcolongo MS, Han L. Molecular Engineering of Pericellular Microniche via Biomimetic Proteoglycans Modulates Cell Mechanobiology. ACS NANO 2022; 16:1220-1230. [PMID: 35015500 PMCID: PMC9271520 DOI: 10.1021/acsnano.1c09015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Molecular engineering of biological tissues using synthetic mimics of native matrix molecules can modulate the mechanical properties of the cellular microenvironment through physical interactions with existing matrix molecules, and in turn, mediate the corresponding cell mechanobiology. In articular cartilage, the pericellular matrix (PCM) is the immediate microniche that regulates cell fate, signaling, and metabolism. The negatively charged osmo-environment, as endowed by PCM proteoglycans, is a key biophysical cue for cell mechanosensing. This study demonstrated that biomimetic proteoglycans (BPGs), which mimic the ultrastructure and polyanionic nature of native proteoglycans, can be used to molecularly engineer PCM micromechanics and cell mechanotransduction in cartilage. Upon infiltration into bovine cartilage explant, we showed that localization of BPGs in the PCM leads to increased PCM micromodulus and enhanced chondrocyte intracellular calcium signaling. Applying molecular force spectroscopy, we revealed that BPGs integrate with native PCM through augmenting the molecular adhesion of aggrecan, the major PCM proteoglycan, at the nanoscale. These interactions are enabled by the biomimetic "bottle-brush" ultrastructure of BPGs and facilitate the integration of BPGs within the PCM. Thus, this class of biomimetic molecules can be used for modulating molecular interactions of pericellular proteoglycans and harnessing cell mechanosensing. Because the PCM is a prevalent feature of various cell types, BPGs hold promising potential for improving regeneration and disease modification for not only cartilage-related healthcare but many other tissues and diseases.
Collapse
Affiliation(s)
- Elizabeth R. Kahle
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Evan R. Phillips
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States
| | - Mary K. Mulcahey
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - X. Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Michele S. Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, United States
- Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| |
Collapse
|
53
|
Sibole SC, Moo EK, Federico S, Herzog W. The Protective Function of Directed Asymmetry in the Pericellular Matrix Enveloping Chondrocytes. Ann Biomed Eng 2022; 50:39-55. [PMID: 34993700 DOI: 10.1007/s10439-021-02900-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/01/2021] [Indexed: 01/10/2023]
Abstract
The specialized pericellular matrix (PCM) surrounding chondrocytes within articular cartilage is critical to the tissue's health and longevity. Growing evidence suggests that PCM alterations are ubiquitous across all trajectories of osteoarthritis, a crippling and prevalent joint disease. The PCM geometry is of particular interest as it influences the cellular mechanical environment. Observations of asymmetrical PCM thickness have been reported, but a quantified characterization is lacking. To this end, a novel microscopy protocol was developed and applied to acquire images of the PCM surrounding live cells. Morphometric analysis indicated a statistical bias towards thicker PCM on the inferior cellular surface. The mechanical effects of this bias were investigated with multiscale modelling, which revealed potentially damaging, high tensile strains in the direction perpendicular to the membrane and localized on the inferior surface. These strains varied substantially between PCM asymmetry cases. Simulations with a thicker inferior PCM, representative of the observed geometry, resulted in strain magnitudes approximately half of those calculated for a symmetric geometry, and a third of those with a thin inferior PCM. This strain attenuation suggests that synthesis of a thicker inferior PCM may be a protective adaptation. PCM asymmetry may thus be important in cartilage development, pathology, and engineering.
Collapse
Affiliation(s)
- Scott C Sibole
- Human Performance Laboratory, University of Calgary, Calgary, Canada.
| | - Eng Kuan Moo
- Human Performance Laboratory, University of Calgary, Calgary, Canada.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Salvatore Federico
- Human Performance Laboratory, University of Calgary, Calgary, Canada.,Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Canada.,Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada
| |
Collapse
|
54
|
Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol 2021; 18:67-84. [PMID: 34934171 DOI: 10.1038/s41584-021-00724-w] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Mechanical stimuli have fundamental roles in articular cartilage during health and disease. Chondrocytes respond to the physical properties of the cartilage extracellular matrix (ECM) and the mechanical forces exerted on them during joint loading. In osteoarthritis (OA), catabolic processes degrade the functional ECM and the composition and viscoelastic properties of the ECM produced by chondrocytes are altered. The abnormal loading environment created by these alterations propagates cell dysfunction and inflammation. Chondrocytes sense their physical environment via an array of mechanosensitive receptors and channels that activate a complex network of downstream signalling pathways to regulate several cell processes central to OA pathology. Advances in understanding the complex roles of specific mechanosignalling mechanisms in healthy and OA cartilage have highlighted molecular processes that can be therapeutically targeted to interrupt pathological feedback loops. The potential for combining these mechanosignalling targets with the rapidly expanding field of smart mechanoresponsive biomaterials and delivery systems is an emerging paradigm in OA treatment. The continued advances in this field have the potential to enable restoration of healthy mechanical microenvironments and signalling through the development of precision therapeutics, mechanoregulated biomaterials and drug systems in the near future.
Collapse
|
55
|
Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage. Int J Mol Sci 2021; 22:ijms222413595. [PMID: 34948394 PMCID: PMC8707858 DOI: 10.3390/ijms222413595] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022] Open
Abstract
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease.
Collapse
|
56
|
Bansal S, Meadows KD, Miller LM, Saleh KS, Patel JM, Stoeckl BD, Lemmon EA, Hast MW, Zgonis MH, Scanzello CR, Elliott DM, Mauck RL. Six-Month Outcomes of Clinically Relevant Meniscal Injury in a Large-Animal Model. Orthop J Sports Med 2021; 9:23259671211035444. [PMID: 34796238 PMCID: PMC8593308 DOI: 10.1177/23259671211035444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/04/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The corrective procedures for meniscal injury are dependent on tear type, severity, and location. Vertical longitudinal tears are common in young and active individuals, but their natural progression and impact on osteoarthritis (OA) development are not known. Root tears are challenging and they often indicate poor outcomes, although the timing and mechanisms of initiation of joint dysfunction are poorly understood, particularly in large-animal and human models. PURPOSE/HYPOTHESIS In this study, vertical longitudinal and root tears were made in a large-animal model to determine the progression of joint-wide dysfunction. We hypothesized that OA onset and progression would depend on the extent of injury-based load disruption in the tissue, such that root tears would cause earlier and more severe changes to the joint. STUDY DESIGN Controlled laboratory study. METHODS Sham surgeries and procedures to create either vertical longitudinal or root tears were performed in juvenile Yucatan mini pigs through randomized and bilateral arthroscopic procedures. Animals were sacrificed at 1, 3, or 6 months after injury and assessed at the joint and tissue level for evidence of OA. Functional measures of joint load transfer, cartilage indentation mechanics, and meniscal tensile properties were performed, as well as histological evaluation of the cartilage, meniscus, and synovium. RESULTS Outcomes suggested a progressive and sustained degeneration of the knee joint and meniscus after root tear, as evidenced by histological analysis of the cartilage and meniscus. This occurred in spite of spontaneous reattachment of the root, suggesting that this reattachment did not fully restore the function of the native attachment. In contrast, the vertical longitudinal tear did not cause significant changes to the joint, with only mild differences compared with sham surgery at the 6-month time point. CONCLUSION Given that the root tear, which severs circumferential connectivity and load transfer, caused more intense OA compared with the circumferentially stable vertical longitudinal tear, our findings suggest that without timely and mechanically competent fixation, root tears may cause irreversible joint damage. CLINICAL RELEVANCE More generally, this new model can serve as a test bed for experimental surgical, scaffold-based, and small molecule-driven interventions after injury to prevent OA progression.
Collapse
Affiliation(s)
- Sonia Bansal
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle D. Meadows
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Liane M. Miller
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Kamiel S. Saleh
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Jay M. Patel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Brendan D. Stoeckl
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Elisabeth A. Lemmon
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael W. Hast
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.,Biedermann Lab for Orthopaedic Research, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miltiadis H. Zgonis
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Carla R. Scanzello
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.,Division of Rheumatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dawn M. Elliott
- Biedermann Lab for Orthopaedic Research, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Robert L. Mauck, PhD, Department of Orthopedic Surgery, University of Pennsylvania, 3450 Hamilton Walk, 371 Stemmler Hall, Philadelphia, PA 19104, USA () (Twitter: @MauckLab)
| |
Collapse
|
57
|
Linus A, Ebrahimi M, Turunen MJ, Saarakkala S, Joukainen A, Kröger H, Koistinen A, Finnilä MA, Afara IO, Mononen ME, Tanska P, Korhonen RK. High-resolution infrared microspectroscopic characterization of cartilage cell microenvironment. Acta Biomater 2021; 134:252-260. [PMID: 34365039 DOI: 10.1016/j.actbio.2021.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 01/06/2023]
Abstract
The lateral resolution of infrared spectroscopy has been inadequate for accurate biochemical characterization of the cell microenvironment, a region regulating biochemical and biomechanical signals to cells. In this study, we demonstrate the capacity of a high-resolution Fourier transform infrared microspectroscopy (HR-FTIR-MS) to characterize the collagen content of this region. Specifically, we focus on the collagen content in the cartilage cell (chondrocyte) microenvironment of healthy and osteoarthritic (OA) cartilage. Human tibial cartilage samples (N = 28) were harvested from 7 cadaveric donors and graded for OA severity (healthy, early OA, advanced OA). HR-FTIR-MS was used to analyze the collagen content of the chondrocyte microenvironment of five distinct zones across the tissue depth. HR-FTIR-MS successfully showed collagen content distribution across chondrocytes and their environment. In zones 2 and 3 (10 - 50% of the tissue thickness), we observed that collagen content was smaller (P < 0.05) in early OA compared to the healthy tissue in the vicinity of cells (pericellular region). The collagen content loss was extended to the extracellular matrix in advanced OA tissue. No significant differences in the collagen content of the chondrocyte microenvironment were observed between the groups in the most superficial (0-10%) and deep zones (50-100%). HR-FTIR-MS revealed collagen loss in the early OA cartilage pericellular region before detectable changes in the extracellular matrix in advanced OA. HR-FTIR-MS-based compositional assessment enables a better understanding of OA-related changes in tissues. This technique can be used to identify new disease mechanisms enabling better intervention strategies. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) is the most common degenerative joint disease causing pain and disability. While significant progress has been made in OA research, OA pathogenesis is still poorly understood and current OA treatments are mainly palliative. This study demonstrates that high-resolution FTIR microspectroscopy (HR-FTIR-MS) can characterize OA-induced compositional changes in the cell microenvironment (pericellular matrix) during the early disease stages before tissue changes in the extracellular matrix become apparent. This technique may further enable the identification of new OA mechanisms and improve our current understanding of OA pathogenesis, thus, enabling the development of better treatment methods.
Collapse
|
58
|
Song Y, Hao D, Jiang H, Huang M, Du Q, Lin Y, Liu F, Chen B. Nrf2 Regulates CHI3L1 to Suppress Inflammation and Improve Post-Traumatic Osteoarthritis. J Inflamm Res 2021; 14:4079-4088. [PMID: 34466014 PMCID: PMC8403022 DOI: 10.2147/jir.s310831] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/18/2021] [Indexed: 01/16/2023] Open
Abstract
Introduction Post-traumatic osteoarthritis (PTOA) is an inflammatory condition that occurs following mechanical joint trauma and that results in joint degeneration. This study sought to evaluate the regulatory function of nuclear factor erythroid 2-related factor 2 (Nrf2) in a murine model of anterior cruciate ligament transection (ACLT)-induced PTOA and in an in vitro model of synoviocyte inflammation induced by LPS treatment with the goal of exploring the role of chitinase 3-like-1 (CHI3L1) in this pathogenic context. Methods PTOA model mice were intra-articularly injected with Nrf2 overexpression lentiviral vector, and safranin O-fast green staining as well as the Osteoarthritis Research Society International (OARSI) Scoring System were used to evaluate the severity of cartilage damage. Protein expression in the synovial tissue was evaluated by Western blotting, immunohistochemical staining, and ELISA. Additionally, murine synoviocytes were infected with Nrf2 overexpression lentivirus and stimulated with LPS. The levels of inflammatory cytokines were detected by ELISA. ROS levels were measured using dihydroethidium (DHE) dye. Results We determined that the overexpression of Nrf2 was sufficient to reduce cartilage degradation in the context of PTOA in vivo, and we observed a significant decrease in the expression of matrix metalloproteinase 13 (MMP13) in the articular cartilage of samples from mice overexpressing Nrf2 relative to control mice. Synovial CHI3L1 expression and serum TNF-α, IL-1β, and IL-6 levels were reduced in animals overexpressing this transcription factor relative to PTOA model controls. Consistent with these findings, murine synoviocytes treated with LPS exhibited dose-dependent increases in ROS, TNF-α, IL-1β, IL-6, Nrf2, and CHI3L1 levels, whereas Nrf2 overexpression was sufficient to suppress these increases. Conclusion Our data indicated that Nrf2 negatively regulates CHI3L1, suggesting that this signaling axis may regulate PTOA progression and may thus be a viable therapeutic target in individuals affected by this condition.
Collapse
Affiliation(s)
- Yang Song
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Division of Traumatology and Joint, Department of Orthopaedics, Shunde Hospital, Southern Medical University, Foshan, 528308, People's Republic of China
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Huan Jiang
- Department of Anesthesiology, Shunde Hospital, Southern Medical University, Foshan, 528308, People's Republic of China
| | - Mingguang Huang
- Division of Traumatology and Joint, Department of Orthopaedics, Shunde Hospital, Southern Medical University, Foshan, 528308, People's Republic of China
| | - Qingjun Du
- Division of Traumatology and Joint, Department of Orthopaedics, Shunde Hospital, Southern Medical University, Foshan, 528308, People's Republic of China
| | - Yi Lin
- Division of Traumatology and Joint, Department of Orthopaedics, Shunde Hospital, Southern Medical University, Foshan, 528308, People's Republic of China
| | - Fei Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Bin Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
59
|
Han B, Li Q, Wang C, Chandrasekaran P, Zhou Y, Qin L, Liu XS, Enomoto-Iwamoto M, Kong D, Iozzo RV, Birk DE, Han L. Differentiated activities of decorin and biglycan in the progression of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2021; 29:1181-1192. [PMID: 33915295 PMCID: PMC8319061 DOI: 10.1016/j.joca.2021.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To delineate the activities of decorin and biglycan in the progression of post-traumatic osteoarthritis (PTOA). DESIGN Three-month-old inducible biglycan (BgniKO) and decorin/biglycan compound (Dcn/BgniKO) knockout mice were subjected to the destabilization of the medial meniscus (DMM) surgery to induce PTOA. The OA phenotype was evaluated by assessing joint structure and sulfated glycosaminoglycan (sGAG) staining via histology, surface collagen fibril nanostructure and calcium content via scanning electron microscopy, tissue modulus via atomic force microscopy-nanoindentation, as well as subchondral bone structure and meniscus ossification via micro-computed tomography. Outcomes were compared with previous findings in the inducible decorin (DcniKO) knockout mice. RESULTS In the DMM model, BgniKO mice developed similar degree of OA as the control (0.44 [-0.18 1.05] difference in modified Mankin score), different from the more severe OA phenotype observed in DcniKO mice (1.38 [0.91 1.85] difference). Dcn/BgniKO mice exhibited similar histological OA phenotype as DcniKO mice (1.51 [0.97 2.04] difference vs control), including aggravated loss of sGAGs, salient surface fibrillation and formation of osteophyte. Meanwhile, Dcn/BgniKO mice showed further cartilage thinning than DcniKO mice, resulting in the exposure of underlying calcified tissues and aberrantly high surface modulus. BgniKO and Dcn/BgniKO mice developed altered subchondral trabecular bone structure in both Sham and DMM groups, while DcniKO and control mice did not. CONCLUSION In PTOA, decorin plays a more crucial role than biglycan in regulating cartilage degeneration, while biglycan is more important in regulating subchondral bone structure. The two have distinct activities and modest synergy in the pathogenesis of PTOA.
Collapse
Affiliation(s)
- B Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - Q Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - C Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - P Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States
| | - Y Zhou
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - L Qin
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - X S Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - M Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - D Kong
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - R V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, United States
| | - D E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL, 33612, United States
| | - L Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, United States.
| |
Collapse
|
60
|
Chandrasekaran P, Kwok B, Han B, Adams SM, Wang C, Chery DR, Mauck RL, Dyment NA, Lu XL, Frank DB, Koyama E, Birk DE, Han L. Type V Collagen Regulates the Structure and Biomechanics of TMJ Condylar Cartilage: A Fibrous-Hyaline Hybrid. Matrix Biol 2021; 102:1-19. [PMID: 34314838 DOI: 10.1016/j.matbio.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
This study queried the role of type V collagen in the post-natal growth of temporomandibular joint (TMJ) condylar cartilage, a hybrid tissue with a fibrocartilage layer covering a secondary hyaline cartilage layer. Integrating outcomes from histology, immunofluorescence imaging, electron microscopy and atomic force microscopy-based nanomechanical tests, we elucidated the impact of type V collagen reduction on TMJ condylar cartilage growth in the type V collagen haploinsufficiency and inducible knockout mice. Reduction of type V collagen led to significantly thickened collagen fibrils, decreased tissue modulus, reduced cell density and aberrant cell clustering in both the fibrous and hyaline layers. Post-natal growth of condylar cartilage involves the chondrogenesis of progenitor cells residing in the fibrous layer, which gives rise to the secondary hyaline layer. Loss of type V collagen resulted in reduced proliferation of these cells, suggesting a possible role of type V collagen in mediating the progenitor cell niche. When the knockout of type V collagen was induced in post-weaning mice after the start of physiologic TMJ loading, the hyaline layer exhibited pronounced thinning, supporting an interplay between type V collagen and occlusal loading in condylar cartilage growth. The phenotype in hyaline layer can thus be attributed to the impact of type V collagen on the mechanically regulated progenitor cell activities. In contrast, knee cartilage does not contain the progenitor cell population at post-natal stages, and develops normal structure and biomechanical properties with the loss of type V collagen. Therefore, in the TMJ, in addition to its established role in regulating the assembly of collagen I fibrils, type V collagen also impacts the mechanoregulation of progenitor cell activities in the fibrous layer. We expect such knowledge to establish a foundation for understanding condylar cartilage matrix development and regeneration, and to yield new insights into the TMJ symptoms in patients with classic Ehlers-Danlos syndrome, a genetic disease due to autosomal mutation of type V collagen.
Collapse
Affiliation(s)
- Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
61
|
Hislop BD, Heveran CM, June RK. Development and analytical validation of a finite element model of fluid transport through osteochondral tissue. J Biomech 2021; 123:110497. [PMID: 34048964 DOI: 10.1016/j.jbiomech.2021.110497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 01/19/2023]
Abstract
Fluid transport is critical to joint health. In this study we evaluate an unexplored component of joint fluid transport -fluid transport between cartilage and bone. Such transport across the cartilage-bone interface could potentially provide chondrocytes with an additional source of nutrients and signaling molecules. A biphasic viscoelastic model using an ellipsoidal fiber distribution was created with three distinct layers of cartilage (superficial zone, middle zone, and deep zone) along with a layer of subchondral bone. For stress-relaxation in unconfined compression, our results for compressive stress, radial stress, and effective fluid pressure were compared with established biphasic analytical solutions. Our model also shows the development of fluid pressure gradients at the cartilage-bone interface during loading. Fluid pressure gradients that develop at the cartilage-bone interface show consistently higher pressures in cartilage following the initial loading to 10% stain, followed by convergence of the pressures in cartilage and bone during the 400 s relaxation period. These results provide additional evidence that fluid is transported between cartilage and bone during loading and improves upon estimates of the magnitude of this effect through incorporating a realistic distribution and estimate of the collagen ultrastructure. Understanding fluid transport between cartilage and bone may be key to new insights about the mechanical and biological environment of both tissues in health and disease.
Collapse
Affiliation(s)
- Brady D Hislop
- Department of Mechanical & Industrial Engineering, Montana State University, United States
| | - Chelsea M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, United States
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, United States; Department of Microbiology & Cell Biology, Montana State University, United States; Department of Orthopaedics and Sports Medicine, University of Washington, United States.
| |
Collapse
|
62
|
Hybrid fluorescence-AFM explores articular surface degeneration in early osteoarthritis across length scales. Acta Biomater 2021; 126:315-325. [PMID: 33753314 DOI: 10.1016/j.actbio.2021.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/06/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
Atomic force microscopy (AFM) has become a powerful tool for the characterization of materials at the nanoscale. Nevertheless, its application to hierarchical biological tissue like cartilage is still limited. One reason is that such samples are usually millimeters in size, while the AFM delivers much more localized information. Here a combination of AFM and fluorescence microscopy is presented where features on a millimeter sized tissue sample are selected by fluorescence microscopy on the micrometer scale and then mapped down to nanometer precision by AFM under native conditions. This served us to show that local changes in the organization of fluorescent stained cells, a marker for early osteoarthritis, correlate with a significant local reduction of the elastic modulus, local thinning of the collagen fibers, and a roughening of the articular surface. This approach is not only relevant for cartilage, but in general for the characterization of native biological tissue from the macro- to the nanoscale. STATEMENT OF SIGNIFICANCE: Different length scales have to be studied to understand the function and dysfunction of hierarchically organized biomaterials or tissues. Here we combine a highly stable AFM with fluorescence microscopy and precisely motorized movement to correlate micro- and nanoscopic properties of articular cartilage on a millimeter sized sample under native conditions. This is necessary for unraveling the relationship between microscale organization of chondrocytes, micrometer scale changes in articular cartilage properties and nanoscale organization of collagen (including D-banding). We anticipate that such studies pave the way for a guided design of hierarchical biomaterials.
Collapse
|
63
|
Jiang W, Liu H, Wan R, Wu Y, Shi Z, Huang W. Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis. Ageing Res Rev 2021; 67:101315. [PMID: 33684550 DOI: 10.1016/j.arr.2021.101315] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Mechanical loading is essential for chondrocyte health. Chondrocytes can sense and respond to various extracellular mechanical signals through an integrated set of mechanisms. Recently, it has been found that mitochondria, acting as critical mechanotransducers, are at the intersection between extracellular mechanical signals and chondrocyte biology. Much attention has been focused on identifying how mechanical loading-induced mitochondrial dysfunction contributes to the pathogenesis of osteoarthritis. In contrast, little is known regarding the mechanisms underlying functional alterations in mitochondria induced by mechanical stimulation. In this review, we describe how chondrocytes perceive environmental mechanical signals. We discuss how mechanical load induces mitochondrial functional alterations and highlight the major unanswered questions in this field. We speculate that AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, may play an important role in coupling force transmission to mitochondrial health and intracellular biological responses.
Collapse
|
64
|
Patel JM, Loebel C, Saleh KS, Wise BC, Bonnevie ED, Miller LM, Carey JL, Burdick JA, Mauck RL. Stabilization of Damaged Articular Cartilage with Hydrogel-Mediated Reinforcement and Sealing. Adv Healthc Mater 2021; 10:e2100315. [PMID: 33738988 DOI: 10.1002/adhm.202100315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 01/08/2023]
Abstract
Cartilage injuries and subsequent tissue deterioration impact millions of patients. Since the regeneration of functional hyaline cartilage remains elusive, methods to stabilize the remaining tissue, and prevent further deterioration, would be of significant clinical utility and prolong joint function. Finite element modeling shows that fortification of the degenerate cartilage (Reinforcement) and reestablishment of a superficial zone (Sealing) are both required to restore fluid pressurization within the tissue and restrict fluid flow and matrix loss from the defect surface. Here, a hyaluronic acid (HA) hydrogel system is designed to both interdigitate with and promote the sealing of the degenerated cartilage. Interdigitating fortification restores both bulk and local pericellular tissue mechanics, reestablishing the homeostatic mechanotransduction of endogenous chondrocytes within the tissue. This HA therapy is further functionalized to present chemo mechanical cues that improve the attachment and direct the response of mesenchymal stem/stromal cells at the defect site, guiding localized extracellular matrix deposition to "seal" the defect. Together, these results support the therapeutic potential, across cell and tissue length scales, of an innovative hydrogel therapy for the treatment of damaged cartilage.
Collapse
Affiliation(s)
- Jay M. Patel
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
- Department of Orthopaedics Emory University School of Medicine 201 Dowman Drive Atlanta GA 30322 USA
| | - Claudia Loebel
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
- Department of Bioengineering University of Pennsylvania 210 South 33 Street, Suite 240 Skirkanich Hall Philadelphia PA 19104‐6321 USA
| | - Kamiel S. Saleh
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
| | - Brian C. Wise
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
| | - Edward D. Bonnevie
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
| | - Liane M. Miller
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
| | - James L. Carey
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
| | - Jason A. Burdick
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
- Department of Bioengineering University of Pennsylvania 210 South 33 Street, Suite 240 Skirkanich Hall Philadelphia PA 19104‐6321 USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory Department of Orthopaedic Surgery University of Pennsylvania 3450 Hamilton Walk, 371 Stemmler Hall Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J Crescenz VA Medical Center 3900 Woodland Avenue Philadelphia PA 19104 USA
- Department of Bioengineering University of Pennsylvania 210 South 33 Street, Suite 240 Skirkanich Hall Philadelphia PA 19104‐6321 USA
| |
Collapse
|
65
|
Gigout A, Harazin D, Topping LM, Merciris D, Lindemann S, Brenneis C, Nissim A. Early detection of osteoarthritis in the rat with an antibody specific to type II collagen modified by reactive oxygen species. Arthritis Res Ther 2021; 23:113. [PMID: 33853645 PMCID: PMC8045329 DOI: 10.1186/s13075-021-02502-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/03/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a disease of the whole joint, with articular cartilage breakdown as a major characteristic. Inflammatory mediators, proteases, and oxidants produced by chondrocytes are known to be responsible for driving cartilage degradation. Nevertheless, the early pathogenic events are still unclear. To investigate this, we employed an antibody that is specific to oxidative post-translationally modified collagen type II (anti-oxPTM-CII) to detect early cartilage pathogenic changes in two rat models of OA. METHODS The animals underwent surgery for destabilization of the medial meniscus (DMM) and were sacrificed after 3, 5, 7, 14, and 28 days. Alternatively, anterior cruciate ligament transection with partial meniscectomy (ACLT+pMx) was performed and animals were sacrificed after 1, 3, 5, 7, and 14 days. Joints were stained with toluidine blue and saffron du Gatinais for histological scoring, anti-oxPTM-CII, and anti-collagen type X antibodies (anti-CX). RESULTS We observed positive oxPTM-CII staining as early as 1 or 3 days after ACLT+pMx or DMM surgeries, respectively, before overt cartilage lesions were visible. oxPTM-CII was located mostly in the deep zone of the medial tibial cartilage, in the pericellular and territorial matrix of hypertrophic chondrocytes, and co-localized with CX staining. Staining was weak or absent for the lateral compartment or the contralateral knees except at later time points. CONCLUSION The results demonstrate that oxidant production and chondrocyte hypertrophy occur very early in the onset of OA, possibly initiating the pathogenic events of OA. We propose to use anti-oxPTM-CII as an early biomarker for OA ahead of radiographic changes.
Collapse
Affiliation(s)
- Anne Gigout
- Osteoarthritis Research, Merck KGaA, Darmstadt, Germany
| | | | - Louise M Topping
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Chaterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | - Ahuva Nissim
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Chaterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
66
|
Collagen I Modifies Connexin-43 Hemichannel Activity via Integrin α2β1 Binding in TGFβ1-Evoked Renal Tubular Epithelial Cells. Int J Mol Sci 2021; 22:ijms22073644. [PMID: 33807408 PMCID: PMC8038016 DOI: 10.3390/ijms22073644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic Kidney Disease (CKD) is associated with sustained inflammation and progressive fibrosis, changes that have been linked to altered connexin hemichannel-mediated release of adenosine triphosphate (ATP). Kidney fibrosis develops in response to increased deposition of extracellular matrix (ECM), and up-regulation of collagen I is an early marker of renal disease. With ECM remodeling known to promote a loss of epithelial stability, in the current study we used a clonal human kidney (HK2) model of proximal tubular epithelial cells to determine if collagen I modulates changes in cell function, via connexin-43 (Cx43) hemichannel ATP release. HK2 cells were cultured on collagen I and treated with the beta 1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± the Cx43 mimetic Peptide 5 and/or an anti-integrin α2β1 neutralizing antibody. Phase microscopy and immunocytochemistry observed changes in cell morphology and cytoskeletal reorganization, whilst immunoblotting and ELISA identified changes in protein expression and secretion. Carboxyfluorescein dye uptake and biosensing measured hemichannel activity and ATP release. A Cytoselect extracellular matrix adhesion assay assessed changes in cell-substrate interactions. Collagen I and TGFβ1 synergistically evoked increased hemichannel activity and ATP release. This was paralleled by changes to markers of tubular injury, partly mediated by integrin α2β1/integrin-like kinase signaling. The co-incubation of the hemichannel blocker Peptide 5, reduced collagen I/TGFβ1 induced alterations and inhibited a positive feedforward loop between Cx43/ATP release/collagen I. This study highlights a role for collagen I in regulating connexin-mediated hemichannel activity through integrin α2β1 signaling, ahead of establishing Peptide 5 as a potential intervention.
Collapse
|
67
|
Chery DR, Han B, Zhou Y, Wang C, Adams SM, Chandrasekaran P, Kwok B, Heo SJ, Enomoto-Iwamoto M, Lu XL, Kong D, Iozzo RV, Birk DE, Mauck RL, Han L. Decorin regulates cartilage pericellular matrix micromechanobiology. Matrix Biol 2020; 96:1-17. [PMID: 33246102 DOI: 10.1016/j.matbio.2020.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
In cartilage tissue engineering, one key challenge is for regenerative tissue to recapitulate the biomechanical functions of native cartilage while maintaining normal mechanosensitive activities of chondrocytes. Thus, it is imperative to discern the micromechanobiological functions of the pericellular matrix, the ~ 2-4 µm-thick domain that is in immediate contact with chondrocytes. In this study, we discovered that decorin, a small leucine-rich proteoglycan, is a key determinant of cartilage pericellular matrix micromechanics and chondrocyte mechanotransduction in vivo. The pericellular matrix of decorin-null murine cartilage developed reduced content of aggrecan, the major chondroitin sulfate proteoglycan of cartilage and a mild increase in collagen II fibril diameter vis-à-vis wild-type controls. As a result, decorin-null pericellular matrix showed a significant reduction in micromodulus, which became progressively more pronounced with maturation. In alignment with the defects of pericellular matrix, decorin-null chondrocytes exhibited decreased intracellular calcium activities, [Ca2+]i, in both physiologic and osmotically evoked fluidic environments in situ, illustrating impaired chondrocyte mechanotransduction. Next, we compared [Ca2+]i activities of wild-type and decorin-null chondrocytes following enzymatic removal of chondroitin sulfate glycosaminoglycans. The results showed that decorin mediates chondrocyte mechanotransduction primarily through regulating the integrity of aggrecan network, and thus, aggrecan-endowed negative charge microenvironment in the pericellular matrix. Collectively, our results provide robust genetic and biomechanical evidence that decorin is an essential constituent of the native cartilage matrix, and suggest that modulating decorin activities could improve cartilage regeneration.
Collapse
Affiliation(s)
- Daphney R Chery
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Ying Zhou
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
68
|
Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 2020; 49:5850-5884. [PMID: 32662499 DOI: 10.1039/d0cs00318b] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fast, high-resolution, non-destructive and quantitative characterization methods are needed to develop materials with tailored properties at the nanoscale or to understand the relationship between mechanical properties and cell physiology. This review introduces the state-of-the-art force microscope-based methods to map at high-spatial resolution the elastic and viscoelastic properties of soft materials. The experimental methods are explained in terms of the theories that enable the transformation of observables into material properties. Several applications in materials science, molecular biology and mechanobiology illustrate the scope, impact and potential of nanomechanical mapping methods.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|