51
|
Bashir SM, Ahmed Rather G, Patrício A, Haq Z, Sheikh AA, Shah MZUH, Singh H, Khan AA, Imtiyaz S, Ahmad SB, Nabi S, Rakhshan R, Hassan S, Fonte P. Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196521. [PMID: 36233864 PMCID: PMC9570720 DOI: 10.3390/ma15196521] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 05/10/2023]
Abstract
Chitosan is a biodegradable and biocompatible natural polymer that has been extensively explored in recent decades. The Food and Drug Administration has approved chitosan for wound treatment and nutritional use. Furthermore, chitosan has paved the way for advancements in different biomedical applications including as a nanocarrier and tissue-engineering scaffold. Its antibacterial, antioxidant, and haemostatic properties make it an excellent option for wound dressings. Because of its hydrophilic nature, chitosan is an ideal starting material for biocompatible and biodegradable hydrogels. To suit specific application demands, chitosan can be combined with fillers, such as hydroxyapatite, to modify the mechanical characteristics of pH-sensitive hydrogels. Furthermore, the cationic characteristics of chitosan have made it a popular choice for gene delivery and cancer therapy. Thus, the use of chitosan nanoparticles in developing novel drug delivery systems has received special attention. This review aims to provide an overview of chitosan-based nanoparticles, focusing on their versatile properties and different applications in biomedical sciences and engineering.
Collapse
Affiliation(s)
- Showkeen Muzamil Bashir
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| | - Gulzar Ahmed Rather
- Department of Biomedical Engineering, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai 600119, India
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| | - Ana Patrício
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Zulfiqar Haq
- ICAR-Poultry Seed Project, Division of LPM, Skuast-K 132001, India
| | - Amir Amin Sheikh
- International Institute of Veterinary Education and Research (IIVER), Bahu Akbarpur, Rohtak 124001, India
| | - Mohd Zahoor ul Haq Shah
- Laboratory of Endocrinology, Department of Bioscience, Barkatullah University, Bhopal 462026, India
| | - Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Azmat Alam Khan
- ICAR-Poultry Seed Project, Division of LPM, Skuast-K 132001, India
| | - Sofi Imtiyaz
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Sheikh Bilal Ahmad
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Showket Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Rabia Rakhshan
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Alusteng, Srinagar 190006, India
| | - Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Center for Marine Sciences (CCMAR), Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Gambelas Campus, University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (S.M.B.); (G.A.R.); (P.F.)
| |
Collapse
|
52
|
Nie D, Guo T, Yue M, Li W, Zong X, Zhu Y, Huang J, Lin M. Research Progress on Nanoparticles-Based CRISPR/Cas9 System for Targeted Therapy of Tumors. Biomolecules 2022; 12:biom12091239. [PMID: 36139078 PMCID: PMC9496048 DOI: 10.3390/biom12091239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a genetic mutation disease that seriously endangers the health and life of all human beings. As one of the most amazing academic achievements in the past decade, CRISPR/Cas9 technology has been sought after by many researchers due to its powerful gene editing capability. CRISPR/Cas9 technology shows great potential in oncology, and has become one of the most promising technologies for cancer genome-editing therapeutics. However, its efficiency and the safety issues of in vivo gene editing severely limit its widespread application. Therefore, developing a suitable delivery method for the CRISPR/Cas9 system is an urgent problem to be solved at present. Rapid advances in nanomedicine suggest nanoparticles could be a viable option. In this review, we summarize the latest research on the potential use of nanoparticle-based CRISPR/Cas9 systems in cancer therapeutics, in order to further their clinical application. We hope that this review will provide a novel insight into the CRISPR/Cas9 system and offer guidance for nanocarrier designs that will enable its use in cancer clinical applications.
Collapse
|
53
|
Kreda SM. Oligonucleotide-based therapies for cystic fibrosis. Curr Opin Pharmacol 2022; 66:102271. [PMID: 35988291 DOI: 10.1016/j.coph.2022.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
In the clinically successful era of CFTR modulators and Theratyping, 10-20% of individuals with cystic fibrosis (CF) may develop disease due to CFTR mutations that remain undruggable. These individuals produce low levels of CFTR mRNA and/or not enough protein to be rescued with modulator drugs. Alternative therapeutic approaches to correct the CFTR defect at the mRNA level using nucleic acid technologies are currently feasible; e.g., oligonucleotides platforms, which are being rapidly developed to correct genetic disorders. Drug-like properties, great specificity, and predictable off-target effects by design make oligonucleotides a valuable approach with fewer clinical and ethical challenges than genomic editing strategies. Together with personalized and precision medicine approaches, oligonucleotides are ideal therapeutics to target CF-causing mutations that affect only a few individuals resilient to modulator therapies.
Collapse
Affiliation(s)
- Silvia M Kreda
- Marsico Lung Institute / Cystic Fibrosis Center, University of North Carolina at Chapel Hill, 6009 Thurston Bowles Bldg, Chapel Hill, NC, 27599-7248, USA; Department of Medicine, University of North Carolina at Chapel Hill, NC, 27599-7248, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, 27599-7248, USA.
| |
Collapse
|
54
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
55
|
Alhussan A, Palmerley N, Smazynski J, Karasinska J, Renouf DJ, Schaeffer DF, Beckham W, Alexander AS, Chithrani DB. Potential of Gold Nanoparticle in Current Radiotherapy Using a Co-Culture Model of Cancer Cells and Cancer Associated Fibroblast Cells. Cancers (Basel) 2022; 14:cancers14153586. [PMID: 35892845 PMCID: PMC9332249 DOI: 10.3390/cancers14153586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Many cancer therapeutics do not account for the complexity of the tumor microenvironment (TME), which may result in failure when applied clinically. In this paper we utilized a simple tumor model made of two types of pancreatic cancer cells that contribute to the tumor environment, i.e., cancer cells and cancer associated fibroblasts. Herein, radiotherapy along with radiosensitizing gold nanoparticles were used to test the efficacy of a co-culture vs. monoculture model. The results show that the co-culture model exhibited heightened resistance to radiation. Furthermore, we found that the combination of gold radiosensitizers with radiotherapy reduced the radioresistance of the co-culture model compared to radiotherapy alone. This study demonstrates the potential of using nanotherapeutics in targeting the complex tumor microenvironment. Abstract Many cancer therapeutics are tested in vitro using only tumour cells. However, the tumour promoting effect of cancer associated fibroblasts (CAFs) within the tumour microenvironment (TME) is thought to reduce cancer therapeutics’ efficacy. We have chosen pancreatic ductal adenocarcinoma (PDAC) as our tumor model. Our goal is to create a co-culture of CAFs and tumour cells to model the interaction between cancer and stromal cells in the TME and allow for better testing of therapeutic combinations. To test the proposed co-culture model, a gold nanoparticle (GNP) mediated-radiation response was used. Cells were grown in co-culture with different ratios of CAFs to cancer cells. MIA PaCa-2 was used as our PDAC cancer cell line. Co-cultured cells were treated with 2 Gy of radiation following GNP incubation. DNA damage and cell proliferation were examined to assess the combined effect of radiation and GNPs. Cancer cells in co-culture exhibited up to a 23% decrease in DNA double strand breaks (DSB) and up to a 35% increase in proliferation compared to monocultures. GNP/Radiotherapy (RT) induced up to a 25% increase in DNA DSBs and up to a 15% decrease in proliferation compared to RT alone in both monocultured and co-cultured cells. The observed resistance in the co-culture system may be attributed to the role of CAFs in supporting cancer cells. Moreover, we were able to reduce the activity of CAFs using GNPs during radiation treatment. Indeed, CAFs internalize a significantly higher number of GNPs, which may have led to the reduction in their activity. One reason experimental therapeutics fail in clinical trials relates to limitations in the pre-clinical models that lack a true representation of the TME. We have demonstrated a co-culture platform to test GNP/RT in a clinically relevant environment.
Collapse
Affiliation(s)
- Abdulaziz Alhussan
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
| | - Nicholas Palmerley
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
| | - Julian Smazynski
- Deeley Research Centre, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Joanna Karasinska
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
| | - Daniel J. Renouf
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
| | - David F. Schaeffer
- Pancreas Centre BC, Vancouver, BC V5Z 1G1, Canada; (J.K.); (D.J.R.); (D.F.S.)
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Abraham S. Alexander
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.A.); (N.P.); (W.B.)
- Radiation Oncology, British Columbia Cancer—Victoria, Victoria, BC V8R 6V5, Canada;
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
- Correspondence:
| |
Collapse
|
56
|
Enrichment Methods for Murine Liver Non-Parenchymal Cells Differentially Affect Their Immunophenotype and Responsiveness towards Stimulation. Int J Mol Sci 2022; 23:ijms23126543. [PMID: 35742987 PMCID: PMC9223567 DOI: 10.3390/ijms23126543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocytes comprise the majority of the liver and largely exert metabolic functions, whereas non-parenchymal cells (NPCs)—comprising Kupffer cells, dendritic cells and liver sinusoidal endothelial cells—control the immunological state within this organ. Here, we compared the suitability of two isolation methods for murine liver NPCs. Liver perfusion (LP) with collagenase/DNase I applied via the portal vein leads to efficient liver digestion, whereas the modified liver dissociation (LD) method combines mechanical dissociation of the retrieved organ with enzymatic degradation of the extracellular matrix. In cases of both LP and LD, NPCs were enriched by subsequent gradient density centrifugation. Our results indicate that LP and LD are largely comparable with regards to the yield, purity, and composition of liver NPCs. However, LD-enriched liver NPCs displayed a higher degree of activation after overnight cultivation, and accordingly were less responsive towards stimulation with toll-like receptor ligands that are frequently used as adjuvants, e.g., in nano-vaccines. We conclude that LP is more suitable for obtaining liver NPCs for subsequent in vitro studies, whereas LD as the less laborious method, is more convenient for parallel isolation of larger numbers of samples for ex vivo analysis.
Collapse
|
57
|
Rodríguez F, Caruana P, De la Fuente N, Español P, Gámez M, Balart J, Llurba E, Rovira R, Ruiz R, Martín-Lorente C, Corchero JL, Céspedes MV. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022; 12:biom12060784. [PMID: 35740909 PMCID: PMC9221343 DOI: 10.3390/biom12060784] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. To date, and despite the advances in conventional treatment options, therapy in cancer is still far from optimal due to the non-specific systemic biodistribution of antitumor agents. The inadequate drug concentrations at the tumor site led to an increased incidence of multiple drug resistance and the appearance of many severe undesirable side effects. Nanotechnology, through the development of nanoscale-based pharmaceuticals, has emerged to provide new and innovative drugs to overcome these limitations. In this review, we provide an overview of the approved nanomedicine for cancer treatment and the rationale behind their designs and applications. We also highlight the new approaches that are currently under investigation and the perspectives and challenges for nanopharmaceuticals, focusing on the tumor microenvironment and tumor disseminate cells as the most attractive and effective strategies for cancer treatments.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Pablo Caruana
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Noa De la Fuente
- Servicio de Cirugía General y del Aparato Digestivo, Hospital HM Rosaleda, 15701 Santiago de Compostela, Spain;
| | - Pía Español
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - María Gámez
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Josep Balart
- Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Elisa Llurba
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Ramón Rovira
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Raúl Ruiz
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Cristina Martín-Lorente
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina and CIBER-BBN, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| | - María Virtudes Céspedes
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| |
Collapse
|
58
|
Guo B, Wei J, Wang J, Sun Y, Yuan J, Zhong Z, Meng F. CD44-targeting hydrophobic phosphorylated gemcitabine prodrug nanotherapeutics augment lung cancer therapy. Acta Biomater 2022; 145:200-209. [PMID: 35430336 DOI: 10.1016/j.actbio.2022.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
Abstract
Gemcitabine (GEM) is among the most used chemotherapies for advanced malignancies including non-small cell lung cancer. The clinical efficacy of GEM is, however, downplayed by its poor bioavailability, short half-life, drug resistance, and dose-limiting toxicities (e.g. myelosuppression). In spite of many approaches exploited to improve the efficacy and safety of GEM, limited success was achieved. The short A6 peptide (sequence: Ac-KPSSPPEE-NH2) is clinically validated for specific binding to CD44 on metastatic tumors. Here, we designed a robust and CD44-specific GEM nanotherapeutics by encapsulating hydrophobic phosphorylated gemcitabine prodrug (HPG) into the core of A6 peptide-functionalized disulfide-crosslinked micelles (A6-mHPG), which exhibited reduction-triggered HPG release and specific targetability to CD44 overexpressing tumor cells. Interestingly, A6 greatly enhanced the internalization and inhibitory activity of micellar HPG (mHPG) in CD44 positive A549 cells, and increased its accumulation in A549 cancerous lung, leading to potent repression of orthotopic tumor growth, depleted toxicity, and marked survival benefits compared to free HPG and mHPG (median survival time: 59 days versus 30 and 45 days, respectively). The targeted delivery of gemcitabine prodrug with disulfide-crosslinked biodegradable micelles appears to be a highly appealing strategy to boost gemcitabine therapy for advance tumors. STATEMENT OF SIGNIFICANCE: Gemcitabine (GEM) though widely used in clinics for treating advanced tumors is associated with poor bioavailability, short half-life and dose-limiting toxicities. Development of clinically translatable GEM formulations to improve its anti-tumor efficacy and safety is of great interest. Here, we report on CD44-targeting GEM nanotherapeutics obtained by encapsulating hydrophobic phosphorylated GEM prodrug (HPG), a single isomer of NUC-1031, into A6 peptide-functionalized disulfide-crosslinked micelles (A6-mHPG). A6-mHPG demonstrates stability against degradation, enhanced internalization and inhibition toward CD44+ cells, and increased accumulation in A549 lung tumor xenografts, leading to potent repression of orthotopic tumor growth, depleted toxicity and marked survival benefits. The targeted delivery of GEM prodrug using A6-mHPG is a highly appealing strategy to GEM cancer therapy.
Collapse
Affiliation(s)
- Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jingyi Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jiandong Yuan
- BrightGene Bio-Medical Technology Co., Ltd., Suzhou, 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
59
|
Zhao D, Cao J, Zhang L, Zhang S, Wu S. Targeted Molecular Imaging Probes Based on Magnetic Resonance Imaging for Hepatocellular Carcinoma Diagnosis and Treatment. BIOSENSORS 2022; 12:bios12050342. [PMID: 35624643 PMCID: PMC9138815 DOI: 10.3390/bios12050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most commonly malignant tumor and the third leading cause of cancer-related death in the world, and the early diagnosis and treatment of patients with HCC is core in improving its prognosis. The early diagnosis of HCC depends largely on magnetic resonance imaging (MRI). MRI has good soft-tissue resolution, which is the international standard method for the diagnosis of HCC. However, MRI is still insufficient in the diagnosis of some early small HCCs and malignant nodules, resulting in false negative results. With the deepening of research on HCC, researchers have found many specific molecular biomarkers on the surface of HCC cells, which may assist in diagnosis and treatment. On the other hand, molecular imaging has progressed rapidly in recent years, especially in the field of cancer theranostics. Hence, the preparation of molecular imaging probes that can specifically target the biomarkers of HCC, combined with MRI testing in vivo, may achieve the theranostic purpose of HCC in the early stage. Therefore, in this review, taking MR imaging as the basic point, we summarized the recent progress regarding the molecular imaging targeting various types of biomarkers on the surface of HCC cells to improve the theranostic rate of HCC. Lastly, we discussed the existing obstacles and future prospects of developing molecular imaging probes as HCC theranostic nanoplatforms.
Collapse
Affiliation(s)
- Dongxu Zhao
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jian Cao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China;
| | - Lei Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China;
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Correspondence: (L.Z.); (S.Z.); (S.W.)
| |
Collapse
|
60
|
Li H, Zhang Y, Xu M, Yang D. Current trends of targeted therapy for oral squamous cell carcinoma. J Cancer Res Clin Oncol 2022; 148:2169-2186. [PMID: 35501496 DOI: 10.1007/s00432-022-04028-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant disease in the world which has a profound effect on human health and life quality. According to tumor stage and pathological diagnosis, OSCC is mainly treated by combinations of surgery, radiotherapy and chemotherapy. However, traditional treatment methods suffer from some limitations, such as systemic toxicity, limited therapeutic effect and drug resistance. With the rapid development of nanotechnology, nanodrug delivery systems (DDSs) and intelligent DDSs have been widely used in targeted therapy for OSCC. Meanwhile, the newly developed therapeutic techniques such as immunotherapy, gene therapy and bionic technology provide the possibility to realize the active targeted therapy. Here, the latest advances of target therapy for OSCC are reviewed, and their therapeutic remarks, current limits and future prospects are also systematically interpreted. It is believed that active and passive targeted therapies have great potentials for clinical transformation and application of OSCC, which will greatly improve human quality of life.
Collapse
Affiliation(s)
- Hongjiao Li
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Yao Zhang
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Mengmeng Xu
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Deqin Yang
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
61
|
Pathak MP, Pathak K, Saikia R, Gogoi U, Ahmad MZ, Patowary P, Das A. Immunomodulatory effect of mushrooms and their bioactive compounds in cancer: A comprehensive review. Biomed Pharmacother 2022; 149:112901. [DOI: 10.1016/j.biopha.2022.112901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
|
62
|
Truskewycz A, Yin H, Halberg N, Lai DTH, Ball AS, Truong VK, Rybicka AM, Cole I. Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106342. [PMID: 35088534 DOI: 10.1002/smll.202106342] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Ultrasmall nanoparticles are often grouped under the broad umbrella term of "nanoparticles" when reported in the literature. However, for biomedical applications, their small sizes give them intimate interactions with biological species and endow them with unique functional physiochemical properties. Carbon quantum dots (CQDs) are an emerging class of ultrasmall nanoparticles which have demonstrated considerable biocompatibility and have been employed as potent theragnostic platforms. These particles find application for increasing drug solubility and targeting, along with facilitating the passage of drugs across impermeable membranes (i.e., blood brain barrier). Further functionality can be triggered by various environmental conditions or external stimuli (i.e., pH, temperature, near Infrared (NIR) light, ultrasound), and their intrinsic fluorescence is valuable for diagnostic applications. The focus of this review is to shed light on the therapeutic potential of CQDs and identify how they travel through the body, reach their site of action, administer therapeutic effect, and are excreted. Investigation into their toxicity and compatibility with larger nanoparticle carriers is also examined. The future of CQDs for theragnostic applications is promising due to their multifunctional attributes and documented biocompatibility. As nanomaterial platforms become more commonplace in clinical treatments, the commercialization of CQD therapeutics is anticipated.
Collapse
Affiliation(s)
- Adam Truskewycz
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Hong Yin
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Daniel T H Lai
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Victoria, 3011, Australia
| | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia Biosolids Resource, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Vi Khanh Truong
- School of Science, Engineering and Health, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Agata Marta Rybicka
- Oncovet Clinical Research, Parc Eurasante, 80 Rue du Dr Alexandre Yersin, Loos, F-59120, France
| | - Ivan Cole
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
63
|
Bai S, Lu Z, Jiang Y, Shi X, Xu D, Shi Y, Lin G, Liu C, Zhang Y, Liu G. Nanotransferrin-Based Programmable Catalysis Mediates Three-Pronged Induction of Oxidative Stress to Enhance Cancer Immunotherapy. ACS NANO 2022; 16:997-1012. [PMID: 34928122 DOI: 10.1021/acsnano.1c08619] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Current oxidative stress amplifying strategies for immunogenic cell death (ICD) promotion are mainly restricted to immune tolerance induced by adaptive cellular antioxidation, limited tumor-selectivity, and tumoral immunosuppression. Herein, a facile and efficient scenario of genetically engineering transferrin-expressing cell membrane nanovesicle encapsulated IR820-dihydroartemisinin nanomedicine (Tf@IR820-DHA) was developed to boost a-PD-L1-mediated immune checkpoint blocking (ICB) via synergetic triple stimuli-activated oxidative stress-associated ICD. We demonstrate that the engineered transferrin of Tf@IR820-DHA has excellent tumor targeting and Fe(III)-loading properties and thus delivered Fe(III) and IR820-DHA nanoparticles (NPs) to the lesion location effectively. We found that the self-carrying Fe(III)-mediated programmable catalysis of DHA and glutathione (GSH) depletion generated plenty of reactive oxygen species (ROS). Moreover, DHA also acted as an immunomodulator to decrease the number of T regulatory cells, thereby remodeling the tumor immune microenvironment and achieving double T cell activation. Furthermore, the IR820 molecule served as a competent sonosensitizer to produce ROS under ultrasound activation and guide precise immunotherapy via fluorescent/photoacoustic (FL/PA) imaging. Through its three-pronged delivery of stimuli-activated oxidative stress (DHA-induced chemodynamic therapy, catalysis-conferred GSH depletion, and IR820-mediated sonodynamic therapy), Tf@IR820-DHA caused high levels of targeted ICD. This significantly increased the proportions of IFN-γ-secreting T cells (CD4+ T and CD8+ T) and enhanced a-PD-L1-mediated ICB against primary and distant tumors, which represents a promising approach for cancer nanoimmunotherapy.
Collapse
Affiliation(s)
- Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yonghe Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaoxiao Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
64
|
Kenry, Nicolson F, Clark L, Panikkanvalappil SR, Andreiuk B, Andreou C. Advances in Surface Enhanced Raman Spectroscopy for in Vivo Imaging in Oncology. Nanotheranostics 2022; 6:31-49. [PMID: 34976579 PMCID: PMC8671959 DOI: 10.7150/ntno.62970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, the application of surface enhanced Raman scattering (SERS) nanoparticles for preclinical cancer imaging has attracted increasing attention. Raman imaging with SERS nanoparticles offers unparalleled sensitivity, providing a platform for molecular targeting, and granting multiplexed and multimodal imaging capabilities. Recent progress has been facilitated not only by the optimization of the SERS contrast agents themselves, but also by the developments in Raman imaging approaches and instrumentation. In this article, we review the principles of Raman scattering and SERS, present advances in Raman instrumentation specific to cancer imaging, and discuss the biological means of ensuring selective in vivo uptake of SERS contrast agents for targeted, multiplexed, and multimodal imaging applications. We offer our perspective on areas that must be addressed in order to facilitate the clinical translation of SERS contrast agents for in vivo imaging in oncology.
Collapse
Affiliation(s)
- Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Chrysafis Andreou
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
65
|
Nature-inspired dynamic gene-loaded nanoassemblies for the treatment of brain diseases. Adv Drug Deliv Rev 2022; 180:114029. [PMID: 34752841 DOI: 10.1016/j.addr.2021.114029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/03/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Gene therapy has great potential to treat brain diseases. However, genetic drugs need to overcome a cascade of barriers for their full potential. The conventional delivery systems often struggle to meet expectations. Natural biological particles that are highly optimized for specific functions in body, can inspire optimization of dynamic gene-loaded nanoassemblies (DGN). The DGN refer to gene loaded nanoassemblies whose functions and structures are changeable in response to the biological microenvironments or can dynamically interact with tissues or cells. The nature-inspired DGN can meet the needs in brain diseases treatment, including i) Non-elimination in blood (N), ii) Across the blood-brain barrier (A), iii) Targeting cells (T), iv) Efficient uptake (U), v) Controllable release (R), vi) Eyeable (E)-abbreviated as the "NATURE". In this Review, from nature to "NATURE", we mainly summarize the specific application of nature-inspired DGN in the "NATURE" cascade process. Furthermore, the Review provides an outlook for this field.
Collapse
|
66
|
Jobdeedamrong A, Theerasilp M, Thumrongsiri N, Dana P, Saengkrit N, Crespy D. Responsive polyprodrug for anticancer nanocarriers. Polym Chem 2022. [DOI: 10.1039/d2py00427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanocarriers responsive to glutathione (GSH), a molecule overexpressed in cancer cells, are extensively investigated for the delivery of Pt-based chemotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Nutthanit Thumrongsiri
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Paweena Dana
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| |
Collapse
|
67
|
Tarannum M, Hossain MA, Holmes B, Yan S, Mukherjee P, Vivero-Escoto JL. Advanced Nanoengineering Approach for Target-Specific, Spatiotemporal, and Ratiometric Delivery of Gemcitabine-Cisplatin Combination for Improved Therapeutic Outcome in Pancreatic Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104449. [PMID: 34758094 PMCID: PMC8758547 DOI: 10.1002/smll.202104449] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Indexed: 05/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an intractable malignancy with a dismal survival rate. Recent combination therapies have had a major impact on the improvement of PDAC prognosis. Nevertheless, clinically used combination regimens such as FOLFIRINOX and gemcitabine (Gem)/nab-paclitaxel still face major challenges due to lack of the safe and ratiometric delivery of multiple drugs. Here, a rationally designed mesoporous silica nanoparticle (MSN)-based platform is reported for the target-specific, spatiotemporal, ratiometric, and safe co-delivery of Gem and cisplatin (cisPt). It is shown that systemic administration of the nanoparticles results in synergistic therapeutic outcome in a syngeneic and clinically relevant genetically engineered PDAC mouse model that has rarely been used for the therapeutic evaluation of nanomedicine. This synergism is associated with a strategic engineering approach, in which nanoparticles provide redox-responsive controlled delivery and in situ differential release of Gem/cisPt drugs with the goal of overcoming resistance to Pt-based drugs. The platform is also rendered with additional tumor-specificity via a novel tumor-associated mucin1 (tMUC1)-specific antibody, TAB004. Overall, the platform suppresses tumor growth and eliminates the off-target toxicities of a highly toxic chemotherapy combination.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Md Akram Hossain
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Bryce Holmes
- Analytical Research Laboratory, North Carolina A&T State University, Greensboro, NC, 27411, USA
| | - Shan Yan
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Pinku Mukherjee
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
68
|
Rotov AY, Romanov IS, Tarakanchikova YV, Astakhova LA. Application Prospects for Synthetic Nanoparticles in Optogenetic Retinal Prosthetics. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
69
|
Wang Y, Qin L, Chen W, Chen Q, Sun J, Wang G. Novel strategies to improve tumour therapy by targeting the proteins MCT1, MCT4 and LAT1. Eur J Med Chem 2021; 226:113806. [PMID: 34517305 DOI: 10.1016/j.ejmech.2021.113806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
Poor selectivity, potential systemic toxicity and drug resistance are the main challenges associated with chemotherapeutic drugs. MCT1 and MCT4 and LAT1 play vital roles in tumour metabolism and growth by taking up nutrients and are thus potential targets for tumour therapy. An increasing number of studies have shown the feasibility of including these transporters as components of tumour-targeting therapy. Here, we summarize the recent progress in MCT1-, MCT4-and LAT1-based therapeutic strategies. First, protein structures, expression, relationships with cancer, and substrate characteristics are introduced. Then, different drug targeting and delivery strategies using these proteins have been reviewed, including designing protein inhibitors, prodrugs and nanoparticles. Finally, a dual targeted strategy is discussed because these proteins exert a synergistic effect on tumour proliferation. This article concentrates on tumour treatments targeting MCT1, MCT4 and LAT1 and delivery techniques for improving the antitumour effect. These innovative tactics represent current state-of-the-art developments in transporter-based antitumour drugs.
Collapse
Affiliation(s)
- Yang Wang
- Personnel Department, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Liuxin Qin
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Weiwei Chen
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Qing Chen
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China
| | - Jin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, China
| | - Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning, 530200, PR China.
| |
Collapse
|
70
|
Horn JM, Obermeyer AC. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021; 22:4883-4904. [PMID: 34855385 PMCID: PMC9310055 DOI: 10.1021/acs.biomac.1c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-based therapeutics represent a rapidly growing segment of approved disease treatments. Successful intracellular delivery of proteins is an important precondition for expanded in vivo and in vitro applications of protein therapeutics. Direct modification of proteins and peptides for improved cytosolic translocation are a promising method of increasing delivery efficiency and expanding the viability of intracellular protein therapeutics. In this Review, we present recent advances in both synthetic and genetic protein modifications for intracellular delivery. Active endocytosis-based and passive internalization pathways are discussed, followed by a review of modification methods for improved cytosolic delivery. After establishing how proteins can be modified, general strategies for facilitating intracellular delivery, such as chemical supercharging or inclusion of cell-penetrating motifs, are covered. We then outline protein modifications that promote endosomal escape. We finally examine the delivery of two potential classes of therapeutic proteins, antibodies and associated antibody fragments, and gene editing proteins, such as cas9.
Collapse
|
71
|
Qian C, Al-Hamyari B, Tang X, Hou B, Yang S, Zhang G, Lv H, Yang Z, Wang Z, Shi Y. Interface-Engineered Paclitaxel-Based Hollow Mesoporous Organosilica Nanoplatforms for Photothermal-Enhanced Chemotherapy of Tumor. Mol Pharm 2021; 18:4531-4542. [PMID: 34739255 DOI: 10.1021/acs.molpharmaceut.1c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Having benefited from the combination of different therapeutic modalities, functionalized nanoplatforms with synergistic strategies have aroused great interest in anticancer treatment. Herein, an engineered, a biodegradable hollow mesoporous organosilica nanoparticle (HMON)-based nanoplatform was fabricated for photothermal-enhanced chemotherapy of tumor. For the first time, we demonstrated that HMONs could serve as nanocarriers for co-delivering of both the paclitaxel and photothermal agent new indocyanine green (IR820), denoted as Paclitaxel/IR820@ HMONs-PEG. The as-prepared nanosystem exhibited a high paclitaxel-loading capacity of 28.4%, much higher than most paclitaxel-loaded nanoformulations. Furthermore, incorporating thioether bonds (S-S) into the HMONs' framework endowed them with GSH-responsive biodegradation behavior, leading to the controllable release of drugs under a tumor reducing microenvironment, and hindered the premature release of paclitaxel. Upon being irradiated with an NIR laser, the obtained co-delivery nanosystem exhibited great photothermal properties generated from IR820. The fabricated nanocomposites could significantly suppress tumor growth under NIR laser irradiation, as validated by in vitro and in vivo assessments. Combined with outstanding biocompatibility, the constructed nanosystem holds great potential in combinational antitumor therapy.
Collapse
Affiliation(s)
- Chunxi Qian
- School of Pharmacy, Lanzhou University, Lanzhou 730030, Gansu, P.R. China
| | - Bandar Al-Hamyari
- School of Pharmacy, Lanzhou University, Lanzhou 730030, Gansu, P.R. China
| | - Xiaofei Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730030, Gansu, P.R. China
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, Cardiff, Wales CF243AA, United Kingdom
| | - Shuaibo Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730030, Gansu, P.R. China
| | - Guifang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730030, Gansu, P.R. China
| | - Huijuan Lv
- School of Pharmacy, Lanzhou University, Lanzhou 730030, Gansu, P.R. China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730030, Gansu, P.R. China
| | - Zhaohui Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730030, Gansu, P.R. China
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou 730030, Gansu, P.R. China
| |
Collapse
|
72
|
Roy P, Saha S, Chakraborty J. Looking into the possibilities of cure of the type 2 diabetes mellitus by nanoparticle-based RNAi and CRISPR-Cas9 system: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
73
|
Meylina L, Muchtaridi M, Joni IM, Mohammed AFA, Wathoni N. Nanoformulations of α-Mangostin for Cancer Drug Delivery System. Pharmaceutics 2021; 13:1993. [PMID: 34959275 PMCID: PMC8708633 DOI: 10.3390/pharmaceutics13121993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Natural compounds are emerging as effective agents for the treatment of malignant diseases. The active constituent of α-mangostin from the pericarp of Garcinia mangostana L. has earned significant interest as a plant base compound with anticancer properties. Despite α-mangostin's superior properties as an anticancer agent, its applications are limited due to its poor solubility and physicochemical stability, rapid systemic clearance, and low cellular uptake. Our review aimed to summarize and discuss the nanoparticle formulations of α-mangostin for cancer drug delivery systems from published papers recorded in Scopus, PubMed, and Google Scholar. We investigated various types of α-mangostin nanoformulations to improve its anticancer efficacy by improving bioavailability, cellular uptake, and localization to specific areas These nanoformulations include nanofibers, lipid carrier nanostructures, solid lipid nanoparticles, polymeric nanoparticles, nanomicelles, liposomes, and gold nanoparticles. Notably, polymeric nanoparticles and nanomicelles can increase the accumulation of α-mangostin into tumors and inhibit tumor growth in vivo. In addition, polymeric nanoparticles with the addition of target ligands can increase the cellular uptake of α-mangostin. In conclusion, nanoformulations of α-mangostin are a promising tool to enhance the cellular uptake, accumulation in cancer cells, and the efficacy of α-mangostin as a candidate for anticancer drugs.
Collapse
Affiliation(s)
- Lisna Meylina
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| |
Collapse
|
74
|
Hapuarachchige S, Si G, Huang CT, Lesniak WG, Mease RC, Guo X, Gabrielson K, Artemov D. Dual-Modality PET-SPECT Image-Guided Pretargeting Delivery in HER2(+) Breast Cancer Models. Biomacromolecules 2021; 22:4606-4617. [PMID: 34704434 PMCID: PMC8578463 DOI: 10.1021/acs.biomac.1c00918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pretargeted drug delivery has been explored for decades as a promising approach in cancer therapy. An image-guided pretargeting strategy significantly enhances the intrinsic advantages of this approach since imaging the pretargeting step can be used for diagnostic purposes, while imaging of the drug delivery step can be utilized to evaluate drug distribution and assess therapeutic response. A trastuzumab (Tz)-based HER2 pretargeting component (Tz-TCO-[89Zr-DFO]) was developed by conjugating with trans-cyclooctene (TCO) bioorthogonal click chemistry functional groups and deferoxamine (DFO) to enable radiolabeling with a 89Zr PET tracer. The drug delivery component (HSA-DM1-Tt-[99mTc-HyNic]) was developed by conjugating human serum albumin (HSA) with mertansine (DM1), tetrazine (Tt) functional groups, and a HyNic chelator and radiolabeling with 99mTc. For ex vivo biodistribution studies, pretargeting and delivery components (without drug) were administered subsequently to mice bearing human HER2(+) breast cancer xenografts, and a high tumor uptake of Tz-TCO-[89Zr-DFO] (26.4% ID/g) and HSA-Tt-[99mTc-HyNic] (4.6% ID/g) was detected at 24 h postinjection. In vivo treatment studies were performed in the same HER2(+) breast cancer model using PET-SPECT image guidance. The increased tumor uptake of the pretargeting and drug delivery components was detected by PET-CT and SPECT-CT, respectively. The study showed a significant 92% reduction of the relative tumor volume in treated mice (RTV = 0.08 in 26 days), compared to the untreated control mice (RTV = 1.78 in 11 days) and to mice treated with only HSA-DM1-Tt-[99mTc-HyNic] (RTV = 1.88 in 16 days). Multimodality PET-SPECT image-guided and pretargeted drug delivery can be utilized to maximize efficacy, predict therapeutic response, and minimize systemic toxicity.
Collapse
Affiliation(s)
- Sudath Hapuarachchige
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| | - Ge Si
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Colin T Huang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Wojciech G Lesniak
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
| | - Ronnie C Mease
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, United States
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, United States
| | - Dmitri Artemov
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, Maryland 21287, United States
| |
Collapse
|
75
|
Teunissen AJP, Burnett ME, Prévot G, Klein ED, Bivona D, Mulder WJM. Embracing nanomaterials' interactions with the innate immune system. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1719. [PMID: 33847441 PMCID: PMC8511354 DOI: 10.1002/wnan.1719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy has firmly established itself as a compelling avenue for treating disease. Although many clinically approved immunotherapeutics engage the adaptive immune system, therapeutically targeting the innate immune system remains much less explored. Nanomedicine offers a compelling opportunity for innate immune system engagement, as many nanomaterials inherently interact with myeloid cells (e.g., monocytes, macrophages, neutrophils, and dendritic cells) or can be functionalized to target their cell-surface receptors. Here, we provide a perspective on exploiting nanomaterials for innate immune system regulation. We focus on specific nanomaterial design parameters, including size, form, rigidity, charge, and surface decoration. Furthermore, we examine the potential of high-throughput screening and machine learning, while also providing recommendations for advancing the field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marianne E. Burnett
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geoffrey Prévot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma D. Klein
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Bivona
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Willem J. M. Mulder
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
76
|
Du X, Gao Y, Kang Q, Xing J. Design and Applications of Tumor Microenvironment-Responsive Nanogels as Drug Carriers. Front Bioeng Biotechnol 2021; 9:771851. [PMID: 34746113 PMCID: PMC8569621 DOI: 10.3389/fbioe.2021.771851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022] Open
Abstract
In recent years, the exploration of tumor microenvironment has provided a new approach for tumor treatment. More and more researches are devoted to designing tumor microenvironment-responsive nanogels loaded with therapeutic drugs. Compared with other drug carriers, nanogel has shown great potential in improving the effect of chemotherapy, which is attributed to its stable size, superior hydrophilicity, excellent biocompatibility, and responsiveness to specific environment. This review primarily summarizes the common preparation techniques of nanogels (such as free radical polymerization, covalent cross-linking, and physical self-assembly) and loading ways of drug in nanogels (including physical encapsulation and chemical coupling) as well as the controlled drug release behaviors. Furthermore, the difficulties and prospects of nanogels as drug carriers are also briefly described.
Collapse
Affiliation(s)
- Xinjing Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuting Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qi Kang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
77
|
Shah S, Chougule MB, Kotha AK, Kashikar R, Godugu C, Raghuvanshi RS, Singh SB, Srivastava S. Nanomedicine based approaches for combating viral infections. J Control Release 2021; 338:80-104. [PMID: 34375690 PMCID: PMC8526416 DOI: 10.1016/j.jconrel.2021.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Millions of people die each year from viral infections across the globe. There is an urgent need to overcome the existing gap and pitfalls of the current antiviral therapy which include increased dose and dosing frequency, bioavailability challenges, non-specificity, incidences of resistance and so on. These stumbling blocks could be effectively managed by the advent of nanomedicine. Current review emphasizes over an enhanced understanding of how different lipid, polymer and elemental based nanoformulations could be potentially and precisely used to bridle the said drawbacks in antiviral therapy. The dawn of nanotechnology meeting vaccine delivery, role of RNAi therapeutics in antiviral treatment regimen, various regulatory concerns towards clinical translation of nanomedicine along with current trends and implications including unexplored research avenues for advancing the current drug delivery have been discussed in detail.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Arun K Kotha
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Rama Kashikar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
78
|
Zong Q, Zheng R, Xiao X, Jiang M, Li J, Yuan Y. Dual-locking nanoprobe based on hemicyanine for orthogonal stimuli-triggered precise cancer imaging and therapy. J Control Release 2021; 338:307-315. [PMID: 34454962 DOI: 10.1016/j.jconrel.2021.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
Currently, stimulus-responsive nanomedicines are usually activated by a single cancer-associated biomarker and utilize different image/therapeutic agents for cancer imaging/therapy, which restricts the specificity of nanomedicine and complicates their design. Herein, we report a novel dual-locking theranostic nanoprobe (DL-P) based on near-infrared (NIR) hemicyanine CyNH2 with two orthogonal stimuli of cancer cell lysosomal pH (first "lock")- and lysosome-overexpressed cathepsin B (CTB, second "lock")-triggered NIR fluorescence turn-on and drug activation to improve the specificity of cancer imaging and therapy. The fluorescence of CyNH2 was initially quenched due to intramolecular charge transfer (ICT) but could be selectively activated under the dual-key stimulation of lysosomal pH and CTB to liberate CyNH2, resulting in strong NIR fluorescence turn-on for cancer imaging. Moreover, CyNH2 caused mitochondrial dysfunction to inhibit cancer cell proliferation in the absence of laser irradiation, which can be used in cancer therapy. Compared with previously reported probes that respond to a single stimulus, this dual-locking nanoprobe that is responsive to two orthogonal stimuli triggers with integrated imaging and therapy function in a single agent exhibits increased selectivity and specificity, which provides a prospective strategy for precise cancer imaging and therapy.
Collapse
Affiliation(s)
- Qingyu Zong
- Institute for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Rui Zheng
- Institute for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Xuan Xiao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Maolin Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China
| | - Jisi Li
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Youyong Yuan
- Institute for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China.
| |
Collapse
|
79
|
Liu L, Bai X, Martikainen MV, Kårlund A, Roponen M, Xu W, Hu G, Tasciotti E, Lehto VP. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat Commun 2021; 12:5726. [PMID: 34593813 PMCID: PMC8484581 DOI: 10.1038/s41467-021-26052-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cell membrane coated nanoparticles (NPs) have recently been recognized as attractive nanomedical tools because of their unique properties such as immune escape, long blood circulation time, specific molecular recognition and cell targeting. However, the integrity of the cell membrane coating on NPs, a key metrics related to the quality of these biomimetic-systems and their resulting biomedical function, has remained largely unexplored. Here, we report a fluorescence quenching assay to probe the integrity of cell membrane coating. In contradiction to the common assumption of perfect coating, we uncover that up to 90% of the biomimetic NPs are only partially coated. Using in vitro homologous targeting studies, we demonstrate that partially coated NPs could still be internalized by the target cells. By combining molecular simulations with experimental analysis, we further identify an endocytic entry mechanism for these NPs. We unravel that NPs with a high coating degree (≥50%) enter the cells individually, whereas the NPs with a low coating degree (<50%) need to aggregate together before internalization. This quantitative method and the fundamental understanding of how cell membrane coated NPs enter the cells will enhance the rational designing of biomimetic nanosystems and pave the way for more effective cancer nanomedicine.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland
| | - Xuan Bai
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027, Hangzhou, China
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Anna Kårlund
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland.
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027, Hangzhou, China
| | - Ennio Tasciotti
- IRCCS San Raffaele Pisana Hospital and San Raffaele University, Rome, Italy
- Sclavo Pharma, Siena, Italy
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
80
|
Kamalkazemi E, Abedi-Gaballu F, Mohammad Hosseini TF, Mohammadi A, Mansoori B, Dehghan G, Baradaran B, Sheibani N. Glimpse into Cellular Internalization and Intracellular Trafficking of Lipid-Based Nanoparticles in Cancer Cells. Anticancer Agents Med Chem 2021; 22:1897-1912. [PMID: 34488605 DOI: 10.2174/1871520621666210906101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
Lipid-based nanoparticles as drug delivery carriers have been mainly used for delivery of anti-cancer therapeutic agents. Lipid-based nanoparticles, due to their smaller particle size and similarity to cell membranes, are readily internalized into cancer cells. Interestingly, cancer cells also overexpress receptors for specific ligands including folic acid, hyaluronic acid, and transferrin on their surface. This allows the use of these ligands for surface modification of the lipid-based nanoparticle. These modifications then allow the specific recognition of these ligand-coated nanoparticles by their receptors on cancer cells allowing the targeted gradual intracellular accumulation of the functionalized nanoplatforms. These interactions could eventually enhance the internalization of desired drugs via increasing ligand-receptor mediated cellular uptake of the nanoplatforms. The cellular internalization of the nanoplatforms also varies and depends on their physicochemical properties including particle size, zeta potential, and shape. The cellular uptake is also influenced by the types of ligand internalization pathway utilized by cells such as phagocytosis, macropinocytosis, and multiple endocytosis pathways. In this review, we will classify and discuss lipid based nanoparticles engineered to express specific ligands, and are recognized by their receptors on cancer cell, and their cellular internalization pathways. Moreover, the intracellular fate of nanoparticles decorated with specific ligands and the best internalization pathways (caveolae mediated endocytosis) for safe cargo delivery will be discussed.
Collapse
Affiliation(s)
- Elham Kamalkazemi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | | | | | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI . United States
| |
Collapse
|
81
|
Al-Thiabat MG, Gazzali AM, Mohtar N, Murugaiyah V, Kamarulzaman EE, Yap BK, Rahman NA, Othman R, Wahab HA. Conjugated β-Cyclodextrin Enhances the Affinity of Folic Acid towards FRα: Molecular Dynamics Study. Molecules 2021; 26:5304. [PMID: 34500740 PMCID: PMC8434473 DOI: 10.3390/molecules26175304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Drug targeting is a progressive area of research with folate receptor alpha (FRα) receiving significant attention as a biological marker in cancer drug delivery. The binding affinity of folic acid (FA) to the FRα active site provides a basis for recognition of FRα. In this study, FA was conjugated to beta-cyclodextrin (βCD) and subjected to in silico analysis (molecular docking and molecular dynamics (MD) simulation (100 ns)) to investigate the affinity and stability for the conjugated system compared to unconjugated and apo systems (ligand free). Docking studies revealed that the conjugated FA bound into the active site of FRα with a docking score (free binding energy < -15 kcal/mol), with a similar binding pose to that of unconjugated FA. Subsequent analyses from molecular dynamics (MD) simulations, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) demonstrated that FA and FA-βCDs created more dynamically stable systems with FRα than the apo-FRα system. All systems reached equilibrium with stable RMSD values ranging from 1.9-2.4 Å and the average residual fluctuation values of the FRα backbone atoms for all residues (except for terminal residues ARG8, THR9, THR214, and LEU215) were less than 2.1 Å with a consistent Rg value of around 16.8 Å throughout the MD simulation time (0-100 ns). The conjugation with βCD improved the stability and decreased the mobility of all the residues (except residues 149-151) compared to FA-FRα and apo-FRα systems. Further analysis of H-bonds, binding free energy (MM-PBSA), and per residue decomposition energy revealed that besides APS81, residues HIS20, TRP102, HIS135, TRP138, TRP140, and TRP171 were shown to have more favourable energy contributions in the holo systems than in the apo-FRα system, and these residues might have a direct role in increasing the stability of holo systems.
Collapse
Affiliation(s)
- Mohammad G. Al-Thiabat
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
- Pharmaceutical Design and Simulation (PHDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
| | - Vikneswaran Murugaiyah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
| | - Ezatul Ezleen Kamarulzaman
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Rozana Othman
- Center for Natural Products Research and Drug Discovery (CENAR), Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia; (M.G.A.-T.); (A.M.G.); (N.M.); (V.M.); (E.E.K.); (B.K.Y.)
- Pharmaceutical Design and Simulation (PHDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia
| |
Collapse
|
82
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021; 175:113809. [PMID: 34033819 DOI: 10.1016/j.addr.2021.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Thanks to their abilities to modulate the expression of virtually any genes, RNA therapeutics have attracted considerable research efforts. Among the strategies focusing on nucleic acid gene inhibitors, antisense oligonucleotides and small interfering RNAs have reached advanced clinical trial phases with several of them having recently been marketed. These successes were obtained by overcoming stability and cellular delivery issues using either chemically modified nucleic acids or nanoparticles. As nucleic acid gene inhibitors are promising strategies to treat inflammatory diseases, this review focuses on the barriers, from manufacturing issues to cellular/subcellular delivery, that still need to be overcome to deliver the nucleic acids to sites of inflammation other than the liver. Furthermore, key examples of applications in rheumatoid arthritis, inflammatory bowel, and lung diseases are presented as case studies of systemic, oral, and lung nucleic acid delivery.
Collapse
|
83
|
Ding G, Wang T, Han Z, Tian L, Cheng Q, Luo L, Zhao B, Wang C, Feng S, Wang L, Meng Z, Meng Q. Substance P containing peptide gene delivery vectors for specifically transfecting glioma cells mediated by a neurokinin-1 receptor. J Mater Chem B 2021; 9:6347-6356. [PMID: 34251002 DOI: 10.1039/d1tb00577d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene therapy provides a promising treatment for glioblastoma multiforme, which mainly depends on two key aspects, crossing the blood brain barrier (BBB) effectively and transfecting target cells selectively. In this work, we reported a series of peptide-based vectors for transfecting glioma cells specifically consisting of several functional segments including a cell-penetrating peptide, targeting segment substance P (SP), an endosomal escape segment, a PEG linker and a stearyl moiety. The conformations and DNA-loading capacities of peptide vectors and the self-assembly behaviors of peptide/pGL3 complexes were characterized. The in vitro gene transfection was evaluated in U87, 293T-NK1R, and normal 293T cell lines. The transfection efficiency ratio of P-02 (SP-PEG4-K(C18)-(LLHH)3-R9) to Lipo2000 in the U87 cell line was about 36% higher than that in the 293T cell line. The neurokinin-1 receptor (NK1R) in U87 cells mediated the transfection process via interactions with the ligand SP in peptide vectors. The mechanism of NK1R mediated transfection was demonstrated by the use of gene-modified 293T cells expressing NK1R, as well as the gene transfection in the presence of free SP. Besides, P-02 could promote the pGL3 plasmids to cross the BBB model in vitro and achieved the EGFP gene transfection in the brain of zebrafish successfully. The designed peptide vectors, owing to their specific transfection capacity in glioma cells, provide a potential approach for glioblastoma multiforme gene therapy.
Collapse
Affiliation(s)
- Guihua Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Impact of Poly (Styrene-Acrylic Acid) Latex Nanoparticles on Colorectal and Cervical Cancer Cells. Polymers (Basel) 2021; 13:polym13132025. [PMID: 34206194 PMCID: PMC8271488 DOI: 10.3390/polym13132025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 01/22/2023] Open
Abstract
Polymer nanoparticles are a promising approach for cancer treatment and detection, due to their biocompatibility, biodegradability, targeting capabilities, capacity for drug loading and long blood circulation time. This study aims to evaluate the impact of poly (styrene–acrylic acid) latex particles on colorectal and cervical cancer cells for anti-tumor efficiency. Latex particles were synthesized by a surfactant-free radical emulsion polymerization process and the obtained polymer particles were characterized in terms of size, size distribution, morphology using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and electrokinetic property (i.e., zeta potential). Human colorectal and cervical cancer, and normal cell lines, were then treated with different concentrations of poly (styrene–acrylic acid) latex particles. The cell morphology changes were pointed out using an optical microscope and the nanoparticles’ (NPs) cell cytotoxicity was evaluated using MTT assay. The obtained results showed that poly (styrene–acrylic acid) latex particles are effective against colorectal and cervical cancer cells if treated with an appropriate particle concentration for 48 h. In addition, it showed that normal cells are the least affected by this treatment. This indicates that these NPs are safe as a drug delivery carrier when used at a low concentration.
Collapse
|
85
|
Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther 2021; 6:225. [PMID: 34099630 PMCID: PMC8182741 DOI: 10.1038/s41392-021-00631-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Over the past decades, great interest has been given to biomimetic nanoparticles (BNPs) since the rise of targeted drug delivery systems and biomimetic nanotechnology. Biological vectors including cell membranes, extracellular vesicles (EVs), and viruses are considered promising candidates for targeted delivery owing to their biocompatibility and biodegradability. BNPs, the integration of biological vectors and functional agents, are anticipated to load cargos or camouflage synthetic nanoparticles to achieve targeted delivery. Despite their excellent intrinsic properties, natural vectors are deliberately modified to endow multiple functions such as good permeability, improved loading capability, and high specificity. Through structural modification and transformation of the vectors, they are pervasively utilized as more effective vehicles that can deliver contrast agents, chemotherapy drugs, nucleic acids, and genes to target sites for refractory disease therapy. This review summarizes recent advances in targeted delivery vectors based on cell membranes, EVs, and viruses, highlighting the potential applications of BNPs in the fields of biomedical imaging and therapy industry, as well as discussing the possibility of clinical translation and exploitation trend of these BNPs.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Hong
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Ren
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
86
|
Luiz MT, Delello Di Filippo L, Tofani LB, de Araújo JTC, Dutra JAP, Marchetti JM, Chorilli M. Highlights in targeted nanoparticles as a delivery strategy for glioma treatment. Int J Pharm 2021; 604:120758. [PMID: 34090991 DOI: 10.1016/j.ijpharm.2021.120758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
Glioma is the most common type of Central Nervous System (CNS) neoplasia and it arises from glial cells. As glial cells are formed by different types of cells, glioma can be classified according to the cells that originate it or the malignancy grade. Glioblastoma multiforme is the most common and aggressive glioma. The high lethality of this tumor is related to the difficulty in performing surgical removal, chemotherapy, and radiotherapy in the CNS. To improve glioma treatment, a wide range of chemotherapeutics have been encapsulated in nanosystems to increase their ability to overcome the blood-brain barrier (BBB) and specifically reach the tumoral cells, reducing side effects and improving drug concentration in the tumor microenvironment. Several studies have investigated nanosystems covered with targeting ligands (e.g., proteins, peptides, aptamers, folate, and glucose) to increase the ability of drugs to cross the BBB and enhance their specificity to glioma through specific recognition by receptors on BBB and glioma cells. This review addresses the main targeting ligands used in nanosystems to overcome the BBB and promote the active targeting of drugs for glioma. Furthermore, the advantages of using these molecules in glioma treatment are discussed.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | | | - Larissa Bueno Tofani
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | | | | | - Juliana Maldonado Marchetti
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil.
| |
Collapse
|
87
|
Kim M, Bezprozvanny I. Differences in Recycling of Apolipoprotein E3 and E4-LDL Receptor Complexes-A Mechanistic Hypothesis. Int J Mol Sci 2021; 22:5030. [PMID: 34068576 PMCID: PMC8126166 DOI: 10.3390/ijms22095030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein E (ApoE) is a protein that plays an important role in the transport of fatty acids and cholesterol and in cellular signaling. On the surface of the cells, ApoE lipoparticles bind to low density lipoprotein receptors (LDLR) that mediate the uptake of the lipids and downstream signaling events. There are three alleles of the human ApoE gene. Presence of ApoE4 allele is a major risk factor for developing Alzheimer's disease (AD) and other disorders late in life, but the mechanisms responsible for biological differences between different ApoE isoforms are not well understood. We here propose that the differences between ApoE isoforms can be explained by differences in the pH-dependence of the association between ApoE3 and ApoE4 isoforms and LDL-A repeats of LDLR. As a result, the following endocytosis ApoE3-associated LDLRs are recycled back to the plasma membrane but ApoE4-containing LDLR complexes are trapped in late endosomes and targeted for degradation. The proposed mechanism is predicted to lead to a reduction in steady-state surface levels of LDLRs and impaired cellular signaling in ApoE4-expressing cells. We hope that this proposal will stimulate experimental research in this direction that allows the testing of our hypothesis.
Collapse
Affiliation(s)
- Meewhi Kim
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ilya Bezprozvanny
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
88
|
Stack T, Liu Y, Frey M, Bobbala S, Vincent M, Scott E. Enhancing subcutaneous injection and target tissue accumulation of nanoparticles via co-administration with macropinocytosis inhibitory nanoparticles (MiNP). NANOSCALE HORIZONS 2021; 6:393-400. [PMID: 33884386 PMCID: PMC8127988 DOI: 10.1039/d0nh00679c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A significant barrier to the application of nanoparticles for precision medicine is the mononuclear phagocyte system (MPS), a diverse population of phagocytic cells primarily located within the liver, spleen and lymph nodes. The majority of nanoparticles are indiscriminately cleared by the MPS via macropinocytosis before reaching their intended targets, resulting in side effects and decreased efficacy. Here, we demonstrate that the biodistribution and desired tissue accumulation of targeted nanoparticles can be significantly enhanced by co-injection with polymeric micelles containing the actin depolymerizing agent latrunculin A. These macropinocytosis inhibitory nanoparticles (MiNP) were found to selectively inhibit non-specific uptake of a second "effector" nanoparticle in vitro without impeding receptor-mediated endocytosis. In tumor bearing mice, co-injection with MiNP in a single multi-nanoparticle formulation significantly increased the accumulation of folate-receptor targeted nanoparticles within tumors. Furthermore, subcutaneous co-administration with MiNP allowed effector nanoparticles to achieve serum levels that rivaled a standard intravenous injection. This effect was only observed if the effector nanoparticles were injected within 24 h following MiNP administration, indicating a temporary avoidance of MPS cells. Co-injection with MiNP therefore allows reversible evasion of the MPS for targeted nanoparticles and presents a previously unexplored method of modulating and improving nanoparticle biodistribution following subcutaneous administration.
Collapse
Affiliation(s)
- Trevor Stack
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Molly Frey
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Michael Vincent
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Evan Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
89
|
Omabe K, Paris C, Lannes F, Taïeb D, Rocchi P. Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics 2021; 13:591. [PMID: 33919150 PMCID: PMC8143094 DOI: 10.3390/pharmaceutics13050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PC) is the most frequent male cancer in the Western world. Progression to Castration Resistant Prostate Cancer (CRPC) is a known consequence of androgen withdrawal therapy, making CRPC an end-stage disease. Combination of cytotoxic drugs and hormonal therapy/or genotherapy is a recognized modality for the treatment of advanced PC. However, this strategy is limited by poor bio-accessibility of the chemotherapy to tumor sites, resulting in an increased rate of collateral toxicity and incidence of multidrug resistance (MDR). Nanovectorization of these strategies has evolved to an effective approach to efficacious therapeutic outcomes. It offers the possibility to consolidate their antitumor activity through enhanced specific and less toxic active or passive targeting mechanisms, as well as enabling diagnostic imaging through theranostics. While studies on nanomedicine are common in other cancer types, only a few have focused on prostate cancer. This review provides an in-depth knowledge of the principles of nanotherapeutics and nanotheranostics, and how the application of this rapidly evolving technology can clinically impact CRPC treatment. With particular reference to respective nanovectors, we draw clinical and preclinical evidence, demonstrating the potentials and prospects of homing nanovectorization into CRPC treatment strategies.
Collapse
Affiliation(s)
- Kenneth Omabe
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Department of Biochemistry & Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki 84001, Nigeria
| | - Clément Paris
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - François Lannes
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - David Taïeb
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Biophysics and Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| |
Collapse
|
90
|
Mushtaq A, Li L, A A, Grøndahl L. Chitosan Nanomedicine in Cancer Therapy: Targeted Delivery and Cellular Uptake. Macromol Biosci 2021; 21:e2100005. [PMID: 33738977 DOI: 10.1002/mabi.202100005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Nanomedicine has gained much attention for the management and treatment of cancers due to the distinctive physicochemical properties of the drug-loaded particles. Chitosan's cationic nature is attractive for the development of such particles for drug delivery, transfection, and controlled release. The particle properties can be improved by modification of the polymer or the particle themselves. The physicochemical properties of chitosan particles are analyzed in 126 recent studies, which allows to highlight their impact on passive and active targeted drug delivery, cellular uptake, and tumor growth inhibition (TGI). From 2012 to 2019, out of 40 in vivo studies, only 4 studies are found reporting a reduction in tumor size by using chitosan particles while all other studies reported tumor growth inhibition relative to controls. A total of 23 studies are analyzed for cellular uptake including 12 studies reporting cellular uptake mechanisms. Understanding and exploiting the processes involved in targeted delivery, endocytosis, and exocytosis by controlling the physicochemical properties of chitosan particles are important for the development of safe and efficient nanomedicine. It is concluded based on the recent literature available on chitosan particles that combination therapies can play a pivotal role in transformation of chitosan nanomedicine from bench to bedside.
Collapse
Affiliation(s)
- Asim Mushtaq
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Anitha A
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
91
|
Flanagan SP, Fogel R, Edkins AL, Ho LSJ, Limson J. Nonspecific nuclear uptake of anti-MUC1 aptamers by dead cells: the role of cell viability monitoring in aptamer targeting of membrane-bound protein cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1191-1203. [PMID: 33605950 DOI: 10.1039/d0ay01878c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most aptamers targeting cell-expressed antigens are intended for in vivo application, however, these sequences are commonly generated in vitro against synthetic oligopeptide epitopes or recombinant proteins. As these in vitro analogues frequently do not mimic the in vivo target within an endogenous environment, the evolved aptamers are often prone to nonspecific binding. The presence of dead cells and cellular debris further complicate aptamer targeting, due to their high nonspecific affinities to single-stranded DNA. Despite these known limitations, assessment of cell viability and/or the removal of dead cells is rarely applied as part of the methodology during in vivo testing of aptamer binding. Furthermore, the extent and route(s) by which dead cells uptake existing aptamers remains to be determined in the literature. For this purpose, the previously reported aptamer sequences 5TR1, 5TR4, 5TRG2 and S22 - enriched against the MUC1 tumour marker of the mucin glycoprotein family - were used as model sequences to evaluate the influence of cell viability and the presence of nontarget cell-expressed protein on aptamer binding to the MUC1 expressing human cancer cell lines MCF-7, Hs578T, SW480, and SW620. From fluorescence microscopy analysis, all tested aptamers demonstrated extensive nonspecific uptake within the nuclei of dead cells with compromised membrane integrities. Using fluorescent-activated cell sorting (FACS), the inclusion of excess double-stranded DNA as a blocking agent showed no effect on nonspecific aptamer uptake by dead cells. Further nonspecific binding to cell-membrane bound and intracellular protein was evident for each aptamer sequence, as assessed by southwestern blotting and FACS. These factors likely contributed to the ∼120-fold greater binding response of the 5TR1 aptamer to dead MCF-7 cells over equivalent live cell populations. The identification of dead cells and cellular debris using viability stains and the subsequent exclusion of these cells from FACS analysis was identified as an essential requirement for the evaluation of aptamer binding specificity to live cell populations of the cancer cell lines MCF-7, Hs578T and SW480. The research findings stress the importance of dead cell uptake and more comprehensive cell viability screening to validate novel aptamer sequences for diagnostic and therapeutic application.
Collapse
|
92
|
Ding L, Tang S, Wyatt TA, Knoell DL, Oupický D. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. J Control Release 2021; 330:977-991. [PMID: 33181203 DOI: 10.1016/j.jconrel.2020.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Lung diseases are a leading cause of mortality worldwide and there exists urgent need for new therapies. Approval of the first siRNA treatments in humans has opened the door for further exploration of this therapeutic strategy for other disease states. Pulmonary delivery of siRNA-based biopharmaceuticals offers the potential to address multiple unmet medical needs in lung-related diseases because of the specific physiology of the lung and characteristic properties of siRNA. Inhalation-based siRNA delivery designed for efficient, targeted delivery to specific cells within the lung holds great promise. Efficient delivery of siRNA directly to the lung, however, is relatively complex. This review focuses on the barriers that impact pulmonary siRNA delivery and successful recent approaches to advance this field forward. We focus on the pulmonary barriers that affect siRNA delivery, the disease-dependent pathological changes and their role in pulmonary disease and impact on siRNA delivery, as well as the recent development on the pulmonary siRNA delivery systems.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Department of Veterans Affairs Nebraska, Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
93
|
Zhu Y, Liang J, Gao C, Wang A, Xia J, Hong C, Zhong Z, Zuo Z, Kim J, Ren H, Li S, Wang Q, Zhang F, Wang J. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J Control Release 2021; 330:641-657. [DOI: 10.1016/j.jconrel.2020.12.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 12/12/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
|
94
|
Zhang C, Wang X, Du J, Gu Z, Zhao Y. Reactive Oxygen Species-Regulating Strategies Based on Nanomaterials for Disease Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002797. [PMID: 33552863 PMCID: PMC7856897 DOI: 10.1002/advs.202002797] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) play an essential role in physiological and pathological processes. Studies on the regulation of ROS for disease treatments have caused wide concern, mainly involving the topics in ROS-regulating therapy such as antioxidant therapy triggered by ROS scavengers and ROS-induced toxic therapy mediated by ROS-elevation agents. Benefiting from the remarkable advances of nanotechnology, a large number of nanomaterials with the ROS-regulating ability are developed to seek new and effective ROS-related nanotherapeutic modalities or nanomedicines. Although considerable achievements have been made in ROS-based nanomedicines for disease treatments, some fundamental but key questions such as the rational design principle for ROS-related nanomaterials are held in low regard. Here, the design principle can serve as the initial framework for scientists and technicians to design and optimize the ROS-regulating nanomedicines, thereby minimizing the gap of nanomedicines for biomedical application during the design stage. Herein, an overview of the current progress of ROS-associated nanomedicines in disease treatments is summarized. And then, by particularly addressing these known strategies in ROS-associated therapy, several fundamental and key principles for the design of ROS-associated nanomedicines are presented. Finally, future perspectives are also discussed in depth for the development of ROS-associated nanomedicines.
Collapse
Affiliation(s)
- Chenyang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiangfeng Du
- Department of Medical ImagingShanxi Medical UniversityTaiyuan030001China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuliang Zhao
- College of Materials Science and Optoelectronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaChinese Academy of SciencesBeijing100190China
- GBA Research Innovation Institute for NanotechnologyGuangdong510700China
| |
Collapse
|
95
|
Injectable Glycol Chitosan Hydrogel Containing Folic Acid-Functionalized Cyclodextrin-Paclitaxel Complex for Breast Cancer Therapy. NANOMATERIALS 2021; 11:nano11020317. [PMID: 33513732 PMCID: PMC7910883 DOI: 10.3390/nano11020317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
We prepared a drug carrier which consisted of injectable methacrylated glycol chitosan (MGC) hydrogel, and a conjugate of 6-monodeoxy-6-monoamino-β-cyclodextrin⋅hydrochloride (6-NH2-β-CD⋅HCl), polyethylene glycol (PEG), and folic acid (FA) for the local delivery and improved cellular uptake of paclitaxel (PTX) (MGC/CDPF-ic-PTX). CDPF refers to a conjugate of 6-NH2-β-CD⋅HCl, PEG, and FA. The anti-cancer effect was investigated using a xenograft mouse model. As controls, the animal study on MGC/PTX and MGC/CD-ic-PTX was performed. The swelling ratio of all samples was analyzed for 7 days, and it showed a gradual increase for 3 days and a maintained state afterward. From the release result, the MGC-based samples have an initial burst for 1 day and a sustained release for 7 days. Results of cytotoxicity and animal study showed the biocompatibility and superior anti-cancer effect of MGC/CDPF-ic-PTX against breast cancer. Furthermore, histological results showed the anti-cancer capacity of MGC/CDPF-ic-PTX against breast cancer. These findings suggest that MGC/CDPF-ic-PTX has clinical potential for breast cancer therapy.
Collapse
|
96
|
McCrorie P, Vasey CE, Smith SJ, Marlow M, Alexander C, Rahman R. Biomedical engineering approaches to enhance therapeutic delivery for malignant glioma. J Control Release 2020; 328:917-931. [DOI: 10.1016/j.jconrel.2020.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022]
|
97
|
Zhang G, Huang L, Wu J, Liu Y, Zhang Z, Guan Q. Doxorubicin-loaded folate-mediated pH-responsive micelle based on Bletilla striata polysaccharide: Release mechanism, cellular uptake mechanism, distribution, pharmacokinetics, and antitumor effects. Int J Biol Macromol 2020; 164:566-577. [DOI: 10.1016/j.ijbiomac.2020.07.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
|
98
|
Fu X, Shi Y, Qi T, Qiu S, Huang Y, Zhao X, Sun Q, Lin G. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduct Target Ther 2020; 5:262. [PMID: 33154350 PMCID: PMC7644763 DOI: 10.1038/s41392-020-00342-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Therapeutic efficacy against cancer relies heavily on the ability of the therapeutic agents to reach their final targets. The optimal targets of most cancer therapeutic agents are usually biological macromolecules at the subcellular level, which play a key role in carcinogenesis. Therefore, to improve the therapeutic efficiency of drugs, researchers need to focus on delivering not only the therapeutic agents to the target tissues and cells but also the drugs to the relevant subcellular structures. In this review, we discuss the most recent construction strategies and release patterns of various cancer cell subcellular-targeting nanoformulations, aiming at providing guidance in the overall design of precise nanomedicine. Additionally, future challenges and potential perspectives are illustrated in the hope of enhancing anticancer efficacy and accelerating the translational progress of precise nanomedicine.
Collapse
Affiliation(s)
- Xianglei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Tongtong Qi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shengnan Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yi Huang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaogang Zhao
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Qifeng Sun
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Guimei Lin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
99
|
Xu Y, Liu R, Dai Z. Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing. NANOSCALE 2020; 12:21001-21014. [PMID: 33078813 DOI: 10.1039/d0nr05452f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CRISPR-Cas9, the breakthrough genome-editing technology, has emerged as a promising tool to prevent and cure various diseases. The efficient genome editing technology strongly relies on the specific and effective delivery of CRISPR/Cas9 cargos. However, the lack of a safe, specific, and efficient non-viral delivery system for in vivo genome editing remains a major limit for its clinical translation. In this review, we will first briefly introduce the working mechanism of CRISPR/Cas9 and the patterns of CRISPR/Cas9 delivery. Furthermore, the physiological obstacles for the delivery process in vivo are elaborated. Finally, the key considerations will be deeply discussed in designing non-viral nanovectors for therapeutic CRISPR/Cas9 delivery in vivo, including the effective encapsulation of large-size macromolecules, targeting specific tissues and cells, efficient endosomal escape and safety concerns of the vector systems, in the hope of inviting more comprehensive studies on the development of safe, specific, and efficient non-viral nanovectors for delivering a CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Yunxue Xu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China. and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
100
|
Sivaram AJ, Wardiana A, Alcantara S, Sonderegger SE, Fletcher NL, Houston ZH, Howard CB, Mahler SM, Alexander C, Kent SJ, Bell CA, Thurecht KJ. Controlling the Biological Fate of Micellar Nanoparticles: Balancing Stealth and Targeting. ACS NANO 2020; 14:13739-13753. [PMID: 32936613 DOI: 10.1021/acsnano.0c06033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Integrating nanomaterials with biological entities has led to the development of diagnostic tools and biotechnology-derived therapeutic products. However, to optimize the design of these hybrid bionanomaterials, it is essential to understand how controlling the biological interactions will influence desired outcomes. Ultimately, this knowledge will allow more rapid translation from the bench to the clinic. In this paper, we developed a micellar system that was assembled using modular antibody-polymer amphiphilic materials. The amphiphilic nature was established using either poly(ethylene glycol) (PEG) or a single-chain variable fragment (scFv) from an antibody as the hydrophile and a thermoresponsive polymer (poly(oligoethylene glycol) methyl ether methacrylate) as the hydrophobe. By varying the ratios of these components, a series of nanoparticles with different antibody content was self-assembled, where the surface presentation of targeting ligand was carefully controlled. In vitro and in vivo analysis of these systems identified a mismatch between the optimal targeting ligand density to achieve maximum cell association in vitro compared to tumor accumulation in vivo. For this system, we determined an optimum antibody density for both longer circulation and enhanced targeting to tumors that balanced stealthiness of the particle (to evade immune recognition as determined in both mouse models and in whole human blood) with enhanced accumulation achieved through receptor binding on tumor cells in solid tumors. This approach provides fundamental insights into how different antibody densities affect the interaction of designed nanoparticles with both target cells and immune cells, thereby offering a method to probe the intricate interplay between increased targeting efficiency and the subsequent immune response to nanoparticles.
Collapse
Affiliation(s)
- Amal J Sivaram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andri Wardiana
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sheilajen Alcantara
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Stefan E Sonderegger
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nicholas L Fletcher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zachary H Houston
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cameron Alexander
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia
| | - Craig A Bell
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|