51
|
Pan J, Ruan W, Qin M, Long Y, Wan T, Yu K, Zhai Y, Wu C, Xu Y. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep 2018; 8:1117. [PMID: 29348670 PMCID: PMC5773564 DOI: 10.1038/s41598-018-19463-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Hyperactivity of signal transducer and activity of transcription 3 (STAT3) plays a crucial role in melanoma invasion and metastasis. Gene therapy applying siRNA targeting STAT3 is a potential therapeutic strategy for melanoma. In this article, we first fabricated safe and novel dissolving microneedles (MNs) for topical application of STAT3 siRNA to enhance the skin penetration of siRNA and used polyethylenimine (PEI, 25 kDa) as carrier to improve cellular uptake of siRNA. The results showed that MNs can effectively penetrate skin and rapidly dissolve in the skin. In vitro B16F10 cell experiments presented that STAT3 siRNA PEI complex can enhance cellular uptake and transfection of siRNA, correspondingly enhance gene silencing efficiency and inhibit tumor cells growth. In vivo experiments indicated that topical application of STAT3 siRNA PEI complex delivered by dissolving MNs into skin can effectively suppress the development of melanoma through silencing STAT3 gene, and the inhibition effect is dose-dependent. STAT3 siRNA delivery via dissolving MNs is a promising approach for skin melanoma treatment with targeting inhibition efficacy and minimal adverse effects.
Collapse
Affiliation(s)
- Jingtong Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wenyi Ruan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Mengyao Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yueming Long
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tao Wan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaiyue Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuanhao Zhai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
52
|
Yang Y, Fang S. Small non-coding RNAs-based bone regulation and targeting therapeutic strategies. Mol Cell Endocrinol 2017; 456:16-35. [PMID: 27888003 PMCID: PMC7116989 DOI: 10.1016/j.mce.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/06/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023]
Abstract
Small non-coding RNAs, which are 20-25 nucleotide ribonucleic acids, have emerged as an important transformation in the biological evolution over almost three decades. microRNAs (miRNAs) and short interfering RNAs (siRNAs) are two significant categories of the small RNAs that exert important effects on bone endocrinology and skeletology. Therefore, clarifying the expression and function of these important molecules in bone endocrine physiology and pathology is of great significance for improving their potential therapeutic value for metabolism-associated bone diseases. In the present review, we highlight the recent advances made in understanding the function and molecular mechanism of these small non-coding RNAs in bone metabolism, especially their potentially therapeutic values in bone-related diseases.
Collapse
Affiliation(s)
- Ying Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China.
| |
Collapse
|
53
|
Sharma B, Crist RM, Adiseshaiah PP. Nanotechnology as a Delivery Tool for Precision Cancer Therapies. AAPS JOURNAL 2017; 19:1632-1642. [DOI: 10.1208/s12248-017-0152-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/19/2017] [Indexed: 01/20/2023]
|
54
|
The multiple therapeutic applications of miRNAs for bone regenerative medicine. Drug Discov Today 2017; 22:1084-1091. [DOI: 10.1016/j.drudis.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
|
55
|
Chen HY, Albert K, Wen CC, Hsieh PY, Chen SY, Huang NC, Lo SC, Chen JK, Hsu HY. Multifunctional silver nanocluster-hybrid oligonucleotide vehicle for cell imaging and microRNA-targeted gene silencing. Colloids Surf B Biointerfaces 2017; 152:423-431. [PMID: 28171795 DOI: 10.1016/j.colsurfb.2017.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/17/2022]
Abstract
Novel therapeutics is urgently needed to prevent cancer-related deaths. MicroRNAs that act as tumor suppressors have been recognized as a next-generation tumor therapy, and the restoration of tumor-suppressive microRNAs using microRNA replacements or mimics may be a less toxic, more effective strategy due to fewer off-target effects. Here, we designed the novel multifunctional oligonucleotide nanocarrier complex composed of a tumor-targeting aptamer sequence specific to mucin 1 (MUC1), poly-cytosine region for fluorescent silver nanocluster (AgNC) synthesis, and complimentary sequence for microRNA miR-34a loading. MiR-34a was employed because of its therapeutic effect of inhibiting oncogene expression and inducing apoptosis in carcinomas. By monitoring the intrinsic fluorescence of AgNC, it was clearly shown that the constructed complex (MUC1-AgNCm-miR-34a) enters MCF-7 cells. To evaluate the efficacy of this nanocarrier for microRNA delivery, we investigated the gene and protein expression levels of downstream miR-34a targets (BCL-2, CDK6, and CCND1) by quantitative PCR and western blotting, respectively, and the results indicated their effective inhibition by miR-34a. This novel multifunctional AgNC-based nanocarrier can aid in improving the efficacy of breast cancer theranostics.
Collapse
Affiliation(s)
- Hau-Yun Chen
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Karunya Albert
- Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Cheng-Che Wen
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Pei-Ying Hsieh
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
| | - Sih-Yu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Nei-Chung Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Shen-Chuan Lo
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hsin-Yun Hsu
- Department of Applied Chemistry, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan; Institute of Molecular Science, National Chiao-Tung University, No. 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan.
| |
Collapse
|
56
|
Frère A, Baroni A, Hendrick E, Delvigne AS, Orange F, Peulen O, Dakwar GR, Diricq J, Dubois P, Evrard B, Remaut K, Braeckmans K, De Smedt SC, Laloy J, Dogné JM, Feller G, Mespouille L, Mottet D, Piel G. PEGylated and Functionalized Aliphatic Polycarbonate Polyplex Nanoparticles for Intravenous Administration of HDAC5 siRNA in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2181-2195. [PMID: 28029254 DOI: 10.1021/acsami.6b15064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Guanidine and morpholine functionalized aliphatic polycarbonate polymers are able to deliver efficiently histone deacetylase 5 (HDAC5) siRNA into the cytoplasm of cancer cells in vitro leading to a decrease of cell proliferation were previously developed. To allow these biodegradable and biocompatible polyplex nanoparticles to overcome the extracellular barriers and be effective in vivo after an intravenous injection, polyethylene glycol chains (PEG750 or PEG2000) were grafted on the polymer structure. These nanoparticles showed an average size of about 150 nm and a slightly positive ζ-potential with complete siRNA complexation. Behavior of PEGylated and non-PEGylated polyplexes were investigated in the presence of serum, in terms of siRNA complexation (fluorescence correlation spectroscopy), size (dynamic light scattering and single-particle tracking), interaction with proteins (isothermal titration calorimetry) and cellular uptake. Surprisingly, both PEGylated and non-PEGylated formulations presented relatively good behavior in the presence of fetal bovine serum (FBS). Hemocompatibility tests showed no effect of these polyplexes on hemolysis and coagulation. In vivo biodistribution in mice was performed and showed a better siRNA accumulation at the tumor site for PEGylated polyplexes. However, cellular uptake in protein-rich conditions showed that PEGylated polyplex lost their ability to interact with biological membranes and enter into cells, showing the importance to perform in vitro investigations in physiological conditions closed to in vivo situation. In vitro, the efficiency of PEGylated nanoparticles decreases compared to non-PEGylated particles, leading to the loss of the antiproliferative effect on cancer cells.
Collapse
Affiliation(s)
- Antoine Frère
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB) - Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Avenue Hippocrate 15, 4000 Liege, Belgium
- Protein Signalisation and Interaction (PSI) - GIGA, University of Liege , Avenue de l'Hopital 11, 4000 Liege, Belgium
| | - Alexandra Baroni
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Health Sciences and Technology, University of Mons , Place du Parc 20, 7000 Mons, Belgium
| | - Elodie Hendrick
- Protein Signalisation and Interaction (PSI) - GIGA, University of Liege , Avenue de l'Hopital 11, 4000 Liege, Belgium
| | - Anne-Sophie Delvigne
- Namur Nanosafety Center (NNC), NAmur Research Institute for LIfe Sciences (NARILIS), Department of Pharmacy, University of Namur , Rue de Bruxelles 61, 5000 Namur, Belgium
| | - François Orange
- Centre Commun de Microscopie Appliquée, University of Nice-Sophia Antipolis , Parc Valrose, 06108 Nice, France
| | - Olivier Peulen
- Metastasis Research Laboratory (MRL) - GIGA, University of Liege , Avenue Hippocrate 15, 4000 Liege, Belgium
| | - George R Dakwar
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jérôme Diricq
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Health Sciences and Technology, University of Mons , Place du Parc 20, 7000 Mons, Belgium
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Health Sciences and Technology, University of Mons , Place du Parc 20, 7000 Mons, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB) - Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Julie Laloy
- Namur Nanosafety Center (NNC), NAmur Research Institute for LIfe Sciences (NARILIS), Department of Pharmacy, University of Namur , Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Jean-Michel Dogné
- Namur Nanosafety Center (NNC), NAmur Research Institute for LIfe Sciences (NARILIS), Department of Pharmacy, University of Namur , Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Georges Feller
- Laboratory of Biochemistry, Centre for Protein Engineering (CIP), University of Liège , Allée du 6 Août 13, 4000 Liège, Belgium
| | - Laetitia Mespouille
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Health Sciences and Technology, University of Mons , Place du Parc 20, 7000 Mons, Belgium
| | - Denis Mottet
- Protein Signalisation and Interaction (PSI) - GIGA, University of Liege , Avenue de l'Hopital 11, 4000 Liege, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy (LTPB) - Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Avenue Hippocrate 15, 4000 Liege, Belgium
| |
Collapse
|
57
|
Goldshtein M, Forti E, Ruvinov E, Cohen S. Mechanisms of cellular uptake and endosomal escape of calcium-siRNA nanocomplexes. Int J Pharm 2016; 515:46-56. [DOI: 10.1016/j.ijpharm.2016.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/27/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
|
58
|
Gao J, Li W, Guo Y, Feng SS. Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells. Nanomedicine (Lond) 2016; 11:3261-3282. [PMID: 27854161 DOI: 10.2217/nnm-2016-0261] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are original cancer cells that are of characteristics associated with normal stem cells. CSCs are toughest against various treatments and thus responsible for cancer metastasis and recurrence. Therefore, development of specific and effective treatment of CSCs plays a key role in improving survival and life quality of cancer patients, especially those in the metastatic stage. Nanomedicine strategies, which include prodrugs, micelles, liposomes and nanoparticles of biodegradable polymers, could substantially improve the therapeutic index of conventional therapeutics due to its manner of sustained, controlled and targeted delivery of high transportation efficiency across the cell membrane and low elimination by intracellular autophagy, and thus provide a practical solution to solve the problem encountered in CSCs treatment. This review gives briefly the latest information to summarize the concept, strategies, mechanisms and current status as well as future promises of nanomedicine strategies for treatment of CSCs.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmaceutical Sciences, School of Pharmacy, the Second Military Medical University, 325 Guohe Road, Shanghai 200433, China.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Li
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China
| | - Si-Shen Feng
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, China.,Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 02-11, 4 Engineering Drive 4, Singapore 117576, Singapore.,Suzhou NanoStar Biopharm Inc. Ltd, BioBay, Bld B2, Unit 604, 218 Xing-Hu Street, Suzhou Industrial Park, Suzhou 215123, China
| |
Collapse
|
59
|
Ni R, Zhou J, Hossain N, Chau Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv Drug Deliv Rev 2016; 106:3-26. [PMID: 27473931 DOI: 10.1016/j.addr.2016.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
Targeted delivery of nucleic acids into disease sites of human body has been attempted for decades, but both viral and non-viral vectors are yet to meet our expectations. Safety concerns and low delivery efficiency are the main limitations of viral and non-viral vectors, respectively. The structure of viruses is both ordered and dynamic, and is believed to be the key for effective transfection. Detailed understanding of the physical properties of viruses, their interaction with cellular components, and responses towards cellular environments leading to transfection would inspire the development of safe and effective non-viral vectors. To this goal, this review systematically summarizes distinctive features of viruses that are implied for efficient nucleic acid delivery but not yet fully explored in current non-viral vectors. The assembly and disassembly of viral structures, presentation of viral ligands, and the subcellular targeting of viruses are emphasized. Moreover, we describe the current development of cationic material-based viral mimicry (CVM) and structural viral mimicry (SVM) in these aspects. In light of the discrepancy, we identify future opportunities for rational design of viral mimics for the efficient delivery of DNA and RNA.
Collapse
Affiliation(s)
- Rong Ni
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junli Zhou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naushad Hossain
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
60
|
Landesman-Milo D, Ramishetti S, Peer D. Nanomedicine as an emerging platform for metastatic lung cancer therapy. Cancer Metastasis Rev 2016; 34:291-301. [PMID: 25948376 DOI: 10.1007/s10555-015-9554-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metastatic lung cancer is one of the most common cancers leading to mortality worldwide. Current treatment includes chemo- and pathway-dependent therapy aiming at blocking the spread and proliferation of these metastatic lesions. Nanomedicine is an emerging multidisciplinary field that offers unprecedented access to living cells and promises the state of the art in cancer detection and treatment. Development of nanomedicines as drug carriers (nanocarriers) that target cancer for therapy draws upon principles in the fields of chemistry, medicine, physics, biology, and engineering. Given the zealous activity in the field as demonstrated by more than 30 nanocarriers already approved for clinical use and given the promise of recent clinical results in various studies, nanocarrier-based strategies are anticipated to soon have a profound impact on cancer medicine and human health. Herein, we will detail the latest innovations in therapeutic nanomedicine with examples from lipid-based nanoparticles and polymer-based approaches, which are engineered to deliver anticancer drugs to metastatic lung cells. Emphasis will be placed on the latest and most attractive delivery platforms, which are developed specifically to target lung metastatic tumors. These novel nanomedicines may open new avenues for therapeutic intervention carrying new class of drugs such as RNAi and mRNA and the ability to edit the genome using the CRISPER/Cas9 system. Ultimately, these strategies might become a new therapeutic modality for advanced-stage lung cancer.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | |
Collapse
|
61
|
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use.
Collapse
Affiliation(s)
- Jian Guo
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Xiaojing Jiang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
62
|
Golan M, Feinshtein V, David A. Conjugates of HA2 with octaarginine-grafted HPMA copolymer offer effective siRNA delivery and gene silencing in cancer cells. Eur J Pharm Biopharm 2016; 109:103-112. [PMID: 27702685 DOI: 10.1016/j.ejpb.2016.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 01/20/2023]
Abstract
The key for successful gene silencing is to design a safe and efficient siRNA delivery system for the transfer of therapeutic nucleic acids into the target cells. Here, we describe the design of hydrophilic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer displaying multiple copies of octaarginine (R8) and its use in promoting the effective delivery of small interfering RNA (siRNA) molecules intracellularly. Fluorescein-5-isothiocyanate (FITC)-labeled HPMA copolymer-bound R8 (P-R8-FITC) was synthesized with increasing R8 molar ratios (4-9.5mol-%) to define the optimal R8 content that allowed the polymer to serve both as a siRNA-binding domain and as an intracellular transduction moiety mediating improved cellular delivery. A subunit of the influenza virus hemagglutinin (HA2), known for its ability to disrupt endosomal membranes, was further conjugated to P-R8-FITC copolymer to promote endosomal escape. Of the different P-(R8)-FITC conjugates considered, only that polymer containing the highest mol-% of R8 (P-(R8)9.5-FITC) was able to encapsulate siRNA molecules into nano-sized polyion complexes (PICs) presenting positive surface charge, low in vitro cytotoxicity, and high serum stability. P-(R8)9.5-FITC/cy5-siRNA complexes can efficiently deliver siRNA molecules into cells, while naked siRNA or siRNA encapsulated within polymers with lower R8mol-% were unable to transfect the same cells. Conjugation of HA2 fusogenic peptide to P-(R8)-FITC significantly decreased the oncogenic RAC1 mRNA levels in cancer cells. This indicates that P-(R8)-(HA2)-FITC can deliver siRNA into target cells, and that the siRNA can reach the perinuclear region where it interacts with the RNA-induced silencing complex.
Collapse
Affiliation(s)
- Moran Golan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Valeria Feinshtein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
63
|
Li L, Song L, Yang X, Li X, Wu Y, He T, Wang N, Yang S, Zeng Y, Yang L, Wu Q, Wei Y, Gong C. Multifunctional "core-shell" nanoparticles-based gene delivery for treatment of aggressive melanoma. Biomaterials 2016; 111:124-137. [PMID: 27728812 DOI: 10.1016/j.biomaterials.2016.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023]
Abstract
Gene therapy may be a promising and powerful strategy for cancer treatment, but efficient targeted gene delivery in vivo has so far remained challenging. Here, we developed a well-tailored and versatile "core-shell" ternary system (RRPHC) of systemic gene delivery for treatment of aggressive melanoma. The capsid-like "shell" of this system was engineered to mediate depth penetration to tissues, simultaneously target the CD44 receptors and integrin αvβ3 receptors overexpressed on neovasculature and most malignant tumor cells, while the "core" was responsible for nucleus-targeting and effective transfection. The RRPHC ternary complexes enhanced cellular uptake via dual receptor-mediated endocytosis, improved the endosomal escape and significantly promoted the plasmid penetration into the nucleus. Notably, RRPHC ternary complexes exhibited ultra-high gene transfection efficiency (∼100% in B16F10 cells), which surpassed that of commercial transfection agents, PEI 25K, Lipofectamine 2000 and even Lipofectamine 3000. Especially, RRPHC ternary complexes showed excellent serum resistance and remained high gene transfection efficacy (∼100%) even in medium containing 30% serum. In vivo biodistribution imaging demonstrated RRPHC ternary complexes possessed much more accumulation and extensive distribution throughout tumor regions while minimal location in other organs. Furthermore, systemic delivery of the pro-apoptotic mTRAIL gene to tumor xenografts by RRPHC ternary complexes resulted in remarkable inhibition of melanoma, with no systemic toxicity. These results demonstrated that the designed novel RRPHC ternary complexes might be a promising gene delivery system for targeted cancer therapy in vivo.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Linjiang Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Xi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Xia Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Yuzhe Wu
- College of Materials, Xiamen University, Xiamen 361005, PR China
| | - Tao He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Suleixin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Yan Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Li Yang
- Carl Zeiss (Shanghai) Co., Ltd., Chengdu Branch, PR China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
64
|
Joo J, Kwon EJ, Kang J, Skalak M, Anglin EJ, Mann AP, Ruoslahti E, Bhatia SN, Sailor MJ. Porous silicon-graphene oxide core-shell nanoparticles for targeted delivery of siRNA to the injured brain. NANOSCALE HORIZONS 2016; 1:407-414. [PMID: 29732165 PMCID: PMC5935492 DOI: 10.1039/c6nh00082g] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report the synthesis, characterization, and assessment of a nanoparticle-based RNAi delivery platform that protects siRNA payloads against nuclease-induced degradation and efficiently delivers them to target cells. The nanocarrier is based on biodegradable mesoporous silicon nanoparticles (pSiNPs), where the voids of the nanoparticles are loaded with siRNA and the nanoparticles are encapsulated with graphene oxide nanosheets (GO-pSiNPs). The graphene oxide encapsulant delays release of the oligonucleotide payloads in vitro by a factor of 3. When conjugated to a targeting peptide derived from the rabies virus glycoprotein (RVG), the nanoparticles show 2-fold greater cellular uptake and gene silencing. Intravenous administration of the nanoparticles into brain-injured mice results in substantial accumulation specifically at the site of injury.
Collapse
Affiliation(s)
- Jinmyoung Joo
- Department of Chemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ester J Kwon
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinyoung Kang
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Skalak
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily J Anglin
- Department of Chemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aman P Mann
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- Center for Nanomedicine and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sangeeta N Bhatia
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael J Sailor
- Department of Chemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
65
|
Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity. Sci Rep 2016; 6:30430. [PMID: 27457182 PMCID: PMC4960650 DOI: 10.1038/srep30430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/01/2016] [Indexed: 11/08/2022] Open
Abstract
Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.
Collapse
|
66
|
Xiao B, Ma L, Merlin D. Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy. Expert Opin Drug Deliv 2016; 14:65-73. [PMID: 27337289 DOI: 10.1080/17425247.2016.1205583] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cancer is the leading cause of death worldwide. Current cancer treatments in the clinic mainly include chemotherapy, radiotherapy and surgery, with chemotherapy being the most common. Areas covered: Cancer treatments based on the single 'magic-bullet' concept are often associated with limited therapeutic efficacy, unwanted adverse effects, and drug resistance. The combination of multiple drugs is a promising strategy for effective cancer treatment due to the synergistic or additive effects. Small interfering RNA (siRNA) has the ability to knock down the expression of carcinogenic genes or drug efflux transporter genes, paving the way for cancer treatment. Treatment with both a chemotherapeutic agent and siRNA based on nanoparticle (NP)-mediated co-delivery is a promising approach for combination cancer therapy. Expert opinion: The combination of chemotherapeutic agents and siRNAs for cancer treatment offers the potential to enhance therapeutic efficacy, decrease side effects, and overcome drug resistance. Co-delivery of chemical drug and siRNA in the same NP would be much more effective in cancer therapy than application of chemical agent or siRNA alone. With the development of material science, NPs have come to be the most widely used platform for co-delivery of chemotherapeutic drugs and siRNAs.
Collapse
Affiliation(s)
- Bo Xiao
- a Institute for Clean Energy and Advanced Materials , Faculty for Materials and Energy, Southwest University , Chongqing , P. R. China.,b Center for Diagnostics and Therapeutics, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA
| | - Lijun Ma
- a Institute for Clean Energy and Advanced Materials , Faculty for Materials and Energy, Southwest University , Chongqing , P. R. China
| | - Didier Merlin
- b Center for Diagnostics and Therapeutics, Institute for Biomedical Sciences , Georgia State University , Atlanta , GA , USA.,c Veterans Affairs Medical Center , Decatur , GA , USA
| |
Collapse
|
67
|
Abstract
Molecular medicine opens into a space of novel specific therapeutic agents: intracellularly active drugs such as peptides, proteins or nucleic acids, which are not able to cross cell membranes and enter the intracellular space on their own. Through the development of cell-targeted shuttles for specific delivery, this restriction in delivery has the potential to be converted into an advantage. On the one hand, due to the multiple extra- and intracellular barriers, such carrier systems need to be multifunctional. On the other hand, they must be precise and reproducibly manufactured due to pharmaceutical reasons. Here we review the design of precise sequence-defined delivery carriers, including solid-phase synthesized peptides and nonpeptidic oligomers, or nucleotide-based carriers such as aptamers and origami nanoboxes.
Collapse
|
68
|
Ramishetti S, Landesman-Milo D, Peer D. Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles. J Drug Target 2016; 24:780-786. [PMID: 27030014 DOI: 10.3109/1061186x.2016.1172587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Small interfering RNAs (siRNAs) therapeutics has advanced into clinical trials for liver diseases and solid tumors, but remain a challenge for manipulating leukocytes fate due to lack of specificity and safety issues. Leukocytes ingest pathogens and defend the body through a complex network. They are also involved in the pathogeneses of inflammation, viral infection, autoimmunity and cancers. Modulating gene expression in leukocytes using siRNAs holds great promise to treat leukocyte-mediated diseases. Leukocytes are notoriously hard to transduce with siRNAs and are spread throughout the body often located deep in tissues, therefore developing an efficient systemic delivery strategy is still a challenge. Here, we discuss recent advances in siRNA delivery to leukocyte subsets such as macrophages, monocytes, dendritic cells and lymphocytes. We focus mainly on lipid-based nanoparticles (LNPs) comprised of new generation of ionizable lipids and their ability to deliver siRNA to primary or malignant leukocytes in a targeted manner. Special emphasis is made on LNPs targeted to subsets of leukocytes and we detail a novel microfluidic mixing technology that could aid in changing the landscape of process development of LNPs from a lab tool to a potential novel therapeutic modality.
Collapse
Affiliation(s)
- Srinivas Ramishetti
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| | - Dalit Landesman-Milo
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| | - Dan Peer
- a Laboratory of NanoMedicine, Department of Cell Research and Immunology , George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv , Israel.,b Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering , Tel Aviv University , Tel Aviv , Israel.,c Center for Nanoscience and Nanotechnology , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
69
|
Forti E, Kryukov O, Elovic E, Goldshtein M, Korin E, Margolis G, Felder S, Ruvinov E, Cohen S. A bridge to silencing: Co-assembling anionic nanoparticles of siRNA and hyaluronan sulfate via calcium ion bridges. J Control Release 2016; 232:215-27. [PMID: 27117458 DOI: 10.1016/j.jconrel.2016.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 11/29/2022]
Abstract
Therapeutic implementation of RNA interference (RNAi) through delivery of short interfering RNA (siRNA) is still facing several critical hurdles, which mostly can be solved through the use of an efficient delivery system. We hereby introduce anionic siRNA nanoparticles (NPs) co-assembled by the electrostatic interactions of the semi-synthetic polysaccharide hyaluronan-sulfate (HAS), with siRNA, mediated by calcium ion bridges. The NPs have an average size of 130nm and a mild (-10mV) negative surface charge. Transmission electron microscopy (TEM) using gold-labeled components and X-ray photoelectron spectroscopy (XPS) demonstrated the spatial organization of siRNA molecules in the particle core, surrounded by a layer of HAS. The anionic NPs efficiently encapsulated siRNA, were stable in physiological-relevant environments and were cytocompatible, not affecting cell viability or homeostasis. Efficient cellular uptake of the anionic siRNA NPs, associated with potent gene silencing (>80%), was observed across multiple cell types, including murine primary peritoneal macrophages and human hepatocellular carcinoma cells. In a clinically-relevant model of acute inflammatory response in IL-6-stimulated human hepatocytes, STAT3 silencing induced by HAS-Ca(2+)-siRNA NPs resulted in marked decrease in the total and activated STAT3 protein levels, as well as in the expression levels of downstream acute phase response genes. Collectively, anionic NPs prove to be an efficient and cytocompatible delivery system for siRNA.
Collapse
Affiliation(s)
- Efrat Forti
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Olga Kryukov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Edan Elovic
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matan Goldshtein
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Efrat Korin
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Margolis
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shani Felder
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Emil Ruvinov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
70
|
Golan M, Feinshtein V, Polyak D, Scomparin A, Satchi-Fainaro R, David A. Inhibition of Gene Expression and Cancer Cell Migration by CD44v3/6-Targeted Polyion Complexes. Bioconjug Chem 2016; 27:947-60. [DOI: 10.1021/acs.bioconjchem.6b00020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Dina Polyak
- Department
of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anna Scomparin
- Department
of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ronit Satchi-Fainaro
- Department
of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | | |
Collapse
|
71
|
Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1511-22. [PMID: 27013131 PMCID: PMC4949379 DOI: 10.1016/j.nano.2016.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/28/2016] [Accepted: 02/14/2016] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) directly regulate gene expression at a post-transcriptional level and represent an attractive therapeutic target for a wide range of diseases. Here, we report a novel strategy for delivering miRNAs to endothelial cells (ECs) to regulate angiogenesis, using polymer functionalized carbon nanotubes (CNTs). CNTs were coated with two different polymers, polyethyleneimine (PEI) or polyamidoamine dendrimer (PAMAM), followed by conjugation of miR-503 oligonucleotides as recognized regulators of angiogenesis. We demonstrated a reduced toxicity for both polymer-coated CNTs, compared with pristine CNTs or polymers alone. Moreover, polymer-coated CNT stabilized miR-503 oligonucleotides and allowed their efficient delivery to ECs. The functionality of PAMAM-CNT-miR-503 complexes was further demonstrated in ECs through regulation of target genes, cell proliferation and angiogenic sprouting and in a mouse model of angiogenesis. This comprehensive series of experiments demonstrates that the use of polyamine-functionalized CNTs to deliver miRNAs is a novel and effective means to regulate angiogenesis.
Collapse
|
72
|
|
73
|
Landesman-Milo D, Peer D. Transforming Nanomedicines From Lab Scale Production to Novel Clinical Modality. Bioconjug Chem 2016; 27:855-62. [PMID: 26734836 DOI: 10.1021/acs.bioconjchem.5b00607] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of nanoparticles as anticancer drug carriers has been studied for over 50 years. These nanoparticles that can carry drugs are now termed "nanomedicines". Since the approval of the first FDA "nanodrug", DOXIL in 1995, tremendous efforts have been made to develop hundreds of nanomedicines based on different materials. The development of drug nanocarriers (NCs) for cancer therapy is especially challenging and requires multidisciplinary approach. Not only is the translation from a lab scale production of the NCs to clinical scale a challenge, but tumor biology and its unique physiology also possess challenges that need to be overcome with cleverer approaches. Yet, with all the efforts made to develop new strategies to deliver drugs (including small molecules and biologics) for cancer therapy, the number of new NCs that are reaching clinical trials is extremely low. Here we discuss the reasons most of the NCs loaded with anticancer drugs are not likely to reach the clinic and emphasize the importance of understanding tumor physiology and heterogeneity, the use of predictive animal models, and the importance of sharing data as key denominators for potential successful translation of NCs from a bench scale into clinical modality for cancer care.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
74
|
Vizirianakis IS, Mystridis GA, Avgoustakis K, Fatouros DG, Spanakis M. Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review). Oncol Rep 2016; 35:1891-904. [PMID: 26781205 DOI: 10.3892/or.2016.4575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 11/05/2022] Open
Abstract
The existing tumor heterogeneity and the complexity of cancer cell biology critically demand powerful translational tools with which to support interdisciplinary efforts aiming to advance personalized cancer medicine decisions in drug development and clinical practice. The development of physiologically based pharmacokinetic (PBPK) models to predict the effects of drugs in the body facilitates the clinical translation of genomic knowledge and the implementation of in vivo pharmacology experience with pharmacogenomics. Such a direction unequivocally empowers our capacity to also make personalized drug dosage scheme decisions for drugs, including molecularly targeted agents and innovative nanoformulations, i.e. in establishing pharmacotyping in prescription. In this way, the applicability of PBPK models to guide individualized cancer therapeutic decisions of broad clinical utility in nanomedicine in real-time and in a cost-affordable manner will be discussed. The latter will be presented by emphasizing the need for combined efforts within the scientific borderlines of genomics with nanotechnology to ensure major benefits and productivity for nanomedicine and personalized medicine interventions.
Collapse
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR‑54124, Greece
| | - George A Mystridis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR‑54124, Greece
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Patras, Patras GR-26504, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Marios Spanakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Crete, Greece
| |
Collapse
|
75
|
Singh MS, Peer D. RNA nanomedicines: the next generation drugs? Curr Opin Biotechnol 2016; 39:28-34. [PMID: 26773301 DOI: 10.1016/j.copbio.2015.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/19/2015] [Indexed: 02/08/2023]
Abstract
RNA therapeutics could represent the next generation personalized medicine. The variety of RNA molecules that can inhibit the expression of any mRNA using, for example, RNA interference (RNAi) strategies, or increase the expression of a given protein using modified mRNA together with new gene editing strategies open new avenues for manipulating the fate of diseased cells while leaving healthy cells untouched. In addition, these therapeutic RNA molecules can maximize the treatment of diseases and minimize its adverse effects. Yet, the promise of RNA therapeutics is hindered by the lack of efficient delivery strategies to selectively target these molecules into specific cells. Herein, we will focus on the challenges and opportunities of the delivery of therapeutic RNAi molecules into cancer cells with special emphasis on solid tumors. Solid tumors represent more than 80 percent of cancers and some are very challenging to treat, not merely due to physiological barriers but also since the tumor microenvironment (TME) is a complex milieu of accessory cells besides the cancerous cells. In this review, we will highlight various limiting factors to successful delivery, current clinical achievements and future outlook focusing on RNAi therapeutics to the TME.
Collapse
Affiliation(s)
- Manu Smriti Singh
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
76
|
Wolfram J, Shen H, Ferrari M. Multistage vector (MSV) therapeutics. J Control Release 2015; 219:406-415. [PMID: 26264836 PMCID: PMC4656100 DOI: 10.1016/j.jconrel.2015.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Abstract
One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers.
Collapse
Affiliation(s)
- Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
77
|
Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med Chem 2015; 7:2221-42. [PMID: 26510815 DOI: 10.4155/fmc.15.144] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oligonucleotide therapeutics have the potential to become a third pillar of drug development after small molecules and protein therapeutics. However, the three approved oligonucleotide drugs over the past 17 years have not proven to be highly successful in a commercial sense. These trailblazer drugs have nonetheless laid the foundations for entire classes of drug candidates to follow. This review will examine further advances in chemistry that are earlier in the pipeline of oligonucleotide drug candidates. Finally, we consider the possible effect of delivery systems that may provide extra footholds to improve the potency and specificity of oligonucleotide drugs. Our overview focuses on strategies to imbue antisense oligonucleotides with more drug-like properties and their applicability to other nucleic acid therapeutics.
Collapse
|
78
|
siRNA Versus miRNA as Therapeutics for Gene Silencing. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e252. [PMID: 26372022 PMCID: PMC4877448 DOI: 10.1038/mtna.2015.23] [Citation(s) in RCA: 677] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/18/2015] [Indexed: 02/06/2023]
Abstract
Discovered a little over two decades ago, small interfering RNAs (siRNAs) and microRNAs (miRNAs) are noncoding RNAs with important roles in gene regulation. They have recently been investigated as novel classes of therapeutic agents for the treatment of a wide range of disorders including cancers and infections. Clinical trials of siRNA- and miRNA-based drugs have already been initiated. siRNAs and miRNAs share many similarities, both are short duplex RNA molecules that exert gene silencing effects at the post-transcriptional level by targeting messenger RNA (mRNA), yet their mechanisms of action and clinical applications are distinct. The major difference between siRNAs and miRNAs is that the former are highly specific with only one mRNA target, whereas the latter have multiple targets. The therapeutic approaches of siRNAs and miRNAs are therefore very different. Hence, this review provides a comparison between therapeutic siRNAs and miRNAs in terms of their mechanisms of action, physicochemical properties, delivery, and clinical applications. Moreover, the challenges in developing both classes of RNA as therapeutics are also discussed.
Collapse
|
79
|
Takemoto H, Miyata K, Nishiyama N, Kataoka K. Bioresponsive polymer-based nucleic acid carriers. ADVANCES IN GENETICS 2015; 88:289-323. [PMID: 25409610 DOI: 10.1016/b978-0-12-800148-6.00010-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleic acid carriers need to possess multifunctionality for overcoming biological barriers, such as the stable encapsulation of nucleic acids in extracellular milieu, internalization by target cells, controlled intracellular distribution, and release of nucleic acids at the target site of action. To fulfill these stepwise functionalities, "bioresponsive" polymers that can alter their structure responding to site-specific biological signals are highly useful. Notably, pH, redox potential, and enzymatic activities vary along with microenvironments in the body, and thus, the responsiveness to these signals enables to construct nucleic acid carriers with programmed functionalities. This chapter describes the design of bioresponsive polymers that respond to various biological microenvironments for smart nucleic acids delivery.
Collapse
Affiliation(s)
- Hiroyasu Takemoto
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Japan
| | - Kanjiro Miyata
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Japan
| | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Japan
| |
Collapse
|
80
|
MicroRNA delivery for regenerative medicine. Adv Drug Deliv Rev 2015; 88:108-22. [PMID: 26024978 DOI: 10.1016/j.addr.2015.05.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/21/2015] [Indexed: 12/26/2022]
Abstract
MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development.
Collapse
|
81
|
Bakhshinejad B. Phage display and targeting peptides: surface functionalization of nanocarriers for delivery of small non-coding RNAs. Front Genet 2015; 6:178. [PMID: 26029242 PMCID: PMC4428204 DOI: 10.3389/fgene.2015.00178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/26/2015] [Indexed: 11/23/2022] Open
Affiliation(s)
- Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University Tehran, Iran
| |
Collapse
|
82
|
Landesman-Milo D, Peer D. Toxicity profiling of several common RNAi-based nanomedicines: a comparative study. Drug Deliv Transl Res 2015; 4:96-103. [PMID: 25786620 DOI: 10.1007/s13346-013-0158-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNAi-based nanomedicine platforms (RNPs) have progressed from tools to study gene expression in vitro into clinical trials. Numerous RNPs strategies have been documented with an efficient ability to condense RNAi payloads and induce potent gene silencing. Moreover, some of these RNPs have been explored in various animal models, and some have even made it to the clinic. Still, there is lack of a clinically approved RNAi-based delivery strategy most probably due to unpredicted clinical toxicity. In this study, we prepared common RNPs such as cationic liposomes, polyamines, and hyaluronan-coated lipid-based nanoparticles and tested these strategies for global toxicity parameters such as changes in bodyweight, liver enzyme release, and hematological profiling. We found that polyamines such as polyethyleneimine and Poly-L-lysine released high levels of liver enzymes into the serum and reduced C57BL/6 mice bodyweight upon three intravenous injections. In addition, these polyamines dramatically reduced the total number of leukocytes, suggesting an immune suppression mechanism, while cationic liposomes, which also increased liver enzymes levels in the serum, elevated the total number of leukocytes probably by activation of Toll-like receptors 2 and 4. Coating the liposomes with hyaluronan, a hydrophilic glycosaminoglycan, provided a protective layer and did not induce adverse effects upon multiple intravenous injections. These findings suggest that there is an urgent need to develop gold standards for nanotoxicity in the field of RNAi that will be embraced by the RNAi community.
Collapse
Affiliation(s)
- Dalit Landesman-Milo
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
83
|
Ruvinov E, Kryukov O, Forti E, Korin E, Goldstein M, Cohen S. Calcium–siRNA nanocomplexes: What reversibility is all about. J Control Release 2015; 203:150-60. [DOI: 10.1016/j.jconrel.2015.02.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/14/2015] [Accepted: 02/17/2015] [Indexed: 10/24/2022]
|
84
|
Mali SB. RNA interference in oral cancer. Oral Oncol 2015; 51:e2-3. [DOI: 10.1016/j.oraloncology.2014.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
|
85
|
Dai X, Tan C. Combination of microRNA therapeutics with small-molecule anticancer drugs: mechanism of action and co-delivery nanocarriers. Adv Drug Deliv Rev 2015; 81:184-97. [PMID: 25281917 DOI: 10.1016/j.addr.2014.09.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/17/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) regulate multiple molecular pathways vital for the hallmarks of cancer with a high degree of biochemical specificity and potency. By restoring tumor suppressive miRNAs or ablating oncomiRs, miRNA-based therapies can sensitize cancer cells to conventional cytotoxins and the molecularly targeted drugs by promoting apoptosis and autophagy, reverting epithelial-to-mesenchymal transition, suppressing tumor angiogenesis, and downregulating efflux transporters. The development of miRNA-based therapeutics in combination with small-molecule anticancer drugs provides an unprecedented opportunity to counteract chemoresistance and improve treatment outcome in a broad range of human cancers. This review summarizes the mechanisms and advantages for the combination therapies involving miRNAs and small-molecule drugs, as well as the recent advances in the co-delivery nanocarriers for these agents.
Collapse
Affiliation(s)
- Xin Dai
- Cancer Nanomedicine Laboratory, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | - Chalet Tan
- Cancer Nanomedicine Laboratory, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, 3001 Mercer University Drive, Atlanta, GA 30341, USA.
| |
Collapse
|
86
|
Zins K, Sioud M, Aharinejad S, Lucas T, Abraham D. Modulating the tumor microenvironment with RNA interference as a cancer treatment strategy. Methods Mol Biol 2015; 1218:143-61. [PMID: 25319650 DOI: 10.1007/978-1-4939-1538-5_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The tumor microenvironment is composed of accessory cells and immune cells in addition to extracellular matrix (ECM) components. The stromal compartment interacts with cancer cells in a complex crosstalk to support tumor development. Growth factors and cytokines produced by stromal cells support the growth of tumor cells and promote interaction with the vasculature to enhance tumor progression and invasion. The activation of autocrine and paracrine oncogenic signaling pathways by growth factors, cytokines, and proteases derived from both tumor cells and the stromal compartment is thought to play a major role in assisting tumor cells during metastasis. Consequently, targeting tumor-stroma interactions by RNA interference (RNAi)-based approaches is a promising strategy in the search for novel treatment modalities in human cancer. Recent advances in packaging technology including the use of polymers, peptides, liposomes, and nanoparticles to deliver small interfering RNAs (siRNAs) into target cells may overcome limitations associated with potential RNAi-based therapeutics. Newly developed nonviral gene delivery approaches have shown improved anticancer efficacy suggesting that RNAi-based therapeutics provide novel opportunities to elicit significant gene silencing and induce regression of tumor growth. This chapter summarizes our current understanding of the tumor microenvironment and highlights some potential targets for therapeutic intervention with RNAi-based cancer therapeutics.
Collapse
Affiliation(s)
- Karin Zins
- Laboratory for Cardiovascular Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
87
|
Novo L, Takeda KM, Petteta T, Dakwar GR, van den Dikkenberg JB, Remaut K, Braeckmans K, van Nostrum CF, Mastrobattista E, Hennink WE. Targeted Decationized Polyplexes for siRNA Delivery. Mol Pharm 2014; 12:150-61. [DOI: 10.1021/mp500499x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Luís Novo
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584, CG Utrecht, The Netherlands
| | - Kaori M. Takeda
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tamara Petteta
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584, CG Utrecht, The Netherlands
| | - George R. Dakwar
- Laboratory for General
Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Joep B. van den Dikkenberg
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584, CG Utrecht, The Netherlands
| | - Katrien Remaut
- Laboratory for General
Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General
Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Harelbekestraat 72, 9000 Ghent, Belgium
- Centre
for Nano- and Biophotonics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Cornelus F. van Nostrum
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584, CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584, CG Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, 3584, CG Utrecht, The Netherlands
| |
Collapse
|
88
|
Cordeiro RA, Farinha D, Rocha N, Serra AC, Faneca H, Coelho JFJ. Novel Cationic Triblock Copolymer of Poly[2-(dimethylamino)ethyl methacrylate]-block-poly(β-amino ester)-block-poly[2-(dimethylamino)ethyl methacrylate]: A Promising Non-Viral Gene Delivery System. Macromol Biosci 2014; 15:215-28. [DOI: 10.1002/mabi.201400424] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Rosemeyre A. Cordeiro
- Department of Chemical Engineering; University of Coimbra; Polo II, Rua Sílvio Lima 3030-790 Coimbra Portugal
| | - Dina Farinha
- Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
| | - Nuno Rocha
- CEMUC®, Department of Mechanical Engineering; University of Coimbra; Polo II, Rua Luís Reis Santos Pinhal de Marrocos 3030-788 Coimbra Portugal
| | - Arménio C. Serra
- CEMUC®, Department of Mechanical Engineering; University of Coimbra; Polo II, Rua Luís Reis Santos Pinhal de Marrocos 3030-788 Coimbra Portugal
| | - Henrique Faneca
- Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
| | - Jorge F. J. Coelho
- CEMUC®, Department of Mechanical Engineering; University of Coimbra; Polo II, Rua Luís Reis Santos Pinhal de Marrocos 3030-788 Coimbra Portugal
| |
Collapse
|
89
|
Zhou Y, Zhang C, Liang W. Development of RNAi technology for targeted therapy — A track of siRNA based agents to RNAi therapeutics. J Control Release 2014; 193:270-81. [DOI: 10.1016/j.jconrel.2014.04.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/31/2022]
|
90
|
Chen XY, Tang T, Wong KS. RNA interference therapy: a new solution for intracranial atherosclerosis? ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:79. [PMID: 25333054 DOI: 10.3978/j.issn.2305-5839.2014.07.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 11/14/2022]
Abstract
Intracranial atherosclerotic stenosis (ICAS) of a major intracranial artery, especially middle cerebral artery (MCA), is reported to be one leading cause of ischemic stroke throughout the world. Compared with other stroke subtypes, ICAS is associated with a higher risk of recurrent stroke despite aggressive medical therapy. Increased understanding of the pathophysiology of ICAS has highlighted several possible targets for therapeutic interventions. Both luminal stenosis and plaque components of ICAS have been found to be associated with ischemic stroke based a post-mortem study. Recent application of high-resolution magnetic resonance imaging (HRMRI) in evaluating ICAS provides new insight into the vascular biology of plaque morphology and component. High signal on T1-weighted fat-suppressed images (HST1) within MCA plaque of HRMRI, highly suggested of fresh or recent intraplaque hemorrhage, has been found to be associated with ipsilateral brain infarction. Thus, the higher prevalence of intraplaque hemorrhage and neovasculature in symptomatic patients with MCA stenosis may provide a potential target for plaque stabilization. We hypothesize that RNA interference (RNAi) therapy delivered by modified nanoparticles may achieve in vivo biomedical imaging and targeted therapy. With the rapid developments in studies about therapeutic and diagnostic nanomaterials, future studies further exploring the molecular biology of atherosclerosis may provide more drug targets for plaque stabilization.
Collapse
Affiliation(s)
- Xiang-Yan Chen
- 1 Departments of Medicine and Therapeutics, 2 Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tao Tang
- 1 Departments of Medicine and Therapeutics, 2 Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ka-Sing Wong
- 1 Departments of Medicine and Therapeutics, 2 Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
91
|
Xue HY, Liu S, Wong HL. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (Lond) 2014; 9:295-312. [PMID: 24552562 DOI: 10.2217/nnm.13.204] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
siRNAs have immense therapeutic potential for the treatment of various gene-related diseases ranging from cancer, viral infections and neuropathy to autoimmune diseases. However, their bench-to-bedside translation in recent years has faced several challenges, with inefficient siRNA delivery being one of the most frequently encountered issues. In order to improve the siRNA delivery especially for systemic treatment, nanocarriers made of polymers, lipids or inorganic materials have become almost essential. The 'negative' aspects of these carriers such as their nanotoxicity and immunogenicity thus can no longer be overlooked. In this article, we will extensively review the nanotoxicity of siRNA carriers. The strategies for mitigating the risks of nanotoxicity and the methodology for evaluating these strategies will also be discussed. By addressing this often overlooked but important issue, it will help clear the way for siRNAs to fulfill their promise as a versatile class of therapeutic agents.
Collapse
Affiliation(s)
- Hui Yi Xue
- School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
92
|
de la Fuente M, Jones MC, Santander-Ortega MJ, Mirenska A, Marimuthu P, Uchegbu I, Schätzlein A. A nano-enabled cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:369-77. [PMID: 25267700 DOI: 10.1016/j.nano.2014.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/01/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Gemcitabine is currently the standard therapy for pancreatic cancer. However, growing concerns over gemcitabine resistance mean that new combinatory therapies are required to prevent loss of efficacy with prolonged treatment. Here, we suggest that this could be achieved through co-administration of RNA interference agents targeting the ubiquitin ligase ITCH. Stable anti-ITCH siRNA and shRNA dendriplexes with a desirable safety profile were prepared using generation 3 poly(propylenimine) dendrimers (DAB-Am16). The complexes were efficiently taken up by human pancreatic cancer cells and produced a 40-60% decrease in ITCH RNA and protein expression in vitro (si/shRNA) and in a xenograft model of pancreatic cancer (shRNA). When co-administered with gemcitabine (100 mg/kg/week) at a subtherapeutic dose, treatment with ITCH-shRNA (3x 50 mg/week) was able to fully suppress tumour growth for 17 days, suggesting that downregulation of ITCH mediated by DAB-Am16/shRNA sensitizes pancreatic cancer to gemcitabine in an efficient and specific manner. FROM THE CLINICAL EDITOR Gemcitabine delivery to pancreatic cancer often results in the common problem of drug resistance. This team overcame the problem through co-administration of siRNA and shRNA dendriplexes targeting the ubiquitin ligase ITCH.
Collapse
Affiliation(s)
| | | | | | - Anja Mirenska
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX
| | | | - Ijeoma Uchegbu
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX
| | | |
Collapse
|
93
|
Abstract
INTRODUCTION Cancer remains the leading cause of death worldwide. Numerous therapeutic strategies that include smart biological treatments toward specific cellular pathways are being developed. Yet, inherent and acquired multidrug resistance (MDR) to chemotherapeutic drugs remains the major obstacle in effective cancer treatments. AREAS COVERED Herein, we focused on an implementation of nanoscale drug delivery strategies (nanomedicines) to treat tumors that resist MDR. Specifically, we briefly discuss the MDR phenomenon and provide structural and functional characterization of key proteins that account for MDR. We next describe the strategies to target tumors using nanoparticles and provide a mechanistic overview of how changes in the influx:efflux ratio result in overcoming MDR. EXPERT OPINION Various strategies have been applied in preclinical and clinical settings to overcome cancer MDR. Among them are the use of chemosensitizers that aim to sensitize the cancer cells to chemotherapeutic treatment and the use of nanomedicines as delivery vehicles that can increase the influx of drugs into cancer cells. These strategies can enhance the therapeutic response in resistant tumors by bypassing efflux pumps or by increasing the nominal amounts of therapeutic payloads into the cancer cells at a given time point.
Collapse
Affiliation(s)
- Assaf Ganoth
- The Interdisciplinary Center (IDC) , P.O. Box 167, Herzliya 46150 , Israel
| | | | | |
Collapse
|
94
|
Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J Control Release 2014; 194:238-56. [PMID: 25204288 DOI: 10.1016/j.jconrel.2014.09.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
Chemotherapeutic agents have certain limitations when it comes to treating cancer, the most important being severe side effects along with multidrug resistance developed against them. Tumor cells exhibit drug resistance due to activation of various cellular level processes viz. activation of drug efflux pumps, anti-apoptotic defense mechanisms, etc. Currently, RNA interference (RNAi) based therapeutic approaches are under vibrant scrutinization to seek cancer cure. Especially small interfering RNA (siRNA) and micro RNA (miRNA), are able to knock down the carcinogenic genes by targeting the mRNA expression, which underlies the uniqueness of this therapeutic approach. Recent research focus in the regime of cancer therapy involves the engagement of targeted delivery of siRNA/miRNA in combinations with other therapeutic agents (such as gene, DNA or chemotherapeutic drug) for targeting permeability glycoprotein (P-gp), multidrug resistant protein 1 (MRP-1), B-cell lymphoma (BCL-2) and other targets that are mainly responsible for resistance in cancer therapy. RNAi-chemotherapeutic drug combinations have also been found to be effective against different molecular targets as well and can increase the sensitization of cancer cells to therapy several folds. However, due to stability issues associated with siRNA/miRNA suitable protective carrier is needed and nanotechnology based approaches have been widely explored to overcome these drawbacks. Furthermore, it has been univocally advocated that the co-delivery of siRNA/miRNA with other chemodrugs significantly enhances their capability to overcome cancer resistance compared to naked counterparts. The objective of this article is to review recent nanocarrier based approaches adopted for the delivery of siRNA/miRNA combinations with other anticancer agents (siRNA/miRNA/pDNA/chemodrugs) to treat cancer.
Collapse
|
95
|
Rosenblum D, Peer D. Omics-based nanomedicine: The future of personalized oncology. Cancer Lett 2014; 352:126-36. [DOI: 10.1016/j.canlet.2013.07.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 12/18/2022]
|
96
|
Ballarín-González B, Ebbesen MF, Howard KA. Polycation-based nanoparticles for RNAi-mediated cancer treatment. Cancer Lett 2014; 352:66-80. [DOI: 10.1016/j.canlet.2013.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/19/2022]
|
97
|
van der Meel R, Fens MHAM, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 2014; 195:72-85. [PMID: 25094032 DOI: 10.1016/j.jconrel.2014.07.049] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are membrane-derived particles surrounded by a (phospho)lipid bilayer that are released by cells in the human body. In addition to direct cell-to-cell contact and the secretion of soluble factors, EVs function as another mechanism of intercellular communication. These vesicles are able to efficiently deliver their parental cell-derived molecular cargo to recipient cells, which can result in structural changes at an RNA, protein, or even phenotypic level. For this reason, EVs have recently gained much interest for drug delivery purposes. In contrast to these 'natural delivery systems', synthetic (phospho)lipid vesicles, or liposomes, have been employed as drug carriers for decades, resulting in several approved liposomal nanomedicines used in the clinic. This review discusses the similarities and differences between EVs and liposomes with the focus on features that are relevant for drug delivery purposes such as circulation time, biodistribution, cellular interactions and cargo loading. By applying beneficial features of EVs to liposomes and vice versa, improved drug carriers can be developed which will advance the field of nanomedicines and ultimately improve patient outcomes. While the application of EVs for therapeutic drug delivery is still in its infancy, issues regarding the understanding of EV biogenesis, large-scale production and in vivo interactions need to be addressed in order to develop successful and cost-effective EV-based drug delivery systems.
Collapse
Affiliation(s)
- Roy van der Meel
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel H A M Fens
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter Vader
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
98
|
Menter DG, Patterson SL, Logsdon CD, Kopetz S, Sood AK, Hawk ET. Convergence of nanotechnology and cancer prevention: are we there yet? Cancer Prev Res (Phila) 2014; 7:973-92. [PMID: 25060262 DOI: 10.1158/1940-6207.capr-14-0079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting, and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherri L Patterson
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T Hawk
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
99
|
Yang C, Zhao T, Zhao Z, Jia Y, Li L, Zhang Y, Song M, Rong R, Xu M, Nicholson ML, Zhu T, Yang B. Serum-stabilized naked caspase-3 siRNA protects autotransplant kidneys in a porcine model. Mol Ther 2014; 22:1817-28. [PMID: 24930602 DOI: 10.1038/mt.2014.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/11/2014] [Indexed: 11/09/2022] Open
Abstract
The naked small interfering RNA (siRNA) of caspase-3, a key player in ischemia reperfusion injury, was effective in cold preserved and hemoreperfused kidneys, but not autotransplanted kidneys in our porcine models. Here, chemically modified serum stabilized caspase-3 siRNAs were further evaluated. The left kidney was retrieved and infused by University of Wisconsin solution with/without 0.3 mg caspase-3 or negative siRNA into the renal artery for 24-hour cold storage (CS). After an intravenous injection of 0.9 mg siRNA and right-uninephrectomy, the left kidney was autotransplanted for 2 weeks. The effectiveness of caspase-3 siRNA was confirmed by caspase-3 knockdown in the post-CS and/or post-transplant kidneys with reduced apoptosis and inflammation, while the functional caspase-3 siRNA in vivo was proved by detected caspase-3 mRNA degradation intermediates. HMGB1 protein was also decreased in the post-transplanted kidneys; correlated positively with renal IL-1β mRNA, but negatively with serum IL-10 or IL-4. The minimal off-target effects of caspase-3 siRNA were seen with favorable systemic responses. More importantly, renal function, associated with active caspase-3, HMGB1, apoptosis, inflammation, and tubulointerstitial damage, was improved by caspase-3 siRNA. Taken together, the 2-week autotransplanted kidneys were protected when caspase-3 siRNA administrated locally and systemically, which provides important evidence for future clinical trials.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tian Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Zitong Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yichen Jia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yufang Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, Medical Research Centre, Medical School, University of Nantong, Nantong, China
| | - Mangen Song
- 1] Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China [2] Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruiming Rong
- 1] Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China [2] Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Michael L Nicholson
- Transplant Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester General Hospital, University Hospitals of Leicester, Leicester, UK
| | - Tongyu Zhu
- 1] Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China [2] Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Yang
- 1] Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, Shanghai, China [2] Department of Nephrology, Affiliated Hospital of Nantong University, Medical Research Centre, Medical School, University of Nantong, Nantong, China
| |
Collapse
|
100
|
Choi KY, Silvestre OF, Huang X, Min KH, Howard GP, Hida N, Jin AJ, Carvajal N, Lee SW, Hong JI, Chen X. Versatile RNA interference nanoplatform for systemic delivery of RNAs. ACS NANO 2014; 8:4559-70. [PMID: 24779637 PMCID: PMC4046792 DOI: 10.1021/nn500085k] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/29/2014] [Indexed: 05/21/2023]
Abstract
Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells.
Collapse
Affiliation(s)
- Ki Young Choi
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Chemical Engineering and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Oscar F. Silvestre
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xinglu Huang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung Hyun Min
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gregory P. Howard
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Naoki Hida
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Albert J. Jin
- Department of Chemical Engineering and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicole Carvajal
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sang Wook Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jong-In Hong
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
- Address correspondence to
| |
Collapse
|