51
|
Advancedoral vaccine delivery strategies for improving the immunity. Adv Drug Deliv Rev 2021; 177:113928. [PMID: 34411689 DOI: 10.1016/j.addr.2021.113928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Infectious diseases continue to inflict a high global disease burden. The consensus is that vaccination is the most effective option against infectious diseases. Oral vaccines have unique advantages in the prevention of global pandemics due to their ease of use, high compliance, low cost, and the ability to induce both systemic and mucosal immune responses. However, challenges of adapting vaccines for oral administration remain significant. Foremost among these are enzymatic and pH-dependent degradation of antigens in the stomach and intestines, the low permeability of mucus barrier, the nonspecific uptake of antigens at the intestinal mucosal site, and the immune suppression result from the elusive immune tolerance mechanisms. Innovative delivery techniques promise great potential for improving the flexibility and efficiency of oral vaccines. A better understanding of the delivery approaches and the immunological mechanisms of oral vaccine delivery systems may provide new scientific insight and tools for developing the next-generation oral vaccine. Here, an overview of the advanced technologies in the field of oral vaccination is proposed, including mucus-penetrating nanoparticle (NP), mucoadhesive delivery vehicles, targeting antigen-presenting cell (APC) nanocarriers and enhanced paracellular delivery strategies and so on. Meanwhile, the mechanisms of delivery vectors interact with mucosal barriers are discussed.
Collapse
|
52
|
Karavasili C, Eleftheriadis GK, Gioumouxouzis C, Andriotis EG, Fatouros DG. Mucosal drug delivery and 3D printing technologies: A focus on special patient populations. Adv Drug Deliv Rev 2021; 176:113858. [PMID: 34237405 DOI: 10.1016/j.addr.2021.113858] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
In the last decade, additive manufacturing (AM) technologies have revolutionized how healthcare provision is envisioned. The rapid evolution of these technologies has already created a momentum in the effort to address unmet personalized needs in large patient groups, especially those belonging to sensitive subgroup populations (e.g., paediatric, geriatric, visually impaired). At the same time, AM technologies have become a salient ally to overcome defined health challenges in drug formulation development by addressing not only the requirement of personalized therapy, but also problems related to lowering non-specific drug distribution and the risk of adverse reactions, enhancing drug absorption and bioavailability, as well as ease of administration and patient compliance. To this end, mucoadhesive drug delivery systems fabricated with the support of AM technologies provide competitive advantages over conventional dosage forms, aiming to entice innovation in drug formulation with special focus on sensitive patient populations.
Collapse
|
53
|
Okur NÜ, Bülbül EÖ, Yağcılar AP, Siafaka PI. Current Status of Mucoadhesive Gel Systems for Buccal Drug Delivery. Curr Pharm Des 2021; 27:2015-2025. [PMID: 33726644 DOI: 10.2174/1381612824666210316101528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Buccal drug delivery is a fascinating research field. Gel-based formulations present potent characteristics as buccal systems since they have great physicochemical properties. METHODS Among the various gels, in situ gels are viscous colloidal systems consisting of polymers; when physiological conditions change (pH, temperature, ion activation), they are transformed into the gel phase. These systems can improve bioavailability. Other systems, such as nanogels or emulgels can also be applied for buccal delivery with promising results. Polymeric gel-based systems can be produced by natural, semisynthetic, and synthetic polymers. Their main advantage is that the active molecules can be released in a sustained and controllable manner. Several gels based on chitosan are produced for the entrapment of drugs demonstrating efficient retention time and bioavailability due to chitosan mucoadhesion. Besides polysaccharides, poloxamers and carbopol are also used in buccal gels due to their high swelling ability and reversed thermal gelation behavior. RESULTS Herein, the authors focused on the current development of mucoadhesive gel systems used in buccal drug delivery. After explaining buccal drug delivery and mucoadhesion, various studies with hydrogels, in situ gels, and nanogels were analyzed as buccal gel systems. Various mucoadhesive gel studies with mucoadhesive polymers have been studied and summarized. This review is presented as valuable guidance to scientists in formulating buccal mucoadhesive drug delivery systems. CONCLUSION This review aimed to assist researchers working on buccal drug delivery by summarizing buccal drug delivery, mucoadhesion, and buccal mucoadhesive gel systems recently found in the literature.
Collapse
Affiliation(s)
- Neslihan Ü Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Ece Ö Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Ayşe P Yağcılar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
54
|
Kida D, Zakrzewska A, Zborowski J, Szulc M, Karolewicz B. Polymer-Based Carriers in Dental Local Healing-Review and Future Challenges. MATERIALS 2021; 14:ma14143948. [PMID: 34300865 PMCID: PMC8308048 DOI: 10.3390/ma14143948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/01/2023]
Abstract
Polymers in drug formulation technology and the engineering of biomaterials for the treatment of oral diseases constitute a group of excipients that often possess additional properties in addition to their primary function, i.e., biological activity, sensitivity to stimuli, mucoadhesive properties, improved penetration of the active pharmaceutical ingredient (API) across biological barriers, and effects on wound healing or gingival and bone tissue regeneration. Through the use of multifunctional polymers, it has become possible to design carriers and materials tailored to the specific conditions and site of application, to deliver the active substance directly to the affected tissue, including intra-periodontal pocket delivery, and to release the active substance in a timed manner, allowing for the improvement of the form of application and further development of therapeutic strategies. The scope of this review is polymeric drug carriers and materials developed from selected multifunctional groups of natural, semi-synthetic, and synthetic polymers for topical therapeutic applications. Moreover, the characteristics of the topical application and the needs for the properties of carriers for topical administration of an active substance in the treatment of oral diseases are presented to more understand the difficulties associated with the design of optimal active substance carriers and materials for the treatment of lesions located in the oral cavity.
Collapse
Affiliation(s)
- Dorota Kida
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-0315
| | - Aneta Zakrzewska
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Jacek Zborowski
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Małgorzata Szulc
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| |
Collapse
|
55
|
Sublingual protein delivery by a mucoadhesive patch made of natural polymers. Acta Biomater 2021; 128:222-235. [PMID: 33878475 DOI: 10.1016/j.actbio.2021.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
The sublingual mucosa is an appealing route for drug administration. However, in the context of increased use of therapeutic proteins, development of protein delivery systems that will protect the protein bioactivity is needed. As proteins are fragile and complex molecules, current sublingual formulations of proteins are in liquid dosage. Yet, protein dilution and short residence time at the sublingual mucosa are the main barriers for the control of the dose that is delivered. In this work, a simple delivery scaffold based on the assembly of two polysaccharides, chitosan and hyaluronic acid, is presented. The natural polymers were assembled by the Layer-by-Layer methodology to produce a mucoadhesive and oro-dispersible freestanding membrane, shown to be innocuous for epithelial human cells. The functionalization of the membrane with proteins led to the production of a bioactive patch with efficient loading and release of proteins, and suitable mechanical properties for manipulation. Sublingual administration of the patch in mouse evidenced the absence of inflammation and an extended time of contact between the model protein ovalbumin and the mucosa compared to liquid formulation. The delivery of fluorescent ovalbumin in mouse sublingual mucosa demonstrated the penetration of the protein in the epithelium 10 min after the patch administration. Moreover, a migration assay with a chemokine incorporated into the patch showed no decrease in bioactivity of the loaded protein after enzymatic release. This study therefore provides a promising strategy to develop a sublingual protein delivery system. STATEMENT OF SIGNIFICANCE: Although the oral route is largely used for drug delivery, it has limitations for the delivery of proteins that can be degraded by pH or gastric enzymes. The sublingual route therefore appears as an interesting approach for protein administration. In this work, a simple delivery scaffold is presented based on the assembly of two polysaccharides by the Layer-by-Layer methodology to produce a mucoadhesive patch. The produced patch allowed efficient loading and release of proteins, as well as protection of their bioactivity. An extended time of contact between the protein and the mucosa compared to liquid formulation was highlighted in mouse model. This study provides a promising strategy to develop a sublingual protein delivery system.
Collapse
|
56
|
Herpes Labialis: A New Possibility for Topical Treatment with Well-Elucidated Drugs. J Pharm Sci 2021; 110:3450-3456. [PMID: 34197838 DOI: 10.1016/j.xphs.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022]
Abstract
Mucocutaneous infections caused by Herpes simplex virus (HSV-1 and HSV-2) are characterized by the appearance of vesicles that cause pain and embarrassment to the carrier. The standard treatment is based on the use of antivirals in gels or ointments, however, relapses are common. Local anesthetics decrease the pain caused by the lesion, in addition to showing antiviral properties. Semi-solid form facilitates application and its transformation into a thin film favors the maintenance of the formulation in place, with a more discreet final aspect. The objective of this study was to develop and evaluate formulations containing anesthetics for the treatment of cold sores. For this purpose, two semi-solid film-forming formulations were developed and evaluated, containing HPMC K100, lidocaine (LIDO) and prilocaine (PRILO) combined with adjuvants, in the presence (F1T) or not (F1) of the absorption promoter Transcutol®. The mixture of PRILO and LIDO resulted in the formation of a eutectic mixture (EM), essential for penetration of drugs into the skin. The quantification of drugs was performed by HPLC (High Performance Liquid Chromatography), and Transcutol® did not influence the release of drugs from the formulation. The bioadhesiveness of the formulation was evaluate and the drugs did not impair the adhesive potential of the polymers used. The formulations were evaluated in vivo for skin irritation and did not show any negative sign on macroscopic examination. The in vivo efficacy test proved the anesthetics' ability to decrease the lesions caused by HSV-1. Thus, the proposed formulations proved to be good alternatives to the treatment of oral lesions caused by HSV-1.
Collapse
|
57
|
Prompetch T, Chailorm A, Tiwananthagorn S, Buranapim N, Okonogi S, Kato H, Katip W, Mektrirat R. Preclinical Evaluations of Modified Rice Hydrogel for Topical Ophthalmic Drug Delivery of Praziquantel on Avian Philophalmiasis. Pharmaceutics 2021; 13:pharmaceutics13070952. [PMID: 34202866 PMCID: PMC8309131 DOI: 10.3390/pharmaceutics13070952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
The present study aims to evaluate the efficacy of a novel drug delivery system of the modified rice hydrogel containing praziquantel (PZQ) against Philophthalmus gralli isolated from ostrich eyes and determine the toxicity of the preparation on chicken eye model. The parasiticidal activity of PZQ (0, 1, 10, and 100 µg/mL) was tested on P. gralli. The ophthalmic antiparasitic hydrogel was formulated with appropriate amount of PZQ and chemically modified rice gel. The parasitic morphology after exposure with the preparation was examined under scanning electron microscope (SEM). The anthelminthic efficacy of the preparation on motility and mortality of parasites was performed by visual inspection and vital dye staining. The ocular irritation of the preparation was evaluated for 21 days using standard avian model followed by OECD 405. The results demonstrated that the parasiticidal activity of PZQ against P. gralli appears to be in a concentration- and time-dependent manner. In addition, the concentration of PZQ 10 µg/mL (Chi squared test, p = 0.003) and exposure time for 24 h (log-rank test, p = 0.0004) is sufficient to kill parasites, when statistically compared to negative control group. Rice hydrogel containing a lethal concentration of 10 µg/mL PZQ was successfully prepared. The preparation illustrated good parasitic killing and motile inhibiting effect on P. gralli compared with PZQ 10 µg/mL and its control (p < 0.05). An appearance under SEM of non-viable parasite after being incubated with the preparation, showing parasitic deformity, was observed comparing with the viable parasite in 0.9% normal saline solution (NSS). Moreover, no irritation of chicken eyes was also observed. Our results contribute to understanding the efficacy and the safety of the rice hydrogel of PZQ which have a predictive value for controlling P. gralli on the animal eyes. However, the pharmacological application needs to be further investigated for the best possible therapeutic approach.
Collapse
Affiliation(s)
- Treepecth Prompetch
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (A.C.); (S.T.)
| | - Akawat Chailorm
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (A.C.); (S.T.)
| | - Saruda Tiwananthagorn
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (A.C.); (S.T.)
| | - Nithidol Buranapim
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center for Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hirotomo Kato
- Department of Infection and Immunity, Jichi Medical University, Tochigi 3290498, Japan;
| | - Wasan Katip
- Research Center for Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (W.K.); (R.M.); Tel.: +66-53-944342 (W.K.); +66-53-948046 (R.M.)
| | - Raktham Mektrirat
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (T.P.); (A.C.); (S.T.)
- Research Center for Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (W.K.); (R.M.); Tel.: +66-53-944342 (W.K.); +66-53-948046 (R.M.)
| |
Collapse
|
58
|
Magalhães APDSPA, Toma HK, do Carmo FA, Mansur CRE. Development of purified cashew gum mucoadhesive buccal tablets containing nystatin for treatment of oral candidiasis. Drug Dev Ind Pharm 2021; 47:825-837. [PMID: 34033502 DOI: 10.1080/03639045.2021.1934868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The objective of this work was to prepare mucoadhesive buccal tablets containing nystatin and purified cashew gum for the treatment of oral candidiasis. SIGNIFICANCE Mucoadhesive buccal tablets containing the drug nystatin are an alternative to oral suspensions, which cause low therapeutic adherence to the treatment of oral candidiasis. Purified cashew gum has been studied as a diluent and mucoadhesive agent in tablets. METHODS Two batches of mucoadhesive tablets were produced, MT1 and MT 2, containing purified cashew gum, nystatin (500,000 IU), flavoring agent and with or without the presence of lubricant agent. The average weight, mechanical properties, dose uniformity, drug release profile, mucoadhesive properties and antimicrobial activity against Candida albicans were evaluated. RESULTS Tablets presented average weight of 329.1 ± 3.1 mg (MT1) and 334.6 ± 1.5 mg (MT2), hardness of 9.8 ± 0.8 KgF (MT1) and 8.3 ± 0.4 KgF (MT2), friability of 0.2% (MT1 and MT2), and dose uniformity of 102.20 ± 1.17% (MT1) and 99.06 ± 7.40% (MT2). MT1 and MT2 were able to swell, erode, release the drug and remain adhered to the pig's cheek up to 3 h for batch MT1 and 4 h for batch MT2, and the amount of nystatin released since the beginning of the test in both batches was sufficient to inhibit the growth of the fungus. CONCLUSIONS Therefore, the proposed formulation proved to be very promising and met all the studied criteria, showing to be ideal for the treatment of oral candidiasis.
Collapse
Affiliation(s)
| | - Helena Keiko Toma
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Claudia Regina Elias Mansur
- Institute of Macromolecules, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Program of Materials Engineering and Metallurgy, Technology Center, Alberto Luiz Institute of Coimbra, Post-Graduation and Engineering Research - COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
59
|
Fluconazole-loaded solid lipid nanoparticles (SLNs) as a potential carrier for buccal drug delivery of oral candidiasis treatment using the Box-Behnken design. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
60
|
Al-Ani E, Hill D, Doudin K. Chlorhexidine Mucoadhesive Buccal Tablets: The Impact of Formulation Design on Drug Delivery and Release Kinetics Using Conventional and Novel Dissolution Methods. Pharmaceuticals (Basel) 2021; 14:ph14060493. [PMID: 34070990 PMCID: PMC8224615 DOI: 10.3390/ph14060493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Oropharyngeal candidiasis (OPC) is a mucosal infection caused by Candida spp., and it is common among the immunocompromised. This condition is mainly treated using oral antifungals. Chlorhexidine (CHD) is a fungicidal and is available as a mouth wash and oral gel. It is used as an adjuvant in the treatment of OPC due to the low residence time of the current formulations. In this study, its activity was tested against C. albicans biofilm and biocompatibility with the HEK293 human cell line. Then, it was formulated as mucoadhesive hydrogel buccal tablets to extend its activity. Different ratios of hydroxypropyl methylcellulose (HPMC), poloxamer 407 (P407), and three different types of polyols were used to prepare the tablets, which were then investigated for their physicochemical properties, ex vivo mucoadhesion, drug release profiles, and the kinetics of drug release. The release was performed using Apparatus I and a controlled flow rate (CFR) method. The results show that CHD is biocompatible and effective against Candida biofilm at a concentration of 20 µg/mL. No drug excipient interaction was observed through differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The increase in P407 and polyol ratios showed a decrease in the swelling index and an increase in CHD in vitro release. The release of CHD from the selected formulations was 86-92%. The results suggest that chlorhexidine tablets are a possible candidate for the treatment of oropharyngeal candidiasis.
Collapse
Affiliation(s)
- Enas Al-Ani
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (E.A.-A.); (D.H.); Tel.: +44-1902-32-5876 (E.A.-A.)
| | - David Hill
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- School of Biology, Chemistry and Forensic Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (E.A.-A.); (D.H.); Tel.: +44-1902-32-5876 (E.A.-A.)
| | - Khalid Doudin
- Department of Chemistry, The University of Sheffield, Sheffield S10 2TN, UK;
| |
Collapse
|
61
|
Development of Mucoadhesive Buccal Film for Rizatriptan: In Vitro and In Vivo Evaluation. Pharmaceutics 2021; 13:pharmaceutics13050728. [PMID: 34063402 PMCID: PMC8157038 DOI: 10.3390/pharmaceutics13050728] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
The reduced therapeutic efficacy of rizatriptan in migraine treatment is primarily due to low oral bioavailability and extensive first pass metabolism. The purpose of this investigation was to optimize the thin mucoadhesive buccal film of rizatriptan and assess the practicability of its development as a potential substitute for conventional migraine treatment. Buccal films (FR1-FR10) were fabricated by a conventional solvent casting method utilizing a combination of polymers (Proloc, hydroxypropyl methylcellulose and Eudragit RS 100). Drug-loaded buccal films (F1-F4) were examined for mechanical, mucoadhesive, swelling and release characteristics. In vivo pharmacokinetics parameters of selected buccal film (F1) in rabbits were compared to oral administration. Films F1-F4 displayed optimal physicomechanical properties including mucoadhesive strength, which can prolong the buccal residence time. A biphasic, complete and higher drug release was seen in films F1 and F4, which followed Weibull model kinetics. The optimized film, F1, exhibited significantly higher (p < 0.005) rizatriptan buccal flux (71.94 ± 8.26 µg/cm2/h) with a short lag time. Film features suggested the drug particles were in an amorphous form, compatible with the polymers used and had an appropriate surface morphology suitable for buccal application. Pharmacokinetic data indicated a significantly higher rizatriptan plasma level (p < 0.005) and Cmax (p < 0.0001) upon buccal film application as compared to oral solution. The observed AUC0-12h (994.86 ± 95.79 ng.h/mL) in buccal treatment was two-fold higher (p < 0.0001) than the control, and the relative bioavailability judged was 245%. This investigation demonstrates the prospective of buccal films as a viable and alternative approach for effective rizatriptan delivery.
Collapse
|
62
|
Kim ES, Kim DY, Lee JS, Lee HG. Quercetin delivery characteristics of chitosan nanoparticles prepared with different molecular weight polyanion cross-linkers. Carbohydr Polym 2021; 267:118157. [PMID: 34119131 DOI: 10.1016/j.carbpol.2021.118157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
The aim of the study was to investigate the effects of cross-linkers on quercetin (QUE) absorption characteristics of QUE-loaded chitosan nanoparticles (CS-NPs). CS-NPs (461.2-482.7 nm) were prepared by ionic gelation at pH 3.5 using tripolyphosphate (367.9 Da), dextran sulfate (>15 kDa), arabic gum (AG, >250 kDa), or hyaluronic acid (HA, >1000 kDa). Mucoadhesion and cell permeation of QUE were significantly increased by positive charged CS-NPs due to interactions with negatively charged mucosal layer. Moreover, CS-AG and CS-HA NPs prepared with relatively higher MW cross-linkers exhibited significantly higher adhesion and permeation than the others. These results were verified by a cellular antioxidant activity assay; CS-AG (137.5 unit) and CS-HA NPs (126.5 unit) showed significantly higher activities after internalization into Caco-2 cells. Therefore, encapsulation within CS-NPs prepared using high MW cross-linkers such as AG and HA is found to be potentially valuable techniques for improving the QUE absorption.
Collapse
Affiliation(s)
- Eun Suh Kim
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Da Young Kim
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
63
|
Owji N, Mandakhbayar N, Gregory DA, Marcello E, Kim HW, Roy I, Knowles JC. Mussel Inspired Chemistry and Bacteria Derived Polymers for Oral Mucosal Adhesion and Drug Delivery. Front Bioeng Biotechnol 2021; 9:663764. [PMID: 34026742 PMCID: PMC8133231 DOI: 10.3389/fbioe.2021.663764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Ulceration of the oral mucosa is common, can arise at any age and as a consequence of the pain lessens enjoyment and quality of life. Current treatment options often involve the use of topical corticosteroids with poor drug delivery systems and inadequate contact time. In order to achieve local controlled delivery to the lesion with optimal adhesion, we utilized a simple polydopamine chemistry technique inspired by mussels to replicate their adhesive functionality. This was coupled with production of a group of naturally produced polymers, known as polyhydroxyalkanoates (PHA) as the delivery system. Initial work focused on the synthesis of PHA using Pseudomonas mendocina CH50; once synthesized and extracted from the bacteria, the PHAs were solvent processed into films. Polydopamine coating was subsequently achieved by immersing the solvent cast film in a polymerized dopamine solution. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy confirmed functionalization of the PHA films via the presence of amine groups. Further characterization of the samples was carried out via surface energy measurements and Scanning Electron Microscopy (SEM) micrographs for surface topography. An adhesion test via reverse compression testing directly assessed adhesive properties and revealed an increase in polydopamine coated samples. To further identify the effect of surface coating, LIVE/DEAD imaging and Alamar Blue metabolic activity evaluated attachment and proliferation of fibroblasts on the biofilm surfaces, with higher cell growth in favor of the coated samples. Finally, in vivo biocompatibility was investigated in a rat model where the polydopamine coated PHA showed less inflammatory response over time compared to uncoated samples with sign of neovascularization. In conclusion, this simple mussel inspired polydopamine chemistry introduces a step change in bio-surface functionalization and holds great promise for the treatment of oral conditions.
Collapse
Affiliation(s)
- Nazanin Owji
- Division of Biomaterials and Tissue Engineering, Royal Free Hospital, Eastman Dental Institute, University College London, London, United Kingdom
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - David A Gregory
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Elena Marcello
- Faculty of Science and Technology, University of Westminster, London, United Kingdom
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea.,Department of Nanobiomedical Science, BK21 Nanobiomedicine (NBM) Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea.,University College London (UCL) Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Royal Free Hospital, Eastman Dental Institute, University College London, London, United Kingdom.,University College London (UCL) Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
| |
Collapse
|
64
|
Zierden HC, Josyula A, Shapiro RL, Hsueh H, Hanes J, Ensign LM. Avoiding a Sticky Situation: Bypassing the Mucus Barrier for Improved Local Drug Delivery. Trends Mol Med 2021; 27:436-450. [PMID: 33414070 PMCID: PMC8087626 DOI: 10.1016/j.molmed.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
The efficacy of drugs administered by traditional routes is limited by numerous biological barriers that preclude reaching the intended site of action. Further, full body systemic exposure leads to dose-limiting, off-target side effects. Topical formulations may provide more efficacious drug and nucleic acid delivery for diseases and conditions affecting mucosal tissues, but the mucus protecting our epithelial surfaces is a formidable barrier. Here, we describe recent advances in mucus-penetrating approaches for drug and nucleic acid delivery to the ocular surface, the female reproductive tract, the gastrointestinal tract, and the airways.
Collapse
Affiliation(s)
- Hannah C. Zierden
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Aditya Josyula
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Rachel L. Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Henry Hsueh
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21287,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Laura M. Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287,The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21287,Departments Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287,Correspondence: (L.M. Ensign)
| |
Collapse
|
65
|
Xanthan gum − mucin complexation: Molecular interactions, thermodynamics, and rheological analysis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
66
|
Rheological Behavior of a New Mucoadhesive Oral Formulation Based on Sodium Chondroitin Sulfate, Xyloglucan and Glycerol. J Funct Biomater 2021; 12:jfb12020028. [PMID: 33925057 PMCID: PMC8167776 DOI: 10.3390/jfb12020028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background: The study aimed at assessing the mucoadhesive properties and the barrier effect of a formulation, labelled as AL2106, containing sodium chondroitin sulfate (ChS), xyloglucan from tamarind seed extract, and glycerol, by evaluating the capacity to adhere to a layer of mucin, the rheological synergism and the barrier effect in comparison to the marketed Esoxx One medical device. AL2106 is a medical device distributed by Alfasigma SpA, Italy with REF FTP57 (Manufacturer: Labomar SpA); it is analogous to Esoxx One medical device: the two products are drinkable solutions that, after swallowing, adhere to the esophageal mucosa, protecting it from the corrosive effect of the gastric acid reflux. AL2106 has been conceived to be better performing in terms of duration of the barrier effect compared to Esoxx One. Methods: The mucoadhesive properties, rheological behavior, buffering capacity against acidity, and film-forming ability with the resultant protecting effect on esophagus mucosa (caffeine permeation test) was compared between the two products. Results: The mucoadhesivity of the formulations was shown in vitro: both remained adherent to a mucin layer, also when the support was rotated by 90°, and when the film layer was washed with water, intended to simulate the washout due to swallowing. AL2106 showed a good buffering efficacy, being able to absorb at least 50% of its weight of 0.03 M HCl while maintaining the pH above 4. The film-forming effect and barrier properties of AL2106 and Esoxx One were confirmed by an in vitro study on reconstructed human esophageal epithelium. A greater film-forming efficacy of AL2106, lasting for at least 5 h, than Esoxx One was observed. Noteworthy, the barrier function of esophageal tissues was shown to be preserved after the application of both formulations. Conclusions: The combination of ChS with the mucoadhesive glycerol-xyloglucan complex and other excipients, which contribute to the barrier effect and to mucoadhesion, contained in AL2106, allowed a longer-lasting protective effect than Esoxx One, proving its effectivity and safety for oral use.
Collapse
|
67
|
Targhotra M, Chauhan MK. An Overview on Various Approaches and Recent Patents on Buccal Drug Delivery Systems. Curr Pharm Des 2021; 26:5030-5039. [PMID: 32534560 DOI: 10.2174/1381612826666200614182013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Buccal delivery is an alluring course of organization for fundamental medication conveyance and it leads direct access to the systemic flow through the interior jugular vein sidesteps drugs from the hepatic first-pass digestion gives high bioavailability. OBJECTIVE This article aims at buccal medication conveyance by discussing the structure and condition of the oral mucosa and the novel strategies utilized in evaluating buccal medication ingestion. METHODS This review highlights the various pharmaceutical approaches for buccal delivery such as buccal tablets, buccal lozenges, buccal micro/nanoparticle, wafer and semisolid dosage forms like chewing gums, buccal patch, buccal gel or ointment and some buccal liquid dosage forms like buccal solutions and buccal sprays and recent patents filed or granted for these approaches. RESULTS Recently, some patents are also reported where a combination of various approaches is being employed to achieve very effective mucosal delivery. The various patent search sites were used to collect and analyze the information on buccal drug delivery systems. CONCLUSION The present study provides valuable information, advantages, limitations and future outlook of various buccal drug delivery systems.
Collapse
Affiliation(s)
- Monika Targhotra
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSRUniversity, Pushp Vihar, Sec 3, New Delhi, 110017, India
| | - Meenakshi K Chauhan
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSRUniversity, Pushp Vihar, Sec 3, New Delhi, 110017, India
| |
Collapse
|
68
|
Jovanović M, Tomić N, Cvijić S, Stojanović D, Ibrić S, Uskoković P. Mucoadhesive Gelatin Buccal Films with Propranolol Hydrochloride: Evaluation of Mechanical, Mucoadhesive, and Biopharmaceutical Properties. Pharmaceutics 2021; 13:273. [PMID: 33670448 PMCID: PMC7922149 DOI: 10.3390/pharmaceutics13020273] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
This study processes and characterizes propranolol hydrochloride/gelatin mucoadhesive buccal films. Two types of gelatin are used: Gelatin from porcine skin, type A (GA), and gelatin from bovine skin (GB). The influence of gelatin type on mechanical, mucoadhesive, and biopharmaceutical characteristics of buccal films is evaluated. Fourier-Transfer infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analysis show that GA with propranolol hydrochloride (PRH) in the film (GAP) formed a physical mixture, whereas GB with PRH (GBP) form a compound-complex. Results of mechanical testing (tensile test, hardness) revealed that GAP films exhibit higher elastic modulus, tensile strength, and hardness. A mucoahesion test shows that GBP has higher adhesion strength, while GAP shows higher work of adhesion. Both in vitro release study and in silico simulation indicated that processed films can provide effective drug transport through the buccal mucosa. In silico simulation shows improved bioavailability from buccal films, in comparison to the immediate-release tablets-indicating that the therapeutic drug dose can be markedly reduced.
Collapse
Affiliation(s)
- Marija Jovanović
- Department of Materials Science and Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia; (D.S.); (P.U.)
| | - Nataša Tomić
- Innovation Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia;
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (S.I.)
| | - Dušica Stojanović
- Department of Materials Science and Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia; (D.S.); (P.U.)
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (S.I.)
| | - Petar Uskoković
- Department of Materials Science and Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia; (D.S.); (P.U.)
| |
Collapse
|
69
|
The Interplay between Drug and Sorbitol Contents Determines the Mechanical and Swelling Properties of Potential Rice Starch Films for Buccal Drug Delivery. Polymers (Basel) 2021; 13:polym13040578. [PMID: 33671895 PMCID: PMC7918970 DOI: 10.3390/polym13040578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 11/28/2022] Open
Abstract
Rice starch is a promising biomaterial for thin film development in buccal drug delivery, but the plasticisation and antiplasticisation phenomena from both plasticisers and drugs on the performance of rice starch films are not well understood. This study aims to elucidate the competing effects of sorbitol (plasticiser) and drug (antiplasticiser) on the physicochemical characteristics of rice starch films containing low paracetamol content. Rice starch films were prepared with different sorbitol (10, 20 and 30% w/w) and paracetamol contents (0, 1 and 2% w/w) using the film casting method and were characterised especially for drug release, swelling and mechanical properties. Sorbitol showed a typical plasticising effect on the control rice starch films by increasing film flexibility and by reducing swelling behaviour. The presence of drugs, however, modified both the mechanical and swelling properties by exerting an antiplasticisation effect. This antiplasticisation action was found to be significant at a low sorbitol level or a high drug content. FTIR investigations supported the antiplasticisation action of paracetamol through the disturbance of sorbitol–starch interactions. Despite this difference, an immediate drug release was generally obtained. This study highlights the interplay between plasticiser and drug in influencing the mechanical and swelling characteristics of rice starch films at varying concentrations.
Collapse
|
70
|
Özdoğan A, Akca G, Şenel S. Development and in vitro evaluation of gel formulation of atorvastatin solid dispersions. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
71
|
Mucoadhesive Poloxamer-Based Hydrogels for the Release of HP-β-CD-Complexed Dexamethasone in the Treatment of Buccal Diseases. Pharmaceutics 2021; 13:pharmaceutics13010117. [PMID: 33477667 PMCID: PMC7831945 DOI: 10.3390/pharmaceutics13010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Oral lichen planus (OLP) is an ongoing and chronic inflammatory disease affecting the mucous membrane of the oral cavity. Currently, the treatment of choice consists in the direct application into the buccal cavity of semisolid formulations containing a corticosteroid molecule to decrease inflammatory signs and symptoms. However, this administration route has shown various disadvantages limiting its clinical use and efficacy. Indeed, the frequency of application and the incorrect use of the preparation may lead to a poor efficacy and limit the treatment compliance. Furthermore, the saliva clearance and the mechanical stress present in the buccal cavity also involve a decrease in the mucosal exposure to the drug. In this context, the design of a new pharmaceutical formulation, containing a steroidal anti-inflammatory, mucoadhesive, sprayable and exhibiting a sustained and controlled release seems to be suitable to overcome the main limitations of the existing pharmaceutical dosage forms. The present work reports the formulation, optimization and evaluation of the mucoadhesive and release properties of a poloxamer 407 thermosensitive hydrogel containing a poorly water-soluble corticosteroid, dexamethasone acetate (DMA), threaded into hydroxypropyl-beta-cyclodextrin (HP-β-CD) molecules. Firstly, physicochemical properties were assessed to ensure suitable complexation of DMA into HP-β-CD cavities. Then, rheological properties, in the presence and absence of various mucoadhesive agents, were determined and optimized. The hydration ratio (0.218-0.191), the poloxamer 407 (15-17 wt%) percentage and liquid-cyclodextrin state were optimized as a function of the gelation transition temperature, viscoelastic behavior and dynamic flow viscosity. Deformation and resistance properties were evaluated in the presence of various mucoadhesive compounds, being the sodium alginate and xanthan gum the most suitable to improve adhesion and mucoadhesion properties. Xanthan gum was shown as the best agent prolonging the hydrogel retention time up to 45 min. Furthermore, xanthan gum has been found as a relevant polymer matrix controlling drug release by diffusion and swelling processes in order to achieve therapeutic concentration for prolonged periods of time.
Collapse
|
72
|
Advanced materials for drug delivery across mucosal barriers. Acta Biomater 2021; 119:13-29. [PMID: 33141051 DOI: 10.1016/j.actbio.2020.10.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Mucus is a viscoelastic gel that traps pathogens and other foreign particles to limit their penetration into the underlying epithelium. Dosage forms containing particle-based drug delivery systems are trapped in mucosal layers and will be removed by mucus turnover. Mucoadhesion avoids premature wash-off and prolongs the residence time of drugs on mucus. Moreover, mucus penetration is essential for molecules to access the underlying epithelial tissues. Various strategies have been investigated to achieve mucoadhesion and mucus penetration of drug carriers. Innovations in materials used for the construction of drug-carrier systems allowed the development of different mucoadhesion and mucus penetration delivery systems. Over the last decade, advances in the field of materials chemistry, with a focus on biocompatibility, have led to the expansion of the pool of materials available for drug delivery applications. The choice of materials in mucosal delivery is generally dependent on the intended therapeutic target and nature of the mucosa at the site of absorption. This review presents an up-to-date account of materials including synthesis, physical and chemical modifications of mucoadhesive materials, nanocarriers, viral mimics used for the construction of mucosal drug delivery systems.
Collapse
|
73
|
Zalivskaya A, Fadeeva D, Shestopalova N, Avtina N, Radyukova V, Ivanova V. Comparative characteristics of gel bases for semisolid dosage forms. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20214003008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The article provides an overview of modern data on the main gel bases used in the technology of semisolid dosage forms. The main classes of gelling substances are characterized. According to data, the choice of excipient must be justified from the point of view of the physicochemical properties of the active substance, and depends on the place of application of the gel.
Collapse
|
74
|
Rosseto HC, de Toledo LDAS, Said dos Santos R, de Francisco LMB, Vecchi CF, Esposito E, Cortesi R, Bruschi ML. Design of propolis-loaded film forming systems for topical administration: The effect of acrylic acid derivative polymers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
75
|
Preparation and Evaluation of Physicochemical Properties of the Doxepin Mucoadhesive Gel. Jundishapur J Nat Pharm Prod 2020. [DOI: 10.5812/jjnpp.66864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Oral mucositis is a common debilitating complication of cancer chemotherapy and radiotherapy that can reduce the quality of patient’s lives. Hence, treating this condition plays an important role in increasing the patient’s tolerance. Objectives: Doxepin mucoadhesive gel is useful for treating oral mucosa inflammation caused by long-term effects of chemotherapy, which has low adverse effects. Methods: Doxepin gel’s formulation was prepared with various concentrations of poloxamer 407 and hydroxypropyl methylcellulose in deionized water. The prepared gels were evaluated for pH, appearance, viscosity, spreadability, stability, and drug release. Results: After providing gels containing doxepin, formulations 1, 2, 8, and 9 had low quality and, thus, were removed from the study. Based on qualitative evaluations, formulations 3 and 4 did not meet the criteria for mucoadhesive gel and were removed from the study. The best formulation contained 17% w/w poloxamer 407, 10% w/w hydroxypropyl methylcellulose, and 5% w/w doxepin. Conclusions: Suitable physicochemical properties of prepared doxepin mucoadhesive gel enable it to well cover inflamed and damaged oral mucosa. On the other hand, doxepin’s slow release from formulation (8 hours) can increase therapeutic effects and reduce side effects, which can heal and soothe inflammations of the oral mucosa and be useful in cancer patient’s treatment.
Collapse
|
76
|
Lam JKW, Cheung CCK, Chow MYT, Harrop E, Lapwood S, Barclay SIG, Wong ICK. Transmucosal drug administration as an alternative route in palliative and end-of-life care during the COVID-19 pandemic. Adv Drug Deliv Rev 2020; 160:234-243. [PMID: 33137363 PMCID: PMC7603972 DOI: 10.1016/j.addr.2020.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic has led to a surge in need for alternative routes of administration of drugs for end of life and palliative care, particularly in community settings. Transmucosal routes include intranasal, buccal, sublingual and rectal. They are non-invasive routes for systemic drug delivery with the possibility of self-administration, or administration by family caregivers. In addition, their ability to offer rapid onset of action with reduced first-pass metabolism make them suitable for use in palliative and end-of-life care to provide fast relief of symptoms. This is particularly important in COVID-19, as patients can deteriorate rapidly. Despite the advantages, these routes of administration face challenges including a relatively small surface area for effective drug absorption, small volume of fluid for drug dissolution and the presence of a mucus barrier, thereby limiting the number of drugs that are suitable to be delivered through the transmucosal route. In this review, the merits, challenges and limitations of each of these transmucosal routes are discussed. The goals are to provide insights into using transmucosal drug delivery to bring about the best possible symptom management for patients at the end of life, and to inspire scientists to develop new delivery systems to provide effective symptom management for this group of patients.
Collapse
Affiliation(s)
- Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region.
| | - Chucky C K Cheung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region; School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael Y T Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region; Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Emily Harrop
- Helen and Douglas House, Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Susie Lapwood
- Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Stephen I G Barclay
- Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, United Kingdom
| | - Ian C K Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region; Centre for Medicines Optimisation Research and Education (CMORE), Research Department of Practice and Policy, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
77
|
Hoffmann A, Fischer JT, Daniels R. Development of probiotic orodispersible tablets using mucoadhesive polymers for buccal mucoadhesion. Drug Dev Ind Pharm 2020; 46:1753-1762. [DOI: 10.1080/03639045.2020.1831013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Anja Hoffmann
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| | | | - Rolf Daniels
- Department of Pharmaceutical Technology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
78
|
Abruzzo A, Crispini A, Prata C, Adduci R, Nicoletta FP, Dalena F, Cerchiara T, Luppi B, Bigucci F. Freeze-Dried Matrices for Buccal Administration of Propranolol in Children: Physico-Chemical and Functional Characterization. J Pharm Sci 2020; 110:1676-1686. [PMID: 33164786 DOI: 10.1016/j.xphs.2020.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Buccal matrices represent a widely accepted dosage form permitting a convenient, easy, reliable drug administration and reducing administration errors. The aim of this study was the development of mucoadhesive buccal matrices for propranolol administration in children. Matrices were obtained by freeze-drying of drug loaded polymeric solutions based on gum tragacanth (GT), pectin (PEC), hydroxypropylmethylcellulose (HPMC), sodium hyaluronate (HA), gelatin (GEL), chitosan (CH) or a mixture of CH and HPMC (CH/HPMC). Matrices were characterized for drug solid state, morphology, water-uptake, mucoadhesion ability, in vitro drug release and permeation through porcine epithelium. The most promising formulations were tested for in vitro biocompatibility in human dental pulp fibroblasts. The preparative method and the polymeric composition influenced the drug solid state, as a complete amorphization as well as different polymorphic forms were observed. GEL and PEC guaranteed a fast and complete drug release due to their rapid dissolution, while for the other matrices the release was influenced by drug diffusion through the viscous gelled matrix. Moreover, matrices based on CH and CH/HPMC showed the best mucoadhesive properties, favoured the drug permeation, in virtue of CH ability to interfere with the lipid organization of biological membrane, and were characterized by a good biocompatibility profile.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Alessandra Crispini
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci Edificio Polifunzionale, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Rosanna Adduci
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci Edificio Polifunzionale, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci Edificio Polifunzionale, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Francesco Dalena
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci Edificio Polifunzionale, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| |
Collapse
|
79
|
Soe MT, Pongjanyakul T, Limpongsa E, Jaipakdee N. Films Fabricated with Native and Ball‐Milled Modified Glutinous Rice Starch: Physicochemical and Mucoadhesive Properties. STARCH-STARKE 2020. [DOI: 10.1002/star.202000012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- May Thu Soe
- Graduate School Khon Kaen University Khon Kaen 40002 Thailand
| | - Thaned Pongjanyakul
- Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen 40002 Thailand
| | - Ekapol Limpongsa
- Center for Research and Development of Herbal Health Products Khon Kaen University Khon Kaen 40002 Thailand
- College of Pharmacy Rangsit University Pathumthani 12000 Thailand
| | - Napaphak Jaipakdee
- Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen 40002 Thailand
- Center for Research and Development of Herbal Health Products Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
80
|
Mohamad SA, Salem H, Yassin HA, Mansour HF. Bucco-Adhesive Film as a Pediatric Proper Dosage Form for Systemic Delivery of Propranolol Hydrochloride: In-vitro and in-vivo Evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4277-4289. [PMID: 33116415 PMCID: PMC7573323 DOI: 10.2147/dddt.s267317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 01/02/2023]
Abstract
Objective To formulate and assess bucco-adhesive films of propranolol hydrochloride for pediatric use. Methods Different films were formulated adopting mucin, polyvinyl alcohol, chitosan and carbopol. A drug/polymer compatibility study was conducted adopting differential scanning calorimetry and Fourier transform infrared spectroscopy. The prepared films were physically investigated for variation of weight, propranolol content, thickness, surface pH, proportion of moisture, folding endurance and mucoadhesion. In vitro drug release study and kinetic analysis of the corresponding data have been conducted. The optimized formulation was selected for a bioavailability study using albino rabbits and adopting a developed HPLC method. The pharmacokinetic parameters of the drug were calculated following administration of the optimized film and the corresponding marketed oral tablets to albino rabbits. Key Finding The compatibility study revealed the absence of drug/polymer interaction. The film formulations had suitable mucoadhesive and mechanical properties. The optimized formulation exhibited reasonable drug release that followed Higuchi diffusion pattern. The calculated AUC0-8h presented an enhancement in the bioavailability of propranolol hydrochloride from the selected film formulation by 1.9 times relative to the marketed propranolol oral tablets. Conclusion These findings support that propranolol hydrochloride bucco-adhesive film can be considered as a proper effective dosage form for pediatric delivery.
Collapse
Affiliation(s)
- Soad A Mohamad
- Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Hesham Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Heba A Yassin
- Department of Pharmaceutics, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Heba F Mansour
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
81
|
Pilicheva B, Uzunova Y, Bodurov I, Viraneva A, Exner G, Sotirov S, Yovcheva T, Marudova M. Layer-by-layer self-assembly films for buccal drug delivery: The effect of polymer cross-linking. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
82
|
Mucoadhesive zein/beta-cyclodextrin nanoparticles for the buccal delivery of curcumin. Int J Pharm 2020; 586:119587. [DOI: 10.1016/j.ijpharm.2020.119587] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/20/2022]
|
83
|
Laffleur F, Egeling M. Evaluation of cellulose based patches for oral mucosal impairment. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
84
|
Basahih TS, Alamoudi AA, El-Say KM, Alhakamy NA, Ahmed OAA. Improved Transmucosal Delivery of Glimepiride via Unidirectional Release Buccal Film Loaded With Vitamin E TPGS-Based Nanocarrier. Dose Response 2020; 18:1559325820945164. [PMID: 32782450 PMCID: PMC7401050 DOI: 10.1177/1559325820945164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/02/2022] Open
Abstract
Glimepiride (GMD) is a hypoglycemic agent that has variation in bioavailability for its unexpected absorption. Glimepiride was formulated in a buccal film loaded with a nanobased formulation to enhance its absorption via buccal mucosa. Nanostructured lipid carriers (NLCs) and d-α-tocopherol polyethylene glycol 1000 succinate-based micelles enhance GMD solubility and improve its permeation through the buccal mucosa. The formulation variables were optimized using a Box-Behnken design. These factors, such as the percent of micelles relative to NLC (X1), the percent of Carbopol (X2), and the percent of permeation enhancer (X3), were investigated for their effect on the initial release (Y1) and the cumulative release after 6 hours (Y2). The optimum levels for X1, X2, and X3 were 100%, 0.05%, and 1.8%, respectively. The optimized formulation revealed that the permeation of GMD from the film was in favor of micelles. This optimized film was then coated with ethyl cellulose to direct the release only through the buccal mucosa. The optimized unidirectional GMD transmucosal film showed a release of 93.9% of GMD content at 6 hours compared to 60.41% of GMD release from the raw GMD film. This finding confirmed the suitability of transmucosal delivery of GMD via the buccal mucosa.
Collapse
Affiliation(s)
- Tahani S. Basahih
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah A. Alamoudi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Osama A. A. Ahmed, Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
85
|
Pérez-González GL, Villarreal-Gómez LJ, Olivas-Sarabia A, Valdez R, Cornejo-Bravo JM. Development, characterization, and in vitro assessment of multilayer mucoadhesive system containing dexamethasone sodium phosphate. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1798433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418 Parque Industrial Internacional, Tijuana, México
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Unidad Valle de las Palmas, Tijuana, México
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418 Parque Industrial Internacional, Tijuana, México
| | - Amelia Olivas-Sarabia
- Centro de Nanociencias y Nanotecnología, Universidad Autónoma de México, Ensenada, México
| | - Ricardo Valdez
- Centro de Nanociencias y Nanotecnología, Universidad Autónoma de México, Ensenada, México
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418 Parque Industrial Internacional, Tijuana, México
| |
Collapse
|
86
|
Fonseca-Santos B, Silva PB, Rigon RB, Sato MR, Chorilli M. Formulating SLN and NLC as Innovative Drug Delivery Systems for Non-Invasive Routes of Drug Administration. Curr Med Chem 2020; 27:3623-3656. [PMID: 31232233 DOI: 10.2174/0929867326666190624155938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023]
Abstract
Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| | - Patrícia Bento Silva
- University of Brasilia (UnB), Department of Genetics and Morphology, Brasilia, Federal District 70910-970, Brazil
| | - Roberta Balansin Rigon
- University of Campinas (UNICAMP), Faculty of Pharmaceutical Sciences, Campinas, Sao Paulo 13083-871, Brazil
| | - Mariana Rillo Sato
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| | - Marlus Chorilli
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| |
Collapse
|
87
|
Eleftheriadis GK, Katsiotis CS, Andreadis DA, Tzetzis D, Ritzoulis C, Bouropoulos N, Kanellopoulou D, Andriotis EG, Tsibouklis J, Fatouros DG. Inkjet printing of a thermolabile model drug onto FDM-printed substrates: formulation and evaluation. Drug Dev Ind Pharm 2020; 46:1253-1264. [PMID: 32597338 DOI: 10.1080/03639045.2020.1788062] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The inkjet printing (IP) and fused deposition modeling (FDM) technologies have emerged in the pharmaceutical field as novel and personalized formulation approaches. Specific manufacturing factors must be considered in each adopted methodology, i.e. the development of suitable substrates for IP and the incorporation of highly thermostable active pharmaceutical compounds (APIs) for FDM. In this study, IP and FDM printing technologies were investigated for the fabrication of hydroxypropyl methylcellulose-based mucoadhesive films for the buccal delivery of a thermolabile model drug. Significance: This proof-of-concept approach was expected to provide an alternative formulation methodology for personalized mucoadhesive buccal films. METHODS Mucoadhesive substrates were prepared by FDM and were subjected to sequential IP of an ibuprofen-loaded liquid ink. The interactions between these processes and the performance of the films were evaluated by various analytical and spectroscopic techniques, as well as by in vitro and ex vivo studies. RESULTS The model drug was efficiently deposited by sequential IP passes onto the FDM-printed substrates. Significant variations were revealed on the morphological, physicochemical and mechanical properties of the prepared films, and linked to the number of IP passes. The mechanism of drug release, the mucoadhesion and the permeation of the drug through the buccal epithelium were evaluated, in view of the extent of ink deposition onto the buccal films, as well as the distribution of the API. CONCLUSIONS The presented methodology provided a proof-of-concept formulation approach for the development of personalized mucoadhesive films.
Collapse
Affiliation(s)
| | - Christos S Katsiotis
- Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios A Andreadis
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Tzetzis
- School of Science and Technology, International Hellenic University, Thermi, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Patras, Greece.,Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | - Dimitra Kanellopoulou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | | | - John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Dimitrios G Fatouros
- Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
88
|
Uzunoğlu B, Wilson CG, Sağıroğlu M, Yüksel S, Şenel S. Mucoadhesive bilayered buccal platform for antifungal drug delivery into the oral cavity. Drug Deliv Transl Res 2020; 11:318-327. [PMID: 32578045 DOI: 10.1007/s13346-020-00798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A drug delivery technology comprising a mucoadhesive bilayered buccally anchored tablet containing natamycin was developed. The concept was to anchor the tablet to the buccal tissue and allow controlled release of the drug through the matrix into the mouth. Carbomer (Carbopol ® 974 P NF) was used to formulate the mucoadhesive layer. Hydroxypropyl methylcellulose (HPMC) (Methocel® K4M) at 10, 15, 20, and 40% w/w was used for the drug-containing layer. Natamycin, an amphoteric macrolide antifungal agent, was incorporated into the formulations. In addition, tablets containing erythrosine as a marker were prepared in order to examine the distribution and retention of the dye in the oral cavity. As expected, the in vitro analysis showed that the concentration of natamycin released decreased with the increasing proportion of HPMC in the formulation. A small volunteer study was conducted using the tablets containing 10% and 20% HPMC to quantitate the patterns of distribution of the drug released into the oral cavity (upper right buccal vestibule, lower right and left buccal vestibules, and sublingual region). The mucoadhesive bilayered buccal tablet formulation provided a unidirectional release of the drug from the tablet into the oral cavity in a prolonged release fashion, maintaining drug concentration above the MIC value (2 μg/mL) for Candida albicans. The amount of the drug in the sublingual region was found to be lowest when compared with other regions, which is due to the higher flow of saliva in this region. Graphical abstract.
Collapse
Affiliation(s)
- Burcum Uzunoğlu
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey
- Rx Corporate Communications, Mustafa Kemal Mah. Eskişehir yolu 9. km, Mahall Ankara C2 Blok No 10, Çankaya, Ankara, Turkey
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, G4 ONR, Glasgow, Scotland, UK
| | - Meral Sağıroğlu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Selin Yüksel
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey
| | - Sevda Şenel
- Department of Pharmaceutical Technology, Hacettepe University, Faculty of Pharmacy, 06100, Ankara, Turkey.
| |
Collapse
|
89
|
Mašková E, Kubová K, Raimi-Abraham BT, Vllasaliu D, Vohlídalová E, Turánek J, Mašek J. Hypromellose - A traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J Control Release 2020; 324:695-727. [PMID: 32479845 DOI: 10.1016/j.jconrel.2020.05.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Hydroxypropylmethylcellulose (HPMC), also known as Hypromellose, is a traditional pharmaceutical excipient widely exploited in oral sustained drug release matrix systems. The choice of numerous viscosity grades and molecular weights available from different manufacturers provides a great variability in its physical-chemical properties and is a basis for its broad successful application in pharmaceutical research, development, and manufacturing. The excellent mucoadhesive properties of HPMC predetermine its use in oromucosal delivery systems including mucoadhesive tablets and films. HPMC also possesses desirable properties for formulating amorphous solid dispersions increasing the oral bioavailability of poorly soluble drugs. Printability and electrospinnability of HPMC are promising features for its application in 3D printed drug products and nanofiber-based drug delivery systems. Nanoparticle-based formulations are extensively explored as antigen and protein carriers for the formulation of oral vaccines, and oral delivery of biologicals including insulin, respectively. HPMC, being a traditional pharmaceutical excipient, has an irreplaceable role in the development of new pharmaceutical technologies, and new drug products leading to continuous manufacturing processes, and personalized medicine. This review firstly provides information on the physical-chemical properties of HPMC and a comprehensive overview of its application in traditional oral drug formulations. Secondly, this review focuses on the application of HPMC in modern pharmaceutical technologies including spray drying, hot-melt extrusion, 3D printing, nanoprecipitation and electrospinning leading to the formulation of printlets, nanoparticle-, microparticle-, and nanofiber-based delivery systems for oral and oromucosal application. Hypromellose is an excellent excipient for formulation of classical dosage forms and advanced drug delivery systems. New methods of hypromellose processing include spray draying, hot-melt extrusion, 3D printing, and electrospinning.
Collapse
Affiliation(s)
- Eliška Mašková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Kateřina Kubová
- Faculty of Pharmacy, Masaryk University, Brno 625 00, Czech Republic
| | - Bahijja T Raimi-Abraham
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Eva Vohlídalová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic.
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic.
| |
Collapse
|
90
|
Ghori MU, Nirwan JS, Asim T, Chahid Y, Farhaj S, Khizer Z, Timmins P, Conway BR. MUCO-DIS: a New AFM-Based Nanoscale Dissolution Technique. AAPS PharmSciTech 2020; 21:142. [PMID: 32419061 PMCID: PMC7231801 DOI: 10.1208/s12249-020-01697-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Mucoadhesion-based drug delivery systems have recently gained interest because of their bio-adhesion capability, which results in enhanced residence time leading to prolonged duration of action with the mucosal surface, potentially improving compliance and convenience. Mucoadhesion testing of these formulations is widely reported; however, this is technically challenging due to the absence of any standard methods and difficulty in conducting mucoadhesion, formulation-mucosal surface interaction, mucosal surface topography and drug release in a single experiment. As these measurements are currently conducted separately, on replicate formulations, results can often be subjective and difficult to correlate. Hence, the aim of the present study was to develop a new AFM-based single-entity ex vivo muco-dissolution (MUCO-DIS) technique to simultaneously evaluate mucoadhesion force, 3D surface topography, polymer dissolution and drug release characteristics. To demonstrate the potential of the current technique, the interactions between model pectin microparticles containing metformin HCl and a range of gastrointestinal mucosal surfaces (gastric, small intestine, large intestine and buccal) were studied. This novel system has not only successfully determined the mucoadhesion force, polymer dissolution and drug release information but has also highlighted the difference in microparticle performance with different mucosal targets. The current work has highlighted the potential of this newly developed MUCO-DIS system and we believe this will be a valuable tool for characterising these popular pharmaceutical formulations. This technique could also provide an opportunity to other scientific fields to evaluate materials, substrate behaviour and their interactions in their hydrated state at nanoscale with real-time chemical and surface mapping.
Collapse
Affiliation(s)
- Muhammad Usman Ghori
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK.
| | - Jorabar Singh Nirwan
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Taimoor Asim
- School of Engineering, Robert Gordon University, Aberdeen, AB10 7GJ, UK
| | - Younes Chahid
- EPSRC Future Metrology Hub, School of Computing and Engineering, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Samia Farhaj
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Zara Khizer
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Peter Timmins
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Barbara R Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| |
Collapse
|
91
|
Molecular interactions between gelatin and mucin: Phase behaviour, thermodynamics and rheological studies. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
92
|
Kazemi Z, Taghizadeh SM, Keshavarz ST, Lahootifard F. Effect of composition on mechanical and physicochemical properties of mucoadhesive buccal films containing buprenorphine hydrochloride: From design of experiments to optimal formulation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
93
|
Giordani B, Abruzzo A, Prata C, Nicoletta FP, Dalena F, Cerchiara T, Luppi B, Bigucci F. Ondansetron buccal administration for paediatric use: A comparison between films and wafers. Int J Pharm 2020; 580:119228. [DOI: 10.1016/j.ijpharm.2020.119228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
|
94
|
Abruzzo A, Vitali B, Lombardi F, Guerrini L, Cinque B, Parolin C, Bigucci F, Cerchiara T, Arbizzani C, Gallucci MC, Luppi B. Mucoadhesive Buccal Films for Local Delivery of Lactobacillus brevis. Pharmaceutics 2020; 12:E241. [PMID: 32182651 PMCID: PMC7150759 DOI: 10.3390/pharmaceutics12030241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
The aim of this work was to prepare mucoadhesive buccal films for local release of Lactobacillus brevis CD2, which shows interesting anti-inflammatory properties due to its high levels of arginine deiminase. Hydroxypropylmethylcellulose-based films were prepared by means of a modified casting method, which allowed L. brevis CD2 loading on one side of the film, before its complete drying. Three batches of films were prepared, stored at +2-8 °C and +23-25 °C for 48 weeks and characterized in terms of physico-chemical and functional properties. For each batch, the L. brevis viable count and arginine deiminase activity were evaluated at different time points in order to assess functional property maintenance over time. Moreover, the mucoadhesive properties and ability of the films to release L. brevis CD2 were evaluated. A good survival of L. brevis CD2 was observed, particularly at the storage temperature of +2-8 °C, while the activity of arginine deiminase was maintained at both temperature values. Films showed good mucoadhesive properties and guaranteed a prolonged release of viable lactobacilli, which can be directed towards the whole buccal cavity or specific mucosa lesions. In conclusion, the proposed preparative method can be successfully employed for the production of buccal films able to release viable L. brevis CD2 cells that maintain the anti-inflammatory enzymatic activity.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (F.L.); (L.G.); (B.C.)
| | - Luca Guerrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (F.L.); (L.G.); (B.C.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (F.L.); (L.G.); (B.C.)
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| | - Catia Arbizzani
- Department of Chemistry “Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy;
| | - Maria Caterina Gallucci
- Department of Chemistry and Chemical Technology, Calabria University, Arcavacata di Rende, Via P. Bucci, Cubo 15D, 87036 Cosenza, Italy;
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| |
Collapse
|
95
|
Sofi HS, Abdal-Hay A, Ivanovski S, Zhang YS, Sheikh FA. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110756. [PMID: 32279775 DOI: 10.1016/j.msec.2020.110756] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/04/2019] [Accepted: 02/15/2020] [Indexed: 12/26/2022]
Abstract
Transmucosal surfaces bypass many limitations associated with conventional drug delivery (oral and parenteral routes), such as poor absorption rate, enzymatic activity, acidic environment and first-pass metabolism occurring inside the liver. However, these surfaces have several disadvantages such as poor retention time, narrow absorption window and continuous washout of the drug by the surrounding fluids. Electrospun nanofibers with their unique surface properties and encapsulation efficiency may act as novel drug carriers to overcome the challenges associated with conventional drug delivery routes, so as to achieve desired therapeutic responses. This review article provides detailed information regarding the challenges faced in the mucosal delivery of drugs, and the use of nanofiber systems as an alternative to deliver drugs to the systemic circulation, as well as local drug administration. The physiological and anatomical features of different types of mucosal surfaces and current challenges are systematically discussed. We also address future considerations in the area of transmucosal delivery of some important drugs.
Collapse
Affiliation(s)
- Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Abdalla Abdal-Hay
- The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston QLD 4006, Australia; Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston QLD 4006, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
96
|
Akl MA, Hady MA, Sayed OM. Buccal mucosal accumulation of dapoxetine using supersaturation, co-solvent and permeation enhancing polymer strategy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
97
|
Cozens EJ, Kong D, Roohpour N, Gautrot JE. The physico-chemistry of adhesions of protein resistant and weak polyelectrolyte brushes to cells and tissues. SOFT MATTER 2020; 16:505-522. [PMID: 31804646 DOI: 10.1039/c9sm01403a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The non-specific adhesion of polymers and soft tissues is of great interest to the field of biomedical engineering, as it will shed light on some of the processes that regulate interactions between scaffolds, implants and nanoparticles with surrounding tissues after implantation or delivery. In order to promote adhesion to soft tissues, a greater understanding of the relationship between polymer chemistry and nanoscale adhesion mechanisms is required. In this work, we grew poly(dimethylaminoethyl methacrylate) (PDMAEMA), poly(acrylic acid) (PAA) and poly(oligoethylene glycol methacrylate) (POEGMA) brushes from the surface of silica beads, and investigated their adhesion to a variety of substrates via colloidal probe-based atomic force microscopy (AFM). We first characterised adhesion to a range of substrates with defined surface chemistry (self-assembled monolayers (SAMs) with a range of hydrophilicities, charge and hydrogen bonding), before studying the adhesion of brushes to epithelial cell monolayers (primary keratinocytes and HaCaT cells) and soft tissues (porcine epicardium and keratinized gingiva). Adhesion assays to SAMs reveal the complex balance of interactions (electrostatic, van der Waals interactions and hydrogen bonding) regulating the adhesion of weak polyelectrolyte brushes. This resulted in particularly strong adhesion of PAA brushes to a wide range of surface chemistries. In turn, colloidal probe microscopy on cell monolayers highlighted the importance of the glycocalyx in regulating non-specific adhesions. This was also reflected by the adhesive properties of soft tissues, in combination with their mechanical properties. Overall, this work clearly demonstrates the complex nature of interactions between polymeric biomaterials and biological samples and highlights the need for relatively elaborate models to predict these interactions.
Collapse
Affiliation(s)
- Edward J Cozens
- Institute of Bioengineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | | | | | | |
Collapse
|
98
|
Menezes J, Santos HD, Ferreira M, Magalhães F, da Silva D, Bandeira P, Saraiva G, Pessoa O, Ricardo N, Cruz B, Teixeira A. Preparation, structural and spectroscopic characterization of chitosan membranes containing allantoin. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
99
|
Lim SY, Dafydd M, Ong J, Ord-McDermott LA, Board-Davies E, Sands K, Williams D, Sloan AJ, Heard CM. Mucoadhesive thin films for the simultaneous delivery of microbicide and anti-inflammatory drugs in the treatment of periodontal diseases. Int J Pharm 2020; 573:118860. [DOI: 10.1016/j.ijpharm.2019.118860] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022]
|
100
|
Li KL, Castillo AL. Formulation and evaluation of a mucoadhesive buccal tablet of mefenamic acid. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000418575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Karen Lu Li
- University of Santo Tomas, Philippines; University of Santo Tomas, Philippines
| | - Agnes Llamasares Castillo
- University of Santo Tomas, Philippines; University of Santo Tomas, Philippines; University of Santo Tomas, Philippines
| |
Collapse
|