51
|
Bennell K, Hinman RS, Wrigley TV, Creaby MW, Hodges P. Exercise and osteoarthritis: cause and effects. Compr Physiol 2013; 1:1943-2008. [PMID: 23733694 DOI: 10.1002/cphy.c100057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint condition predominantly affecting the knee, hip, and hand joints. Exercise plays a role in the development and treatment of OA but most of the literature in this area relates to knee OA. While studies indicate that exercise and physical activity have a generally positive effect on healthy cartilage metrics, depending upon the type of the activity and its intensity, the risk of OA development does appear to be moderately increased with sporting participation. In particular, joint injury associated with sports participation may be largely responsible for this increased risk of OA with sport. Various repetitive occupational tasks are also linked to greater likelihood of OA development. There are a number of physical impairments associated with OA including pain, muscle weakness and altered muscle function, reduced proprioception and postural control, joint instability, restricted range of motion, and lower aerobic fitness. These can result directly from the OA pathological process and/or indirectly as a result of factors such as pain, effusion, and reduced activity levels. These impairments and their underlying physiology are often targeted by exercise interventions and evidence generally shows that many of these can be modified by specific exercise. There is currently little clinical trial evidence to show that exercise can alter mechanical load and structural disease progression in those with established OA, although a number of impairments, that are amenable to change with exercise, appears to be associated with increased mechanical load and/or disease progression in longitudinal studies.
Collapse
Affiliation(s)
- Kim Bennell
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, University of Melbourne, Australia.
| | | | | | | | | |
Collapse
|
52
|
Madry H, Rey-Rico A, Venkatesan JK, Johnstone B, Cucchiarini M. Transforming growth factor Beta-releasing scaffolds for cartilage tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:106-25. [PMID: 23815376 DOI: 10.1089/ten.teb.2013.0271] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The maintenance of a critical threshold concentration of transforming growth factor beta (TGF-β) for a given period of time is crucial for the onset and maintenance of chondrogenesis. Thus, the development of scaffolds that provide temporal and/or spatial control of TGF-β bioavailability has appeal as a mechanism to induce the chondrogenesis of stem cells in vitro and in vivo for articular cartilage repair. In the past decade, many types of scaffolds have been designed to advance this goal: hydrogels based on polysaccharides, hyaluronic acid, and alginate; protein-based hydrogels such as fibrin, gelatin, and collagens; biopolymeric gels and synthetic polymers; and solid and hybrid composite (hydrogel/solid) scaffolds. In this study, we review the progress in developing strategies to deliver TGF-β from scaffolds with the aim of enhancing chondrogenesis. In the future, such scaffolds could prove critical for tissue engineering cartilage, both in vitro and in vivo.
Collapse
Affiliation(s)
- Henning Madry
- 1 Center of Experimental Orthopaedics, Saarland University , Homburg, Germany
| | | | | | | | | |
Collapse
|
53
|
Adán N, Guzmán-Morales J, Ledesma-Colunga MG, Perales-Canales SI, Quintanar-Stéphano A, López-Barrera F, Méndez I, Moreno-Carranza B, Triebel J, Binart N, Martínez de la Escalera G, Thebault S, Clapp C. Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis. J Clin Invest 2013; 123:3902-13. [PMID: 23908112 DOI: 10.1172/jci69485] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/06/2013] [Indexed: 02/05/2023] Open
Abstract
Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3-dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor-null (Prlr(-/-)) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA.
Collapse
Affiliation(s)
- Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kim S, Na JY, Song KB, Choi DS, Kim JH, Kwon YB, Kwon J. Protective Effect of Ginsenoside Rb1 on Hydrogen Peroxide-induced Oxidative Stress in Rat Articular Chondrocytes. J Ginseng Res 2013; 36:161-8. [PMID: 23717116 PMCID: PMC3659580 DOI: 10.5142/jgr.2012.36.2.161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/10/2012] [Accepted: 02/10/2012] [Indexed: 11/23/2022] Open
Abstract
The abnormal maturation and ossification of articular chondrocytes play a central role in the pathogenesis of osteoarthritis (OA). Inhibiting the enzymatic degradation of the extracellular matrix and maintaining the cellular phenotype are two of the major goals of interest in managing OA. Ginseng is frequently taken orally, as a crude substance, as a traditional medicine in Asian countries. Ginsenoside Rb1, a major component of ginseng that contains an aglycone with a dammarane skeleton, has been reported to exhibit various biological activities, including anti-inflammatory and anti-tumor effects. However, a chondroprotective effect of ginsenoside Rb1 related to OA has not yet been reported. The purpose of this study was to demonstrate the chondroprotective effect of ginsenoside Rb1 on the regulation of pro-inflammatory factors and chondrogenic genes. Cultured rat articular chondrocytes were treated with 100 μM ginsenoside Rb1 and/or 500 μM hydrogen peroxide (H2O2) and assessed for viability, reactive oxygen species production, nitric oxide (NO) release, and chondrogenic gene expression. Ginsenoside Rb1 treatment resulted in reductions in the levels of pro-inflammatory cytokine and NO in H2O2-treated chondrocytes. The expression levels of chondrogenic genes, such as type II collagen and SOX9, were increased in the presence of ginsenoside Rb1, whereas the expression levels of inflammatory genes related to chondrocytes, such as MMP1 and MMP13, were reduced by approximately 50%. These results suggest that ginsenoside Rb1 has potential for use as a therapeutic agent in OA patients.
Collapse
Affiliation(s)
- Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | | | | | | | | | | | | |
Collapse
|
55
|
Matsuzaki T, Matsushita T, Takayama K, Matsumoto T, Nishida K, Kuroda R, Kurosaka M. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis 2013; 73:1397-404. [PMID: 23723318 DOI: 10.1136/annrheumdis-2012-202620] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Important roles for SIRT1 are implicated in ageing and age-related diseases. The role of SIRT1 in osteoarthritis (OA), however, remains partially unknown. To investigate the role of SIRT1 in chondrocytes in vivo, cartilage-specific Sirt1-conditional knockout (CKO) mice were analysed using an experimental OA model. METHODS OA was surgically induced in 8-week-old C57BL6/J (wild-type) mice and Sirt1-CKO (Sirt1(flox)/(flox); Col2a1-Cre) mice generated using the Cre-loxP system. We examined changes in Sirt1 protein during the development of surgically-induced OA and during ageing in wild-type mice. OA progression in Sirt1-CKO mice was evaluated histologically at 2, 4 and 8 weeks after surgery, and at 1 year of age without surgery compared with control (Sirt1(flox)/(flox)) mice. RESULTS The number of Sirt1-positive chondrocytes decreased during ageing, and although it was increased at 2 weeks after surgery, then gradually decreased to the presurgical level during the progression of OA in wild-type mice. Sirt1-CKO mice showed no obvious skeletal abnormalities. The histological OA score was significantly higher in 1-year-old Sirt1-CKO mice than in control mice. Sirt1-CKO mice showed accelerated OA progression at 2 and 4 (but not 8) weeks compared with control mice. Immunohistochemical analysis revealed increases in type X collagen, matrix metalloproteinase 13, a disintegrin and metalloproteinase with thrombospondin motifs-5, apoptotic markers, and acetylated nuclear factor-κB p65 in Sirt1-CKO mice compared with control mice 2 weeks after surgery. CONCLUSIONS Loss of Sirt1 in chondrocytes led to the accelerated development of OA in mice. Our observations suggest that SIRT1 has a preventive role against the development of OA.
Collapse
Affiliation(s)
- Tokio Matsuzaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Koji Takayama
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kotaro Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
56
|
Abstract
BACKGROUND Osteoarthritis (OA) is a frustrating disease for both patient and physician because neither cause nor cure is known and there are currently no disease-modifying drugs. OBJECTIVE To review current therapeutic approaches as well as new findings regarding OA pathoetiology that could form the basis of future direction for the development of drugs to prevent or slow down disease progression. METHODS After reviewing disease progression in human OA, as demonstrated by histological analyses, the reasons for cartilage erosion are explored and possible therapeutic approaches are highlighted. RESULTS/CONCLUSIONS OA may be an epigenetic disease. This new concept can explain many aspects of the disease and provide reasons why therapeutic approaches until now have met with little success.
Collapse
Affiliation(s)
- Helmtrud I Roach
- University of Southampton General Hospital, Bone & Joint Research Group, Southampton SO16 6YD, UK +44 023 8079 4316 ; +44 023 8079 5256 ;
| |
Collapse
|
57
|
Leung YY, Pua YH, Thumboo J. A Perspective on Osteoarthritis Research in Singapore. PROCEEDINGS OF SINGAPORE HEALTHCARE 2013. [DOI: 10.1177/201010581302200106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ying Ying Leung
- Department of Rheumatology and Immunology, Singapore General Hospital
| | - Yong Hao Pua
- Department of Physiotherapy, Singapore General Hospital
| | - Julian Thumboo
- Department of Rheumatology and Immunology, Singapore General Hospital
| |
Collapse
|
58
|
Hashimoto K, Otero M, Imagawa K, de Andrés MC, Coico JM, Roach HI, Oreffo ROC, Marcu KB, Goldring MB. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem 2013; 288:10061-10072. [PMID: 23417678 DOI: 10.1074/jbc.m112.421156] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The role of DNA methylation in the regulation of catabolic genes such as MMP13 and IL1B, which have sparse CpG islands, is poorly understood in the context of musculoskeletal diseases. We report that demethylation of specific CpG sites at -110 bp and -299 bp of the proximal MMP13 and IL1B promoters, respectively, detected by in situ methylation analysis of chondrocytes obtained directly from human cartilage, strongly correlated with higher levels of gene expression. The methylation status of these sites had a significant impact on promoter activities in chondrocytes, as revealed in transfection experiments with site-directed CpG mutants in a CpG-free luciferase reporter. Methylation of the -110 and -299 CpG sites, which reside within a hypoxia-inducible factor (HIF) consensus motif in the respective MMP13 and IL1B promoters, produced the most marked suppression of their transcriptional activities. Methylation of the -110 bp CpG site in the MMP13 promoter inhibited its HIF-2α-driven transactivation and decreased HIF-2α binding to the MMP13 proximal promoter in chromatin immunoprecipitation assays. In contrast to HIF-2α, MMP13 transcriptional regulation by other positive (RUNX2, AP-1, ELF3) and negative (Sp1, GATA1, and USF1) factors was not affected by methylation status. However, unlike the MMP13 promoter, IL1B was not susceptible to HIF-2α transactivation, indicating that the -299 CpG site in the IL1B promoter must interact with other transcription factors to modulate IL1B transcriptional activity. Taken together, our data reveal that the methylation of different CpG sites in the proximal promoters of the human MMP13 and IL1B genes modulates their transcription by distinct mechanisms.
Collapse
Affiliation(s)
- Ko Hashimoto
- Research Division, Hospital for Special Surgery and Weill Cornell Medical College, New York, New York 10021; Department of Orthopedics, Tohoku University, Sendai 980-8574, Japan
| | - Miguel Otero
- Research Division, Hospital for Special Surgery and Weill Cornell Medical College, New York, New York 10021
| | - Kei Imagawa
- Bone and Joint Research Group, Human Development and Health, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - María C de Andrés
- Bone and Joint Research Group, Human Development and Health, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Jonathan M Coico
- Research Division, Hospital for Special Surgery and Weill Cornell Medical College, New York, New York 10021
| | - Helmtrud I Roach
- Bone and Joint Research Group, Human Development and Health, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Human Development and Health, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Kenneth B Marcu
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Centro di Ricerca Codivilla-Putti, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Mary B Goldring
- Research Division, Hospital for Special Surgery and Weill Cornell Medical College, New York, New York 10021.
| |
Collapse
|
59
|
Ongaro A, Pellati A, Setti S, Masieri FF, Aquila G, Fini M, Caruso A, De Mattei M. Electromagnetic fields counteract IL-1β activity during chondrogenesis of bovine mesenchymal stem cells. J Tissue Eng Regen Med 2012; 9:E229-38. [PMID: 23255506 DOI: 10.1002/term.1671] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 09/05/2012] [Accepted: 11/05/2012] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a common joint disease associated with articular cartilage degeneration. To improve the therapeutic options of OA, tissue engineering based on the use of mesenchymal stem cells (MSCs) has emerged. However, the presence of inflammatory cytokines, such as interleukin-1β (IL-1β), during chondrogenesis reduces the efficacy of cartilage engineering repair procedures by preventing chondrogenic differentiation. Previous studies have shown that electromagnetic fields (EMFs) stimulate anabolic processes in OA cartilage and limit IL-1β catabolic effects. We investigated the role of EMFs during chondrogenic differentiation of MSCs, isolated from bovine synovial fluid, in the absence and presence of IL-1β. Pellets of MSCs were differentiated for 3 and 5 weeks with transforming growth factor-β3 (TGFβ3), in the absence and presence of IL-1β and exposed or unexposed to EMFs. Biochemical, quantitative real-time RT-PCR and histological results showed that EMFs alone or in the presence of TGFβ3 play a limited role in promoting chondrogenic differentiation. Notably, in the presence of IL-1β and TGFβ3 a recovery of proteoglycan (PG) synthesis, PG content and aggrecan and type II collagen mRNA expression in the EMF-exposed compared to unexposed pellets was observed. Also, histological and immunohistochemical results showed an increase in staining for alcian blue, type II collagen and aggrecan in EMF-exposed pellets. In conclusion, this study shows a significant role of EMFs in counteracting the IL-1β-induced inhibition of chondrogenesis, suggesting EMFs as a therapeutic strategy for improving the clinical outcome of cartilage engineering repair procedures, based on the use of MSCs.
Collapse
Affiliation(s)
- Alessia Ongaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.
| | - Agnese Pellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Stefania Setti
- Laboratory of Clinical Biophysics, IGEA S.p.A, Carpi, Italy
| | | | | | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Research Institute Codivilla Putti, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Angelo Caruso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| |
Collapse
|
60
|
Ding QH, Ji XW, Cheng Y, Yu YQ, Qi YY, Wang XH. Inhibition of matrix metalloproteinases and inducible nitric oxide synthase by andrographolide in human osteoarthritic chondrocytes. Mod Rheumatol 2012; 23:1124-32. [PMID: 23242626 DOI: 10.1007/s10165-012-0807-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/27/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of andrographolide on matrix metalloproteinases (MMP) 1, 3, and 13 and inducible nitric oxide synthase (iNOS) in human articular chondrocytes from osteoarthritic cartilage. METHODS Passaged chondrocytes were pretreated with or without andrographolide for 2 h, followed by coincubation with interleukin-1 beta (IL-1β) 1 ng/ml for 24 h. Expression levels of MMP-1, 3, and 13, tissue inhibitor of metalloproteinase-1 (TIMP-1), and iNOS were evaluated using real-time-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting. Nitric oxide (NO) was analyzed using the Griess reaction assay. Involvement of nuclear factor kappa B (NF-κB) was assessed by Western blotting, transient transfection, and luciferase reporter assay. RESULTS Andrographolide tested in these in vitro studies was found be an effective antiarthritic agent, as evidenced by potent inhibition of MMP-1, 3, and 13 and iNOS expression, as well as upregulation of TIMP-1 in IL-1β-stimulated human articular chondrocytes (p < 0.05). The mechanism of andrographolide's inhibitory effects was mediated by attenuating the activation of NF-κB in human chondrocytes in the presence of IL-1β. CONCLUSIONS Andrographolide was a potent inhibitor of the production of inflammatory and catabolic mediators by chondrocytes, suggesting that this natural compound may merit consideration as a therapeutic agent for treating and preventing osteoarthritis.
Collapse
Affiliation(s)
- Qian-hai Ding
- Department of Orthopedic Surgery, The Second Affiliated Hospital of School of Medicine, Zhejiang University, Jie Fang Road 88#, 310009, Hangzhou, People's Republic of China
| | | | | | | | | | | |
Collapse
|
61
|
Usmani SE, Appleton CTG, Beier F. Transforming growth factor-alpha induces endothelin receptor A expression in osteoarthritis. J Orthop Res 2012; 30:1391-7. [PMID: 22407503 DOI: 10.1002/jor.22099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/15/2012] [Indexed: 02/04/2023]
Abstract
Previously, our lab identified transforming growth factor-alpha (TGFα) as a novel factor involved in osteoarthritis (OA) in a surgical model of the disease. In the same study, we also observed increased transcript levels for endothelin receptor A (ET(A)R), a known contributor to cartilage pathology. To investigate the connection between TGFα and endothelin signaling in OA, primary articular chondrocytes and osteochondral explants were isolated from Sprague-Dawley rats and treated with vehicle or TGFα. Expression of ET(A)R protein and its encoding gene Ednra was assessed. Chondrocytes and cartilage explants were also treated with the endothelin receptor A/B antagonist Bosentan, in order to determine whether TGFα effects could be blocked. TGFα induced expression of ET(A)R protein and its encoding gene Ednra. In primary chondrocyte cultures, Bosentan did not block TGFα responses of the anabolic genes Sox9, Agc1, and Col2a1, but reduced the induction of Mmp13 and Ednra transcripts by TGFα. In osteochondral explants, the inhibitor partially blocked TGFα reduction of type II collagen, as well as induction of MMP-13 and type II collagen neoepitopes. TGFα induces ET(A)R expression in articular chondrocytes and receptor antagonism appears to block some TGFα-induced catabolic effects in a three-dimensional organ culture system. Thus, TGFα may be a therapeutic target upstream of ET(A)R in OA.
Collapse
Affiliation(s)
- Shirine E Usmani
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | | | | |
Collapse
|
62
|
Effects of unloading on knee articular cartilage T1rho and T2 magnetic resonance imaging relaxation times: a case series. J Orthop Sports Phys Ther 2012; 42:511-20. [PMID: 22402583 PMCID: PMC3673554 DOI: 10.2519/jospt.2012.3975] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Case series. BACKGROUND It has been shown in rodent and canine models that cartilage composition is significantly altered in response to long-term unloading. To date, however, no in vivo human studies have investigated this topic. The objective of this case series was to determine the influence of unloading and reloading on T1rho and T2 relaxation times of articular cartilage in healthy young joints. CASE DESCRIPTION Ten patients who required 6 to 8 weeks of non-weight bearing (NWB) for injuries affecting the distal lower extremity participated in the study. Quantitative T1rho and T2 imaging of the ipsilateral knee joint was performed at 3 time points: (1) prior to surgery (baseline), (2) immediately after a period of NWB (post-NWB), and (3) after 4 weeks of full weight bearing (post-FWB). Cartilage regions of interest were segmented and overlaid on T1rho and T2 relaxation time maps for quantification. Descriptive statistics are provided for all changes. OUTCOMES Increases of 5% to 10% in T1rho times of all femoral and tibial compartments were noted post-NWB. All values returned to near-baseline levels post-FWB. Increases in medial tibia T2 times were noted post-NWB and remained elevated post-FWB. The load-bearing regions showed the most significant changes in response to unloading, with increases of up to 12%. DISCUSSION The observation of a transient shift in relaxation times confirms that cartilage composition is subject to alterations based on loading conditions. These changes appear to be mostly related to proteoglycan content and more localized to the load-bearing regions. However, following 4 weeks of full weight bearing, relaxation times of nearly all regions had returned to baseline levels, demonstrating reversibility in compositional fluctuations. LEVEL OF EVIDENCE Therapy, level 4.
Collapse
|
63
|
Souza RB, Fang C, Luke A, Wu S, Li X, Majumdar S. Relationship between knee kinetics during jumping tasks and knee articular cartilage MRI T1rho and T2 relaxation times. Clin Biomech (Bristol, Avon) 2012; 27:403-8. [PMID: 22115848 PMCID: PMC3327363 DOI: 10.1016/j.clinbiomech.2011.10.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Articular cartilage of young healthy individuals is dynamic and responsive to loading behaviors. The purpose of this study was to evaluate the relationship of cartilage T(1ρ) and T(2) relaxation times with loading kinetics during jumping tasks in healthy young individuals. METHODS Fourteen healthy subjects underwent: 1) motion analysis while performing a unilateral hopping task and bilateral drop jumping task; and 2) quantitative imaging using a 3 Tesla MRI for T(1ρ) and T(2) relaxation time analysis. Three dimensional net joint moments and angular impulse was calculated using standard inverse dynamics equations. Average T(1ρ) and T(2) relaxation times and medial-lateral ratios for each were calculated. Multiple regression was used to identify predictors of cartilage relaxation times. FINDINGS Average knee flexion moment during hopping was observed to best predict overall T(1ρ) (R(2)=.185) and T(2) (R(2)=.154) values. Peak knee adduction moment during a drop jump was the best predictor of the T(1ρ) medial-lateral ratio (R(2)=.220). The T(2) medial-lateral ratio was best predicted by average internal rotation moment during the drop jump (R(2)=.174). INTERPRETATION These data suggest that loads across the knee may affect the biochemistry of the cartilage. In young healthy individuals, higher flexion moments were associated with decreased T(1ρ) and T(2) values, suggesting a potentially beneficial effect. The medial-to-lateral ratio of T(1ρ) and T(2) times appears to be related to the frontal and transverse plane joint mechanics. These data offer promising findings of potentially modifiable parameters associated with cartilage composition.
Collapse
Affiliation(s)
- Richard B Souza
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA 94107, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Jacques C, Holzenberger M, Mladenovic Z, Salvat C, Pecchi E, Berenbaum F, Gosset M. Proinflammatory actions of visfatin/nicotinamide phosphoribosyltransferase (Nampt) involve regulation of insulin signaling pathway and Nampt enzymatic activity. J Biol Chem 2012; 287:15100-8. [PMID: 22399297 DOI: 10.1074/jbc.m112.350215] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Visfatin (also termed pre-B-cell colony-enhancing factor (PBEF) or nicotinamide phosphoribosyltransferase (Nampt)) is a pleiotropic mediator acting on many inflammatory processes including osteoarthritis. Visfatin exhibits both an intracellular enzymatic activity (nicotinamide phosphoribosyltransferase, Nampt) leading to NAD synthesis and a cytokine function via the binding to its hypothetical receptor. We recently reported the role of visfatin in prostaglandin E(2) (PGE(2)) synthesis in chondrocytes. Here, our aim was to characterize the signaling pathways involved in this response in exploring both the insulin receptor (IR) signaling pathway and Nampt activity. IR was expressed in human and murine chondrocytes, and visfatin triggered Akt phosphorylation in murine chondrocytes. Blocking IR expression with siRNA or activity using the hydroxy-2-naphthalenyl methyl phosphonic acid tris acetoxymethyl ester (HNMPA-(AM)(3)) inhibitor diminished visfatin-induced PGE(2) release in chondrocytes. Moreover, visfatin-induced IGF-1R(-/-) chondrocytes released higher concentration of PGE(2) than IGF-1R(+/+) cells, a finding confirmed with an antibody that blocked IGF-1R. Using RT-PCR, we found that visfatin did not regulate IR expression and that an increased insulin release was also unlikely to be involved because insulin was unable to increase PGE(2) release. Inhibition of Nampt activity using the APO866 inhibitor gradually decreased PGE(2) release, whereas the addition of exogenous nicotinamide increased it. We conclude that the proinflammatory actions of visfatin in chondrocytes involve regulation of IR signaling pathways, possibly through the control of Nampt enzymatic activity.
Collapse
Affiliation(s)
- Claire Jacques
- UR4, Pierre and Marie Curie University, 75252 Paris, France
| | | | | | | | | | | | | |
Collapse
|
65
|
Chen WP, Wang YL, Tang JL, Hu PF, Bao JP, Wu LD. Morin inhibits interleukin-1β-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Int Immunopharmacol 2012; 12:447-52. [DOI: 10.1016/j.intimp.2011.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/06/2011] [Accepted: 12/30/2011] [Indexed: 01/22/2023]
|
66
|
Pecchi E, Priam S, Mladenovic Z, Gosset M, Saurel AS, Aguilar L, Berenbaum F, Jacques C. A potential role of chondroitin sulfate on bone in osteoarthritis: inhibition of prostaglandin E₂ and matrix metalloproteinases synthesis in interleukin-1β-stimulated osteoblasts. Osteoarthritis Cartilage 2012; 20:127-35. [PMID: 22179028 DOI: 10.1016/j.joca.2011.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To determine the effect of chondroitin sulfate (CS) on inflammatory mediators and proteolytic enzymes induced by interleukin-1β (IL-1β) and related to cartilage catabolism in murine osteoblasts. DESIGN Osteoblasts were obtained by enzymatic digestion of calvaria from Swiss mice and cultured for 3 weeks as a primary culture. Cells were then stimulated with IL-1β (1 or 10 ng/ml). CS-treated osteoblasts were incubated with 100 μg/ml of CS during the last week of culture w/o IL-1β for the last 24 h. Expressions of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), 15-PG dehydrogenase (15-PGDH), matrix metalloproteinases-3 and -13 (MMP-3 and -13), osteoprotegerin (OPG) and receptor activator of nuclear factor-kappa B ligand (RANKL) were determined by real-time polymerase chain reaction (PCR). PGE₂, MMP-3 and MMP-13 release were assessed in the medium by enzyme-linked immunosorbent assay or western-blotting. RESULTS IL-1β increased COX-2, mPGES-1, MMP-3, MMP-13, RANKL expressions, decreased 15-PGDH expression, and increased PGE₂, MMP-3 and MMP-13 release. Interestingly, 7 days of CS treatment significantly counteracted IL-1β-induced expression of COX-2 (-62%, P<0.001), mPGES-1 (-63%, P<0.001), MMP-3 (-39%, P=0.08), MMP-13 (-60%, P<0.001) and RANKL (-84%, P<0.001). Accordingly, IL-1β-induced PGE₂, MMP-3 and MMP-13 releases were inhibited by 86% (P<0.001), 58%(P<0.001) and 38% (P<0.01) respectively. CONCLUSIONS In conclusion, our data demonstrate that, in an inflammatory context, CS inhibits the production of PGE₂ and MMPs. Since CS has previously been shown to counteract the production of these mediators in chondrocytes, we speculate that the beneficial effect of CS in Osteoarthritis (OA) could not only be due to its action on cartilage but also on subchondral bone.
Collapse
Affiliation(s)
- E Pecchi
- UR 4, University Pierre & Marie Curie Paris VI, Paris Universitas, Aging, Stress and Inflammation Laboratory, 7 quai St-Bernard, 75252 Paris Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Xia L, Luo QL, Lin HD, Zhang JL, Guo H, He CQ. The effect of different treatment time of millimeter wave on chondrocyte apoptosis, caspase-3, caspase-8, and MMP-13 expression in rabbit surgically induced model of knee osteoarthritis. Rheumatol Int 2011; 32:2847-56. [DOI: 10.1007/s00296-011-2080-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/21/2011] [Indexed: 12/01/2022]
|
68
|
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation and changes in the subchondral bone. Over the last two decades, there has been increasing evidence showing association between cartilage degradation and chondrocyte death, and different types of cell death in cartilage have been reported, including apoptosis and chondroptosis as well as necrosis, but which of these types of cell death predominate in OA is debatable. There are also some methodological difficulties in detecting the specific form of cell death in articular cartilage. Current 'gold standard' for detecting chondrocyte death is electron microscopy which suggests that the morphological changes of chondrocytes in OA cartilage are attributed to apoptosis and/or chondroptosis. However, the current literature appears to suggest that classic apoptosis plays an important role in OA; but whether chondrocyte apoptosis is a cause or a result of cartilage degeneration in OA is hotly contested. Studies of suitable animal models, especially longitudinal studies, are needed to address the cause-and-effect relationship.
Collapse
|
69
|
Guermazi A, Roemer FW, Hayashi D, Crema MD, Niu J, Zhang Y, Marra MD, Katur A, Lynch JA, El-Khoury GY, Baker K, Hughes LB, Nevitt MC, Felson DT. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis 2011; 70:805-11. [PMID: 21187293 PMCID: PMC4180232 DOI: 10.1136/ard.2010.139618] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To introduce a comprehensive and reliable scoring system for the assessment of whole-knee joint synovitis based on contrast-enhanced (CE) MRI. METHODS Multicenter Osteoarthritis Study (MOST) is a cohort study of people with, or at high risk of, knee osteoarthritis (OA). Subjects are an unselected subset of MOST who volunteered for CE-MRI. Synovitis was assessed at 11 sites of the joint. Synovial thickness was scored semiquantitatively: grade 0 (<2 mm), grade 1 (2-4 mm) and grade 2 (>4 mm) at each site. Two musculoskeletal radiologists performed the readings and inter- and intrareader reliability was evaluated. Whole-knee synovitis was assessed by summing the scores from all sites. The association of Western Ontario and McMaster Osteoarthritis Index pain score with this summed score and with the maximum synovitis grade for each site was assessed. RESULTS 400 subjects were included (mean age 58.8±7.0 years, body mass index 29.5±4.9 kg/m(2), 46% women). For individual sites, intrareader reliability (weighted κ) was 0.67-1.00 for reader 1 and 0.60-1.00 for reader 2. Inter-reader agreement (κ) was 0.67-0.92. For the summed synovitis scores, intrareader reliability (intraclass correlation coefficient ( ICC)) was 0.98 and 0.96 for each reader and inter-reader agreement (ICC) was 0.94. Moderate to severe synovitis in the parapatellar subregion was associated with the higher maximum pain score (adjusted OR (95% CI), 2.8 (1.4 to 5.4) and 3.1 (1.2 to 7.9), respectively). CONCLUSIONS A comprehensive semiquantitative scoring system for the assessment of whole-knee synovitis is proposed. It is reliable and identifies knees with pain, and thus is a potentially powerful tool for synovitis assessment in epidemiological OA studies.
Collapse
Affiliation(s)
- Ali Guermazi
- Quantitative Imaging Center (QIC), Department of Radiology, Boston University School of Medicine, 820 Harrison Avenue, FGH Building, 3rd Floor, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Imaging of synovitis in osteoarthritis: current status and outlook. Semin Arthritis Rheum 2011; 41:116-30. [PMID: 21295331 DOI: 10.1016/j.semarthrit.2010.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/01/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022]
Abstract
OBJECTIVES This review article provides an overview of the current state of imaging of synovitis in osteoarthritis (OA), looking at recent advances and controversies and focusing particularly on the application of ultrasound and magnetic resonance imaging (MRI) in the assessment of the hand and knee joint. Computed tomography and nuclear medicine including positron emission tomography are also briefly discussed. METHODS PubMed and MEDLINE search for articles published up to 2010, using the keywords synovitis, osteoarthritis, rheumatoid arthritis, pathogenesis, imaging, radiography, computed tomography, nuclear medicine, magnetic resonance imaging, ultrasound, and pain. RESULTS Synovitis is defined as inflammation of the synovial membrane. Modern imaging techniques have demonstrated that synovial pathology is common in the early and late stages of OA and may be associated with pain. The current standard for OA imaging in clinical practice is conventional radiography but it does not allow direct visualization of synovitis. MRI without contrast administration, although widely used in clinical studies, cannot assess synovitis directly. Contrast-enhanced MRI and ultrasound, however, both allow direct visualization of synovitis including early inflammatory changes. They are regularly used to image synovitis in rheumatoid arthritis and increasingly in OA. CONCLUSIONS Synovitis is increasingly recognized as an important feature of the pathophysiology of OA, although there is conflicting evidence with respect to its association with disease severity and clinical parameters. Contrast-enhanced MRI and ultrasound are the most important methods for assessing synovitis associated with OA.
Collapse
|
71
|
Gosset M, Pigenet A, Salvat C, Berenbaum F, Jacques C. Inhibition of Matrix Metalloproteinase-3 and -13 Synthesis Induced by IL-1β in Chondrocytes from Mice Lacking Microsomal Prostaglandin E Synthase-1. THE JOURNAL OF IMMUNOLOGY 2010; 185:6244-52. [DOI: 10.4049/jimmunol.0903315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
72
|
Frost AB, Larsen F, Ostergaard J, Larsen SW, Lindegaard C, Hansen HR, Larsen C. On the search for in vitro in vivo correlations in the field of intra-articular drug delivery: administration of sodium diatrizoate to the horse. Eur J Pharm Sci 2010; 41:10-5. [PMID: 20580670 DOI: 10.1016/j.ejps.2010.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/30/2010] [Accepted: 05/10/2010] [Indexed: 01/14/2023]
Abstract
Development of suitable in vitro release models for formulation development as well as quality control purposes has to be initiated in the early design phase of injectable depots. Optimally, construction of an in vitro release model may lead to the establishment of in vitro in vivo correlations. By using a model compound (sodium diatrizoate, DTZ), the purpose of this study was to investigate the possibility of establishing in vitro in vivo relations between the DTZ disappearance profile obtained from the donor compartment of the rotating dialysis cell model and the joint disappearance profile following intra-articular administration. In vitro experiments were conducted by applying solutions of DTZ to the donor compartment. In the in vivo experiments, five horses were subjected to both intravenous and intra-articular administration of an aqueous solution of 3.9 mg DTZ/kg. A strong relation (R(2)=0.99) was obtained between the disappearance data from the donor compartment of the in vitro model and the disappearance data from the synovial fluid after intra-articular administration of DTZ. Furthermore, a relation (R(2)=0.91) between the appearance data obtained from the acceptor compartment and the deconvolved appearance serum data upon intra-articular administration of DTZ was obtained. The correlations obtained in this study hold promise that the rotating dialysis cell model has a role in the prediction of the intra-articular fate of drugs injected as solutions.
Collapse
Affiliation(s)
- Anna Buus Frost
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
73
|
Kimura H, Yukitake H, Tajima Y, Suzuki H, Chikatsu T, Morimoto S, Funabashi Y, Omae H, Ito T, Yoneda Y, Takizawa M. ITZ-1, a client-selective Hsp90 inhibitor, efficiently induces heat shock factor 1 activation. ACTA ACUST UNITED AC 2010; 17:18-27. [PMID: 20142037 DOI: 10.1016/j.chembiol.2009.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 11/25/2022]
Abstract
ITZ-1 is a chondroprotective agent that inhibits interleukin-1beta-induced matrix metalloproteinase-13 (MMP-13) production and suppresses nitric oxide-induced chondrocyte death. Here we describe its mechanisms of action. Heat shock protein 90 (Hsp90) was identified as a specific ITZ-1-binding protein. Almost all known Hsp90 inhibitors have been reported to bind to the Hsp90 N-terminal ATP-binding site and to simultaneously induce degradation and activation of its multiple client proteins. However, within the Hsp90 client proteins, ITZ-1 strongly induces heat shock factor-1 (HSF1) activation and causes mild Raf-1 degradation, but scarcely induces degradation of a broad range of Hsp90 client proteins by binding to the Hsp90 C terminus. These results may explain ITZ-1's inhibition of MMP-13 production, its cytoprotective effect, and its lower cytotoxicity. These results suggest that ITZ-1 is a client-selective Hsp90 inhibitor.
Collapse
Affiliation(s)
- Haruhide Kimura
- Pharmaceutical Research Division, Takeda Pharmaceutical, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Chen MP, Yang SH, Chou CH, Yang KC, Wu CC, Cheng YH, Lin FH. The chondroprotective effects of ferulic acid on hydrogen peroxide-stimulated chondrocytes: inhibition of hydrogen peroxide-induced pro-inflammatory cytokines and metalloproteinase gene expression at the mRNA level. Inflamm Res 2010; 59:587-95. [PMID: 20349328 DOI: 10.1007/s00011-010-0165-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/17/2009] [Accepted: 01/25/2010] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The objective of the study is to evaluate the effect of ferulic acid (FA), an antioxidant from the Chinese herb Dong-Gui [Chinese angelica, Angelica sinensis (Oliv.) Diels], on the regulation of various genes in hydrogen peroxide-stimulated porcine chondrocytes at the mRNA level. METHODS The effect of FA and the effective concentration of FA on porcine chondrocytes was evaluated by the lactate dehydrogenase, WST-1, crystal violet assay, and a chemical luminescence assay. Gene expression in hydrogen peroxide-stimulated chondrocytes either pre- or post-treated with FA was evaluated by real-time PCR. RESULTS Chondrocytes pre-treated with 40 microM FA decreased the hydrogen peroxide-induced interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and MMP-1 and partially restored SOX9 gene expression. Post-treatment with 40 microM FA also decreased the expression of MMP-1 and MMP-13. CONCLUSION FA decreased the hydrogen peroxide-induced IL-1beta, TNF-alpha, MMP-1 and MMP-13 and increased SOX9 gene expression. These findings suggest that FA may prove to be important in the treatment of osteoarthritis. Further research is needed.
Collapse
Affiliation(s)
- M P Chen
- Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Hashimoto K, Oreffo ROC, Gibson MB, Goldring MB, Roach HI. DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. ACTA ACUST UNITED AC 2010; 60:3303-13. [PMID: 19877066 DOI: 10.1002/art.24882] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To determine whether changes in the DNA methylation status in the promoter region of the gene encoding interleukin-1beta (IL-1beta) account for expression of IL1B messenger RNA (mRNA) after long-term treatment of human articular chondrocytes with inflammatory cytokines. METHODS IL-1beta, tumor necrosis factor alpha (TNFalpha) plus oncostatin M (OSM), or 5-azadeoxycytidine (5-aza-dC) was added twice weekly for 4-5 weeks to primary cultures of normal human articular chondrocytes derived from the femoral head cartilage of patients with a fracture of the femoral neck. Expression of MMP13, IL1B, TNFA, and DNMT1 was determined by SYBR Green-based quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of genomic DNA and total RNA extracted from the same sample before and after culture. Bisulfite modification was used to identify which CpG sites in the IL1B promoter showed differential methylation between IL1B-expressing and IL1B-nonexpressing cells. The percentages of cells that were methylated at that critical CpG site (-299 bp) were quantified by a method that depended on methylation-sensitive restriction enzymes and real-time RT-PCR. Secretion of IL-1beta into the culture media was assessed by enzyme-linked immunosorbent assay. RESULTS Healthy chondrocytes did not express IL1B mRNA, but the levels were increased 5-fold by treatment with 5-aza-dC and were increased 100-1,000-fold by treatment with TNFalpha/OSM. The percentage CpG methylation was decreased by 5-aza-dC treatment but was reduced considerably more by IL-1beta and was almost abolished by TNFalpha/OSM. The mRNA was translated into protein in cytokine-treated chondrocytes. CONCLUSION These novel findings indicate that inflammatory cytokines can change the DNA methylation status at key CpG sites, resulting in long-term induction of IL1B in human articular chondrocytes.
Collapse
|
77
|
From osteoarthritis treatments to future regenerative therapies for cartilage. Drug Discov Today 2009; 14:913-25. [DOI: 10.1016/j.drudis.2009.07.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 07/20/2009] [Accepted: 07/22/2009] [Indexed: 11/20/2022]
|
78
|
Kimura H, Yukitake H, Suzuki H, Tajima Y, Gomaibashi K, Morimoto S, Funabashi Y, Yamada K, Takizawa M. The chondroprotective agent ITZ-1 inhibits interleukin-1beta-induced matrix metalloproteinase-13 production and suppresses nitric oxide-induced chondrocyte death. J Pharmacol Sci 2009; 110:201-11. [PMID: 19542681 DOI: 10.1254/jphs.09076fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In a screening program aimed at discovering anti-osteoarthritis (OA) drugs, we identified an imidazo[5,1-c][1,4]thiazine derivative, ITZ-1, that suppressed both interleukin-1beta (IL-1beta)-induced proteoglycan and collagen release from bovine nasal cartilage in vitro and suppressed intra-articular infusion of IL-1beta-induced cartilage proteoglycan degradation in rat knee joints. ITZ-1 did not inhibit enzyme activities of various matrix metalloproteinases (MMPs), which have pivotal roles in cartilage degradation, while it selectively inhibited IL-1beta-induced production of MMP-13 in human articular chondrocytes (HAC). IL-1beta-induced MMP production has been shown to be mediated by extracellular signal-regulated protein kinase (ERK), p38 kinase, and c-Jun N-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) family signal transduction molecules. An ERK-MAPK pathway inhibitor (U0126), but not a p38 kinase inhibitor (SB203580) or a JNK inhibitor (SP600125), also selectively inhibited IL-1beta-induced MMP-13 production in HAC. Furthermore, ITZ-1 selectively inhibited IL-1beta-induced ERK activation without affecting p38 kinase and JNK activation, which may account for its selective inhibition of MMP-13 production. Inhibition of nitric oxide (NO)-induced chondrocyte apoptosis has been another area of interest as a therapeutic strategy for OA, and ITZ-1 also suppressed NO-induced death in HAC. These results suggest that ITZ-1 is a promising lead compound for a disease modifying anti-OA drug program.
Collapse
Affiliation(s)
- Haruhide Kimura
- Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
du Souich P, García AG, Vergés J, Montell E. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J Cell Mol Med 2009; 13:1451-63. [PMID: 19522843 PMCID: PMC3828858 DOI: 10.1111/j.1582-4934.2009.00826.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chondroitin sulphate (CS) is a natural glycosaminoglycan present in the extracellular matrix and is formed by the 1–3 linkage of D-glucuronic acid to N-acetylgalactosamine. In chondrocytes, CS diminishes interleukin-1 p (IL-1p)-induced increases in p38 mitogen-activated protein kinase (p38MAPK) and signal-regulated kinase 1/2 (Erk1/2) phosphorylation, and decreases nuclear factor-KB (NF-kB) nuclear translocation and as a consequence, reduces the formation of pro-inflammatory cytokines, IL-1 p and TNF-a, and pro-inflammatory enzymes, such as phospholipase A2 (PLA2), cyclooxygenase 2 (COX-2) and nitric oxide synthase-2 (NOS-2). The mechanism of action of CS explains its beneficial effect on the cartilage, synovial membrane and subchondral bone. On the other hand, in vivo, CS given orally prevents hepatic NF-κB nuclear translocation, suggesting that systemic CS may elicit an anti-inflammatory effect in many tissues besides the articulation. There is preliminary evidence showing that in human beings, CS may be of benefit in other diseases where inflammation is an essential marker, such as psoriasis and atherosclerosis. The review of the literature suggest that CS might also be of interest for the treatment of other diseases with an inflammatory and/or autoimmune character, such as inflammatory bowel disease, degenerative diseases of the central nervous system and stroke, multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Patrick du Souich
- Department of Pharmacology, Faculty of Medicine, University of Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
80
|
Pua YH, Wrigley TV, Cowan SM, Bennell KL. Hip flexion range of motion and physical function in hip osteoarthritis: Mediating effects of hip extensor strength and pain. ACTA ACUST UNITED AC 2009; 61:633-40. [DOI: 10.1002/art.24509] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
81
|
da Silva MA, Yamada N, Clarke NMP, Roach HI. Cellular and epigenetic features of a young healthy and a young osteoarthritic cartilage compared with aged control and OA cartilage. J Orthop Res 2009; 27:593-601. [PMID: 18985702 DOI: 10.1002/jor.20799] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is generally a disease of the elderly population, but can occur in young patients in exceptional cases. This study compares the cellular and epigenetic features of primary old-age OA with those of secondary OA in a 23-year-old patient with developmental dysplasia of the hip. In addition, control cartilage from a 14-year-old was compared with that from patients with a fracture of the neck of femur (#NOF) to establish to what extent the latter is a useful control for OA. Articular cartilage was obtained from discarded femoral heads after hip arthroplasty. MMP-3, MMP-9, MMP-13, and ADAMTS-4 were immunolocalized and the methylation status of specific promoter CpG sites was determined. Both primary and secondary OA were characterized by loss of aggrecan, formation of clones, and abnormal expression of the proteases that correlated with epigenetic DNA demethylation. The latter indicated that the abnormal expression of the cartilage-degrading proteases was not due to a short-term up-regulation, but a heritable, permanent alteration in gene expression. Comparing cell densities in young and old control cartilage estimated an age-related cell loss of approximately 1% per year. In aged #NOF cartilage, some superficial-zone chondrocytes expressed the proteases, but the majority of cells were immunonegative and their promoters were hypermethylated. The cellular and epigenetic features of the intermediate and deep zones of #NOF cartilage are thus similar to those of young healthy cartilage, justifying the use of #NOF cartilage as control cartilage for OA, providing the superficial zone is removed.
Collapse
Affiliation(s)
- Marco A da Silva
- Bone and Joint Research Group, University of Southampton, Southampton, United Kingdom
| | | | | | | |
Collapse
|
82
|
Larsen C, Ostergaard J, Larsen SW, Jensen H, Jacobsen S, Lindegaard C, Andersen PH. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J Pharm Sci 2009; 97:4622-54. [PMID: 18306275 DOI: 10.1002/jps.21346] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The joint cavity constitutes a discrete anatomical compartment that allows for local drug action after intra-articular injection. Drug delivery systems providing local prolonged drug action are warranted in the management of postoperative pain and not least arthritic disorders such as osteoarthritis. The present review surveys various themes related to the accomplishment of the correct timing of the events leading to optimal drug action in the joint space over a desired time period. This includes a brief account on (patho)physiological conditions and novel potential drug targets (and their location within the synovial space). Particular emphasis is paid to (i) the potential feasibility of various depot formulation principles for the intra-articular route of administration including their manufacture, drug release characteristics and in vivo fate, and (ii) how release, mass transfer and equilibrium processes may affect the intra-articular residence time and concentration of the active species at the ultimate receptor site.
Collapse
Affiliation(s)
- Claus Larsen
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
83
|
Ling SM, Patel DD, Garnero P, Zhan M, Vaduganathan M, Muller D, Taub D, Bathon JM, Hochberg M, Abernethy DR, Metter EJ, Ferrucci L. Serum protein signatures detect early radiographic osteoarthritis. Osteoarthritis Cartilage 2009; 17:43-8. [PMID: 18571442 PMCID: PMC2667202 DOI: 10.1016/j.joca.2008.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 05/04/2008] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To test the hypothesis that early knee and hand osteoarthritis (OA) development is characterized by detectable changes in serum proteins relevant to inflammation, cell growth, activation, and metabolism several years before OA becomes radiographically evident. METHODS Using microarray platforms that simultaneously test 169 proteins relevant to inflammation, cell growth, activation and metabolism, we conducted a case-control study nested within the Baltimore Longitudinal Study of Aging (BLSA). Subjects included 22 incident cases of OA and 66 age-, sex- and body mass index (BMI)-matched controls. Serum samples tested were obtained at the time of radiographic classification as either case or control, and up to 10 years earlier at a time when all participants were free of radiographic OA. Proteins with mean signal intensities fourfold higher than background were compared between cases and controls using multivariate techniques. RESULTS Sixteen proteins were different between OA cases compared to controls. Four of these proteins [matrix metalloproteinase (MMP)-7, interleukin (IL)-15, plasminogen activator inhibitor (PAI)-1 and soluble vascular adhesion protein (sVAP)-1] were already different in samples obtained 10 years before radiographic classification and remained different at the time of diagnosis. Six additional proteins were only associated with subsequent OA development and not with established OA. CONCLUSIONS Changes in serum proteins implicated in matrix degradation, cell activation, inflammation and bone collagen degradation products accompany early OA development and can precede radiographic detection by several years.
Collapse
Affiliation(s)
- S M Ling
- National Institute on Aging Intramural Research Program, National Institutes of Health (NIH), Baltimore, MD 21225, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Miot-Noirault E, Vidal A, Auzeloux P, Madelmont JC, Maublant J, Moins N. First in Vivo SPECT Imaging of Mouse Femorotibial Cartilage Using 99mTc-NTP 15-5. Mol Imaging 2008. [DOI: 10.2310/7290.2008.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study aimed to report the first single-photon emission computed tomographic (SPECT) imaging of articular cartilage in mice using 99mTc-NTP 15-5 radiotracer. Mice intravenously injected with 99mTc-NTP 15-5 were submitted to (1) dynamic planar imaging, (2) static planar imaging, (3) 1 mm pinhole SPECT acquisition, and (4) dissection. Tomographic reconstruction of SPECT data was performed with a three-dimensional ordered subset expectation maximization algorithm, and slices were reconstructed in three axes. 99mTc-NTP 15-5 rapidly accumulated in the joint, with a peak of radioactivity being reached from 5 minutes postinjection and maintained for at least 90 minutes. Given that bone and muscle did not show any accumulation of the tracer, highly contrasted joint imaging was obtained from 15 minutes postinjection. When 1 mm pinhole SPECT acquisition was focused on the knee, the medial and lateral compartments of both the femoral condyle and tibial plateau were highly delineated, allowing a separate quantitation of tracer accumulation within each component of the femorotibial joint. A good correlation was found between tracer uptake determined by region of interest analysis of both planar and SPECT scans and dissection. This new approach to imaging of cartilage in mice provides joint functionality assessment in vivo, giving a unique opportunity to achieve a greater understanding of cartilage physiology in health and disease.
Collapse
Affiliation(s)
- Elisabeth Miot-Noirault
- From EA 4231, University d'Auvergne; and INSERM UMR 484; and Centre Jean Perrin, Clermont-Ferrand, France
| | - Aurélien Vidal
- From EA 4231, University d'Auvergne; and INSERM UMR 484; and Centre Jean Perrin, Clermont-Ferrand, France
| | - Philippe Auzeloux
- From EA 4231, University d'Auvergne; and INSERM UMR 484; and Centre Jean Perrin, Clermont-Ferrand, France
| | - Jean-Claude Madelmont
- From EA 4231, University d'Auvergne; and INSERM UMR 484; and Centre Jean Perrin, Clermont-Ferrand, France
| | - Jean Maublant
- From EA 4231, University d'Auvergne; and INSERM UMR 484; and Centre Jean Perrin, Clermont-Ferrand, France
| | - Nicole Moins
- From EA 4231, University d'Auvergne; and INSERM UMR 484; and Centre Jean Perrin, Clermont-Ferrand, France
| |
Collapse
|
85
|
Roach HI. The complex pathology of osteoarthritis: even mitochondria are involved. ACTA ACUST UNITED AC 2008; 58:2217-8. [PMID: 18668573 DOI: 10.1002/art.23635] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
86
|
Iovu M, Dumais G, du Souich P. Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartilage 2008; 16 Suppl 3:S14-8. [PMID: 18667340 DOI: 10.1016/j.joca.2008.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 06/17/2008] [Indexed: 02/02/2023]
Abstract
Osteoarthritis is primarily characterized by areas of destruction of articular cartilage and by synovitis. Articular damage and synovitis are secondary to local increase of pro-inflammatory cytokines (interleukin-1beta and tumor necrosis factor-alpha), enzymes with proteolytic activity (matrix metalloproteinases), and enzymes with pro-inflammatory activity (cyclooxygenase-2 and nitric oxide synthase-2). Enhanced expression of these proteins in chondrocytes and in synovial membrane appears associated to the activation and nuclear translocation of nuclear factor-kappaB (NF-kappaB). Chondroitin sulfate (CS) prevents joint space narrowing and reduces joint swelling and effusion. To produce these effects, CS elicits an anti-inflammatory effect at the chondral and synovial levels. CS and its disaccharides reduce NF-kappaB nuclear translocation, probably by diminishing extracellular signal-regulated kinase1/2, p38mitogen-activated protein kinase and c-Jun N-terminal kinase activation. This review discusses the evidence supporting that CS pleiotropic effects in chondrocytes and synoviocytes are primarily due to a common mechanism, e.g., the inhibition of NF-kappaB nuclear translocation.
Collapse
Affiliation(s)
- M Iovu
- Department of Pharmacology, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
87
|
Tare RS, Babister JC, Kanczler J, Oreffo ROC. Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol Cell Endocrinol 2008; 288:11-21. [PMID: 18395331 DOI: 10.1016/j.mce.2008.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/18/2008] [Accepted: 02/25/2008] [Indexed: 02/07/2023]
Abstract
Advances in our knowledge of the biology of skeletal stem cells, together with an increased understanding of the regeneration of normal tissue offer exciting new therapeutic approaches in musculoskeletal repair. Skeletal stem cells from various adult tissues such as bone marrow can be identified and isolated based on their expression of a panel of markers associated with smooth muscle cells, pericytes and endothelial cells. Thus, skeletal stem cell-like populations within bone marrow may share a common perivascular stem cell niche within the microvascular network. To date, the environmental niche that nurtures and maintains the stromal stem cell at different anatomical sites remains poorly understood. However, an understanding of the osteogenic and perivascular niches will inform identification of the key growth factors, matrix constituents and physiological conditions that will enhance the ex vivo amplification and differentiation of osteogenic stem cells to mimic native tissue critical for tissue repair. This review will examine skeletal stem cell biology, the advances in our understanding of the skeletal and perivascular niche and interactions therein and the opportunities to harness that knowledge for musculoskeletal regeneration.
Collapse
Affiliation(s)
- Rahul S Tare
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, UK
| | | | | | | |
Collapse
|
88
|
Gosset M, Berenbaum F, Salvat C, Sautet A, Pigenet A, Tahiri K, Jacques C. Crucial role of visfatin/pre-B cell colony-enhancing factor in matrix degradation and prostaglandin E2 synthesis in chondrocytes: possible influence on osteoarthritis. ACTA ACUST UNITED AC 2008; 58:1399-409. [PMID: 18438860 DOI: 10.1002/art.23431] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Prostaglandin E2 (PGE2) is one of the main catabolic factors involved in osteoarthritis (OA), and metalloproteinases (MMPs) are crucial for cartilage degradation. PGE2 synthesis under inflammatory conditions is catalyzed by cyclooxygenase 2 and microsomal PGE synthase 1 (mPGES-1), whereas NAD+-dependent 15-hydroxy-PG dehydrogenase (15-PGDH) is the key enzyme implicated in PGE2 catabolism. The present study was undertaken to investigate the contribution of visfatin, an adipose tissue-derived hormone, to the pathophysiology of OA, by examining its role in PGE2 synthesis and matrix degradation. METHODS The synthesis of visfatin by human chondrocytes from OA patients, with and without stimulation with interleukin-1beta (IL-1beta) and the role of visfatin in PGE2 synthesis were analyzed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting. The effects of visfatin (1-10 microg/ml) on mPGES-1 and 15-PGDH synthesis, on the subsequent release of PGE2, and on MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, and PG synthesis by primary immature mouse articular chondrocytes were examined by quantitative RT-PCR, immunoblotting, and enzyme-linked immunosorbent assay. Finally, small interfering RNA (siRNA) was used to assess the influence of visfatin on IL-1beta-induced release of PGE2 in immature mouse articular chondrocytes. RESULTS Human OA chondrocytes produced visfatin, and visfatin synthesis was increased by IL-1beta treatment. Visfatin, like IL-1beta, triggered excessive release of PGE2, due to increased mPGES-1 synthesis and decreased 15-PGDH synthesis. Visfatin knockout with siRNA reduced IL-1beta-induced PGE2 overrelease. Visfatin triggered ADAMTS-4 and ADAMTS-5 expression and MMP-3 and MMP-13 synthesis and release, and reduced synthesis of high molecular weight PG by immature mouse articular chondrocytes. CONCLUSION The findings of this study indicate that visfatin has a catabolic function in cartilage and may have an important role in the pathophysiology of OA.
Collapse
Affiliation(s)
- Marjolaine Gosset
- UMR 7079, University Pierre and Marie Curie Paris VI, CNRS, Paris, France
| | | | | | | | | | | | | |
Collapse
|
89
|
Bay-Jensen AC, Andersen TL, Charni-Ben Tabassi N, Kristensen PW, Kjaersgaard-Andersen P, Sandell L, Garnero P, Delaissé JM. Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage. Osteoarthritis Cartilage 2008; 16:615-23. [PMID: 17950629 DOI: 10.1016/j.joca.2007.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 09/01/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate whether type II collagen turnover markers used for osteoarthritis (OA) activity evaluation in body fluids can be detected at the level of specific histological features of OA cartilage tissue, as well as how they relate with each other at this level. METHODS Adjacent sections were obtained from full-depth cartilage biopsies from 32 OA knees. Immunohistochemistry was performed for Helix-II and CTX-II, which are type II collagen fragments originating from the triple helix and the telopeptide region, respectively, and believed to reflect distinct breakdown events, as well as for type IIA N propeptide (PIIANP), a biochemical marker reflecting synthesis of type IIA collagen. RESULTS Helix-II and CTX-II were detected in areas where collagen damage was reported previously, most frequently around chondrocytes, but also frequently in regions not previously investigated such as the margin area and close to subchondral bone, including vascularization sites and bone-cartilage interface. The latter is CTX-II's prevailing position and shows rarely Helix-II. PIIANP co-localized with Helix-II and CTX-II on a limited number of features, mainly in deep zone cartilage. Overall, our analysis highlights clear patterns of association of the markers with specific histological features, and shows that they spread to these features in an ordered way. CONCLUSION Helix-II and CTX-II show to some degree differential selectivity for specific features in cartilage tissue. CTX-II detection close to bone may be relevant to the possible role of subchondral bone in OA. The restricted co-localization of breakdown markers and PIIANP suggests that collagen fragments can result only partially from newly synthesized collagen. Our study strengthens the interest for the question whether combining several markers reflecting different regional cartilage contributions or metabolic processes should allow a broader detection of OA activity.
Collapse
Affiliation(s)
- A-C Bay-Jensen
- Department of Clinical Cell Biology, University of Southern Denmark, Vejle Hospital, Vejle, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Hussein MR, Fathi NA, El-Din AME, Hassan HI, Abdullah F, AL-Hakeem E, Backer EA. Alterations of the CD4+, CD8+ T Cell Subsets, Interleukins-1β, IL-10, IL-17, Tumor Necrosis Factor-α and Soluble Intercellular Adhesion Molecule-1 in Rheumatoid Arthritis and Osteoarthritis: Preliminary Observations. Pathol Oncol Res 2008; 14:321-8. [DOI: 10.1007/s12253-008-9016-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/31/2008] [Indexed: 12/24/2022]
|
91
|
Abstract
Pleiotropin (PTN) is a secreted heparin-binding peptide expressed in mesodermal and neuroectodermal cells during development, but rarely in adult tissues. Although PTN is abundant in fetal or juvenile cartilage, it is undectable in mature cartilage. However, PTN is re-expressed in chondrocytes in early stages of osteoarthritis where it is detectable in situ and in synovial fluids from patients. PTN enhances chondrogenesis by stimulation of extra-cellular matrix synthesis, reduction of degrading matrix metalloproteases and induction of their inhibitors; PTN also slightly reduces pro-inflammatory factors, such as nitric oxide and vascular endothelial growth factor. Furthermore, PTN stimulates chondrocyte clustering and proliferation. Thus, PTN appears to mediate repair and protective processes in osteoarthritic cartilage and appears to be a promising factor to treat osteoarthritis.
Collapse
Affiliation(s)
- Rolf Mentlein
- University of Kiel, Department of Anatomy, Olshausenstrasse 40, 24098 Kiel, Germany.
| |
Collapse
|
92
|
Appleton CTG, Pitelka V, Henry J, Beier F. Global analyses of gene expression in early experimental osteoarthritis. ACTA ACUST UNITED AC 2007; 56:1854-68. [PMID: 17530714 DOI: 10.1002/art.22711] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To analyze genome-wide changes in chondrocyte gene expression in a surgically induced model of early osteoarthritis (OA) in rats, to assess the similarity of this model to human OA, and to identify genes and mechanisms leading to OA pathogenesis. METHODS OA was surgically induced in 5 rats by anterior cruciate ligament transection and partial medial meniscectomy. Sham surgery was performed in 5 additional animals, which were used as controls. Both groups underwent 4 weeks of forced mobilization, 3 times per week. RNA was extracted directly from articular chondrocytes in the OA (operated), contralateral, and sham-operated knees. Affymetrix GeneChip expression arrays were used to assess genome-wide changes in gene expression. Expression patterns of selected dysregulated genes, including Col2a1, Mmp13, Adamts5, Ctsc, Ptges, and Cxcr4, were validated by real-time polymerase chain reaction, immunofluorescence, or immunohistochemistry 2, 4, and 8 weeks after surgery. RESULTS After normalization, comparison of OA and sham-operated samples showed 1,619 differentially expressed probe sets with changes in their levels of expression > or = 1.5-fold, 722 with changes > or = 2-fold, 135 with changes > or = 4-fold, and 20 with changes of 8-fold. Dysregulated genes known to be involved in human OA included Mmp13, Adamts5, and Ptgs2, among others. Several dysregulated genes (e.g., Reln, Phex, and Ltbp2) had been identified in our earlier microarray study of hypertrophic chondrocyte differentiation. Other genes involved in cytokine and chemokine signaling, including Cxcr4 and Ccl2, were identified. Changes in gene expression were also observed in the contralateral knee, validating the sham operation as the appropriate control. CONCLUSION Our results demonstrate that the animal model mimics gene expression changes seen in human OA, supporting the relevance of newly identified genes and pathways to early human OA. We propose new avenues for OA pathogenesis research and potential targets for novel OA treatments, including cathepsins and cytokine, chemokine, and growth factor signaling pathways, in addition to factors controlling the progression of chondrocyte differentiation.
Collapse
MESH Headings
- ADAM Proteins/genetics
- ADAM Proteins/metabolism
- ADAMTS5 Protein
- Animals
- Anterior Cruciate Ligament/surgery
- Arthritis, Experimental/etiology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/physiopathology
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Collagen Type II/genetics
- Collagen Type II/metabolism
- Disease Models, Animal
- Gene Expression Regulation/physiology
- Male
- Matrix Metalloproteinase 13/genetics
- Matrix Metalloproteinase 13/metabolism
- Menisci, Tibial/surgery
- Oligonucleotide Array Sequence Analysis
- Osteoarthritis/etiology
- Osteoarthritis/genetics
- Osteoarthritis/physiopathology
- Prostaglandin-E Synthases
- Prostaglandin-Endoperoxide Synthases/genetics
- Prostaglandin-Endoperoxide Synthases/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Reelin Protein
Collapse
Affiliation(s)
- C T G Appleton
- Canadian Institutes of Health Research, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
93
|
Appleton CTG, McErlain DD, Pitelka V, Schwartz N, Bernier SM, Henry JL, Holdsworth DW, Beier F. Forced mobilization accelerates pathogenesis: characterization of a preclinical surgical model of osteoarthritis. Arthritis Res Ther 2007; 9:R13. [PMID: 17284317 PMCID: PMC1860072 DOI: 10.1186/ar2120] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/17/2007] [Accepted: 02/06/2007] [Indexed: 01/15/2023] Open
Abstract
Preclinical osteoarthritis (OA) models are often employed in studies investigating disease-modifying OA drugs (DMOADs). In this study we present a comprehensive, longitudinal evaluation of OA pathogenesis in a rat model of OA, including histologic and biochemical analyses of articular cartilage degradation and assessment of subchondral bone sclerosis. Male Sprague-Dawley rats underwent joint destabilization surgery by anterior cruciate ligament transection and partial medial meniscectomy. The contralateral joint was evaluated as a secondary treatment, and sham surgery was performed in a separate group of animals (controls). Furthermore, the effects of walking on a rotating cylinder (to force mobilization of the joint) on OA pathogenesis were assessed. Destabilization-induced OA was investigated at several time points up to 20 weeks after surgery using Osteoarthritis Research Society International histopathology scores, in vivo micro-computed tomography (CT) volumetric bone mineral density analysis, and biochemical analysis of type II collagen breakdown using the CTX II biomarker. Expression of hypertrophic chondrocyte markers was also assessed in articular cartilage. Cartilage degradation, subchondral changes, and subchondral bone loss were observed as early as 2 weeks after surgery, with considerable correlation to that seen in human OA. We found excellent correlation between histologic changes and micro-CT analysis of underlying bone, which reflected properties of human OA, and identified additional molecular changes that enhance our understanding of OA pathogenesis. Interestingly, forced mobilization exercise accelerated OA progression. Minor OA activity was also observed in the contralateral joint, including proteoglycan loss. Finally, we observed increased chondrocyte hypertrophy during pathogenesis. We conclude that forced mobilization accelerates OA damage in the destabilized joint. This surgical model of OA with forced mobilization is suitable for longitudinal preclinical studies, and it is well adapted for investigation of both early and late stages of OA. The time course of OA progression can be modulated through the use of forced mobilization.
Collapse
Affiliation(s)
- C Thomas G Appleton
- CIHR Group in Skeletal Development & Remodeling, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - David D McErlain
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5C1, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Vasek Pitelka
- CIHR Group in Skeletal Development & Remodeling, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Neil Schwartz
- Micheal G DeGroote Institute for Pain Research & Care, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Suzanne M Bernier
- CIHR Group in Skeletal Development & Remodeling, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - James L Henry
- Micheal G DeGroote Institute for Pain Research & Care, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - David W Holdsworth
- Imaging Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5C1, Canada
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Diagnostic Radiology & Nuclear Medicine, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Frank Beier
- CIHR Group in Skeletal Development & Remodeling, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|