51
|
Hu F, Gao Q, Liu J, Chen W, Zheng C, Bai Q, Sun N, Zhang W, Zhang Y, Lu T. Smart microneedle patches for wound healing and management. J Mater Chem B 2023; 11:2830-2851. [PMID: 36916631 DOI: 10.1039/d2tb02596e] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The number of patients with non-healing wounds is generally increasing globally, placing a huge social and economic burden on every country. The complexity of the wound-healing process remains a major health challenge despite the numerous studies that have been reported on conventional wound dressings. Therefore, a therapeutic system that combines diagnostic and therapeutic modalities is essential to monitor wound-related biomarkers and facilitate wound healing in real time. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. Their advantages are mainly reflected in painless transdermal drug delivery, good biocompatibility, and ease of self-administration. In this work, we review recent advances in the use of microneedle patches for wound healing and monitoring. The paper first provides a brief overview of the skin structure and the wound healing process, and then discusses the current state of research and prospects for the development of wound-related biomarkers and their real-time monitoring based on microneedle sensors. It summarizes the current state of research based on the unique design of microneedle patches, including biomimetic, conductive, and environmentally responsive, to achieve wound healing. It further summarizes the prospects for the application of different microneedle-based drug delivery modalities and drug delivery substances for wound healing, due to their superior transdermal drug delivery advantages. It concludes with challenges and expectations for the use of smart microneedle patches for wound healing and management.
Collapse
Affiliation(s)
- Fangfang Hu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Qian Gao
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Jinxi Liu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenting Chen
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Que Bai
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Na Sun
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenhui Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| |
Collapse
|
52
|
Pasaribu KM, Ilyas S, Tamrin T, Radecka I, Swingler S, Gupta A, Stamboulis AG, Gea S. Bioactive bacterial cellulose wound dressings for burns with collagen in-situ and chitosan ex-situ impregnation. Int J Biol Macromol 2023; 230:123118. [PMID: 36599383 DOI: 10.1016/j.ijbiomac.2022.123118] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Bacterial cellulose (BC) is a biopolymer that commonly used for wound dressings regarding to its high in-vitro and in-vivo biocompatibility. Moreover, the three-dimensional fibers in BC become an advantageous for bioactive wound dressing application as they serve as templates for impregnation other supportive materials. Chitosan and collagen are two of the materials that can be impregnated to optimize the BC properties for serve as wound dressing material. Collagen can help skin cells grow on the wound sites, where chitosan has anti-bacterial properties and can bind red blood cells. BC-based wound dressings were made by impregnating collagen via in-situ method followed by immersing chitosan via ex-situ method into BC fibers for 24 h. The intermolecular interactions of amine groups in the wound dressing were confirmed by FTIR. The XRD diffractogram showed wider peaks at 14.2°, 16.6°, and 22.4° due to the presence of collagen and chitosan molecules in the BC fibers. SEM images confirmed that chitosan and collagen could penetrate BC fibers well. Other tests, such as water content, porosity, antibacterial properties, and haemocompatibility, indicated that the wound dressing was non-hemolytic. In-vivo test indicated that BC/collagen/chitosan wound dressing supported the wound healing process on second degree burn.
Collapse
Affiliation(s)
- Khatarina Meldawati Pasaribu
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia; Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia.
| | - Tamrin Tamrin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia.
| | - Izabela Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Sam Swingler
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; School of Allied Health and Midwifery, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Jerome K Jerome Building, Gorway Road, Walsall WS1 3BD, UK.
| | - Artemis G Stamboulis
- Biomaterials Research Group, School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2SE, United Kingdom
| | - Saharman Gea
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia; Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia.
| |
Collapse
|
53
|
Shindhe PS, K P, Killedar RS, Prasannan D, A K. An integrated management (Ayurveda and Modern medicine) of accidental burn injury: A case study. J Ayurveda Integr Med 2023; 14:100691. [PMID: 36841195 PMCID: PMC9988564 DOI: 10.1016/j.jaim.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/04/2022] [Accepted: 01/18/2023] [Indexed: 02/27/2023] Open
Abstract
Burn injuries are frequent, horrifying, and life-threatening conditions that are still challenging to cure. Complications like scarring, keloid formation, and contractures are the main challenges for the treating surgeon. The Ayurvedic classics explain different treatment modalities for the management of burn wounds, like oral medicines, topical applications prepared with herbal medicines, ghee, oil, and typical wound dressing techniques like Patraadaana (wound covering with medicinal leaves), and fumigation therapy, etc. Here we report a case of accidental burn injury with a TBSA of 27% First degree (superficial) and 15% second degree (deep partial-thickness) burns with complaints of fever and burning sensation at the burn site. On the basis of the symptoms listed in the classical texts of Ayurveda, the case was diagnosed as Pramadadagdha (accidental burn). To properly manage the burn wound, an integrated therapy strategy was designed. Ropanaghrita (medicated ghee) was applied locally, followed by the application of Tinospora cordifolia leaves to cover the wound, fumigation therapy, and oral medications to hasten wound healing and reduce infection. In the first seven days, modern medicine was used as emergency care in addition to Ayurvedic management. Within 60 days of receiving treatment, the burn wound had entirely healed, and the patient was able to resume her regular work activities. In the current situation, the combined strategy produced encouraging burn management outcomes.
Collapse
Affiliation(s)
- Pradeep S Shindhe
- Dept of Shalya Tantra, KAHER'S Shri B M Kankanawadi Ayurveda Mahavidhyalaya, Shahapur, Belagavi, Karnataka, India.
| | - Priyanka K
- Dept of Shalya Tantra, KAHER'S Shri B M Kankanawadi Ayurveda Mahavidhyalaya, Shahapur, Belagavi, Karnataka, India
| | - Ramesh S Killedar
- Dept of Shalya Tantra, KAHER'S Shri B M Kankanawadi Ayurveda Mahavidhyalaya, Shahapur, Belagavi, Karnataka, India
| | - Dhrushnu Prasannan
- Dept of Shalya Tantra, KAHER'S Shri B M Kankanawadi Ayurveda Mahavidhyalaya, Shahapur, Belagavi, Karnataka, India
| | - Kirthi A
- Dept of Shalya Tantra, KAHER'S Shri B M Kankanawadi Ayurveda Mahavidhyalaya, Shahapur, Belagavi, Karnataka, India
| |
Collapse
|
54
|
Zulkefli N, Che Zahari CNM, Sayuti NH, Kamarudin AA, Saad N, Hamezah HS, Bunawan H, Baharum SN, Mediani A, Ahmed QU, Ismail AFH, Sarian MN. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int J Mol Sci 2023; 24:ijms24054607. [PMID: 36902038 PMCID: PMC10003005 DOI: 10.3390/ijms24054607] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 03/02/2023] Open
Abstract
Wounds are considered to be a serious problem that affects the healthcare sector in many countries, primarily due to diabetes and obesity. Wounds become worse because of unhealthy lifestyles and habits. Wound healing is a complicated physiological process that is essential for restoring the epithelial barrier after an injury. Numerous studies have reported that flavonoids possess wound-healing properties due to their well-acclaimed anti-inflammatory, angiogenesis, re-epithelialization, and antioxidant effects. They have been shown to be able to act on the wound-healing process via expression of biomarkers respective to the pathways that mainly include Wnt/β-catenin, Hippo, Transforming Growth Factor-beta (TGF-β), Hedgehog, c-Jun N-Terminal Kinase (JNK), NF-E2-related factor 2/antioxidant responsive element (Nrf2/ARE), Nuclear Factor Kappa B (NF-κB), MAPK/ERK, Ras/Raf/MEK/ERK, phosphatidylinositol 3-kinase (PI3K)/Akt, Nitric oxide (NO) pathways, etc. Hence, we have compiled existing evidence on the manipulation of flavonoids towards achieving skin wound healing, together with current limitations and future perspectives in support of these polyphenolic compounds as safe wound-healing agents, in this review.
Collapse
Affiliation(s)
- Nabilah Zulkefli
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Nor Hafiza Sayuti
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ammar Akram Kamarudin
- UKM Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur 56000, Selangor, Malaysia
| | - Norazalina Saad
- Laboratory of Cancer Research UPM-MAKNA (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Qamar Uddin Ahmed
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Fahmi Harun Ismail
- Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence: (A.F.H.I.); (M.N.S.)
| |
Collapse
|
55
|
Capêto AP, Azevedo-Silva J, Sousa S, Pintado M, Guimarães AS, Oliveira ALS. Synthesis of Bio-Based Polyester from Microbial Lipidic Residue Intended for Biomedical Application. Int J Mol Sci 2023; 24:4419. [PMID: 36901850 PMCID: PMC10003017 DOI: 10.3390/ijms24054419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
In the last decade, selectively tuned bio-based polyesters have been increasingly used for their clinical potential in several biomedical applications, such as tissue engineering, wound healing, and drug delivery. With a biomedical application in mind, a flexible polyester was produced by melt polycondensation using the microbial oil residue collected after the distillation of β-farnesene (FDR) produced industrially by genetically modified yeast, Saccharomyces cerevisiae. After characterization, the polyester exhibited elongation up to 150% and presented Tg of -51.2 °C and Tm of 169.8 °C. In vitro degradation revealed a mass loss of about 87% after storage in PBS solution for 11 weeks under accelerated conditions (40 °C, RH = 75%). The water contact angle revealed a hydrophilic character, and biocompatibility with skin cells was demonstrated. 3D and 2D scaffolds were produced by salt-leaching, and a controlled release study at 30 °C was performed with Rhodamine B base (RBB, 3D) and curcumin (CRC, 2D), showing a diffusion-controlled mechanism with about 29.3% of RBB released after 48 h and 50.4% of CRC after 7 h. This polymer offers a sustainable and eco-friendly alternative for the potential use of the controlled release of active principles for wound dressing applications.
Collapse
Affiliation(s)
- Ana P. Capêto
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - Sérgio Sousa
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| | - Ana S. Guimarães
- CONSTRUCT, Faculdade de Engenharia do Porto (FEUP), Universidade do Porto, Rua Doutor Roberto Frias, 4200-465 Porto, Portugal
| | - Ana L. S. Oliveira
- Centro de Biotecnologia e Química Fina (CBQF)-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo de Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
56
|
Electrospun Naringin-Loaded Fibers for Preventing Scar Formation during Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030747. [PMID: 36986609 PMCID: PMC10053957 DOI: 10.3390/pharmaceutics15030747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Hypertrophic scars (HTSs) are aberrant structures that develop where skin is injured complexly and represent the result of a chronic inflammation as a healing response. To date, there is no satisfactory prevention option for HTSs, which is due to the complexity of multiple mechanisms behind the formation of these structures. The present work aimed to propose Biofiber (Biodegradable fiber), an advanced textured electrospun dressing, as a suitable solution for HTS formation in complex wounds. Biofiber has been designed as a 3-day long-term treatment to protect the healing environment and enhance wound care practices. Its textured matrix consists of homogeneous and well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) electrospun fibers (size 3.825 ± 1.12 µm) loaded with Naringin (NG, 2.0% w/w), a natural antifibrotic agent. The structural units contribute to achieve an optimal fluid handling capacity demonstrated through a moderate hydrophobic wettability behavior (109.3 ± 2.3°), and a suitable balance between absorbency (389.8 ± 58.16%) and moisture vapor transmission rate (MVTR, 2645 ± 60.43 g/m2 day). The flexibility and conformability of Biofiber to the body surfaces is due to its innovative circular texture, that also allow it to obtain finer mechanical properties after 72 h in contact with Simulated Wound Fluid (SWF), with an elongation of 352.6 ± 36.10%, and a great tenacity (0.25 ± 0.03 Mpa). The ancillary action of NG results in a prolonged anti-fibrotic effect on Normal Human Dermal Fibroblasts (NHDF), through the controlled release of NG for 3 days. The prophylactic action was highlighted at day 3 with the down regulation of the major factors involved in the fibrotic process: Transforming Growth Factor β1 (TGF-β1), Collagen Type 1 alpha 1 chain (COL1A1), and α-smooth muscle actin (α-SMA). No significant anti-fibrotic effect has been demonstrated on Hypertrophic Human Fibroblasts derived from scars (HSF), proving the potential of Biofiber to minimize HTSs in the process of early wound healing as a prophylactic therapy.
Collapse
|
57
|
Uchida DT, Bruschi ML. 3D Printing as a Technological Strategy for the Personalized Treatment of Wound Healing. AAPS PharmSciTech 2023; 24:41. [PMID: 36698047 PMCID: PMC9876655 DOI: 10.1208/s12249-023-02503-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Wound healing is a dynamic process which involves stages of hemostasis, inflammation, proliferation and remodeling. Any error in this process results in abnormal wound healing, generating financial burdens for health systems and even affecting the physical and mental health of the patient. Traditional dressings do not meet the complexities of ideal treatment in all types of wounds. For this reason, in the last decades, different materials for drug delivery and for the treatment of wounds have been proposed reaching novel level of standards, such as 3D printing techniques. The use of natural or synthetic polymers, and the correct design of these printed products loaded with cells and/or combined with active compounds, can generate an effective system for the treatment of wounds, improving the healing process and generating customized dressings according to the patient needs. This manuscript provides a comprehensive review of different types of 3D printing techniques, as well as its use in wound healing and its different stages, including the advantages and limitations of additive manufacturing and future perspectives.
Collapse
Affiliation(s)
- Denise Tiemi Uchida
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Avenida Colombo, n. 5790, K68, S05, 87020-900, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Avenida Colombo, n. 5790, K68, S05, 87020-900, Maringa, PR, Brazil.
| |
Collapse
|
58
|
Muzammil S, Neves Cruz J, Mumtaz R, Rasul I, Hayat S, Khan MA, Khan AM, Ijaz MU, Lima RR, Zubair M. Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts. Molecules 2023; 28:molecules28020710. [PMID: 36677768 PMCID: PMC9864430 DOI: 10.3390/molecules28020710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
The delayed healing of wounds among people with diabetes is a severe problem worldwide. Hyperglycemia and increased levels of free radicals are the major inhibiting factors of wound healing in diabetic patients. Plant extracts are a rich source of polyphenols, allowing them to be an effective agent for wound healing. Drying temperature and extraction solvent highly affect the stability of polyphenols in plant materials. However, there is a need to optimize the extraction protocol to ensure the efficacy of the final product. For this purpose, the effects of drying temperature and solvents on the polyphenolic composition and diabetic wound healing activity of Moringa oleifera leaves were examined in the present research. Fresh leaves were oven dried at different temperatures (10 °C, 30 °C, 50 °C, and 100 °C) and extracted in three solvents (acetone, ethanol, and methanol) to obtain twelve extracts in total. The extracts were assessed for free radical scavenging and antihyperglycemic effects using DPPH (2,2-diphenylpicrylhydrazyl) and α- glucosidase inhibition assays. Alongside this, a scratch assay was performed to evaluate the cell migration activity of M. oleifera on the human retinal pigment epithelial cell line. The cytotoxicity of the plant extracts was assessed on human retinal pigment epithelial (RPE) and hepatocellular carcinoma (Huh-7) cell lines. Using high-performance liquid chromatography, phenolic compounds in extracts of M. oleifera were identified. We found that an ethanol-based extract prepared by drying the leaves at 10 °C contained the highest amounts of identified polyphenols. Moringa oleifera extracts showed remarkable antioxidant, antidiabetic, and cell migration properties. The best results were obtained with leaves dried at 10 °C and 30 °C. Decreased activities were observed with drying temperatures of 50 °C and above. Moreover, M. oleifera extracts exhibited no toxicity on RPE cells, and the same extracts were cytotoxic for Huh-7 cells. This study revealed that M. oleifera leaves extracts can enhance wound healing in diabetic conditions due to their antihyperglycemic, antioxidant, and cell migration effects. The leaves of this plant can be an excellent therapeutic option when extracted at optimum conditions.
Collapse
Affiliation(s)
- Saima Muzammil
- Department of Microbiology, Government College University (GCU), Faisalabad 38000, Pakistan
| | - Jorddy Neves Cruz
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Rabia Mumtaz
- Department of Bioinformatics and Biotechnology, Government College University (GCU), Faisalabad 38000, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University (GCU), Faisalabad 38000, Pakistan
| | - Sumreen Hayat
- Department of Microbiology, Government College University (GCU), Faisalabad 38000, Pakistan
| | - Muhammad Asaf Khan
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan 59300, Pakistan
| | - Arif Muhammad Khan
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University (GCU), Faisalabad 38000, Pakistan
- Correspondence: ; Tel.:+92-3327-797-527
| |
Collapse
|
59
|
Wei Q, Liu X, Su JL, Wang YX, Chu ZQ, Ma K, Huang QL, Li HH, Fu XB, Zhang CP. Small extracellular vesicles from mesenchymal stem cells: A potential Weapon for chronic non-healing wound treatment. Front Bioeng Biotechnol 2023; 10:1083459. [PMID: 36704302 PMCID: PMC9872203 DOI: 10.3389/fbioe.2022.1083459] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic non-healing wounds have posed a severe threat to patients mentally and physically. Behavior dysregulation of remaining cells at wound sites is recognized as the chief culprit to destroy healing process and hinders wound healing. Therefore, regulating and restoring normal cellular behavior is the core of chronic non-healing wound treatment. In recent years, the therapy with mesenchymal stem cells (MSCs) has become a promising option for chronic wound healing and the efficacy has increasingly been attributed to their exocrine functions. Small extracellular vesicles derived from MSCs (MSC-sEVs) are reported to benefit almost all stages of wound healing by regulating the cellular behavior to participate in the process of inflammatory response, angiogenesis, re-epithelization, and scarless healing. Here, we describe the characteristics of MSC-sEVs and discuss their therapeutic potential in chronic wound treatment. Additionally, we also provide an overview of the application avenues of MSC-sEVs in wound treatment. Finally, we summarize strategies for large-scale production and engineering of MSC-sEVs. This review may possibly provide meaningful guidance for chronic wound treatment with MSC-sEVs.
Collapse
Affiliation(s)
- Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Jian-Long Su
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ya-Xi Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Zi-Qiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
- Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Research Unit of Trauma Care, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
| | - Qi-Lin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Hai-Hong Li
- Department of Wound Repair, Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
- Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Research Unit of Trauma Care, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
| | - Cui-Ping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and the 4th Medical Center of Chinese, PLA General Hospital, Beijing, China
- Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Research Unit of Trauma Care, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
| |
Collapse
|
60
|
Curcumin in Wound Healing-A Bibliometric Analysis. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010143. [PMID: 36676091 PMCID: PMC9866018 DOI: 10.3390/life13010143] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Curcumin has been widely used to treat a variety of diseases and disorders since ancient times, most notably for the purpose of healing wounds. Despite the large number of available reviews on this topic, a bibliometric tool-based meta-analysis is missing in the literature. Scope and approach: To evaluate the influence and significance of the countries, journals, organizations and authors that have contributed the most to this topic, the popular bibliometric markers, including article count, citation count, and Hirsch index (H-index), are taken into account. Their collaborative networks and keyword co-occurrence along with the trend analysis are also sketched out using the VOSviewer software. To the best of our knowledge, this is the first bibliometric review on the topic and hence it is envisaged that it will attract researchers to explore future research dimensions in the related field. KEY FINDINGS AND CONCLUSIONS India provided the most articles, making up more than 27.49 percent of the entire corpus. The International Journal of Biological Macromolecules published the most articles (44), and it also received the most citations (2012). The Journal of Ethnopharmacology (28 articles) and Current Pharmaceutical Design (20 articles) were the next most prolific journals with 1231 and 812 citations, respectively. The results indicate a significant increase in both research and publications on the wound-healing properties of curcumin. Recent studies have concentrated on creating novel medicine-delivery systems that use nano-curcumin to boost the effect of the curcumin molecule in therapeutic targeting. It has also been observed that genetic engineering and biotechnology have recently been employed to address the commercial implications of curcumin.
Collapse
|
61
|
Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless skin repair. J Tissue Eng 2023; 14:20417314231185848. [PMID: 37529248 PMCID: PMC10388637 DOI: 10.1177/20417314231185848] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
Scars caused by skin injuries after burns, wounds, abrasions and operations have serious physical and psychological effects on patients. In recent years, the research of scar free wound repair has been greatly expanded. However, understanding the complex mechanisms of wound healing, in which various cells, cytokines and mechanical force interact, is critical to developing a treatment that can achieve scarless wound healing. Therefore, this paper reviews the types of wounds, the mechanism of scar formation in the healing process, and the current research progress on the dual consideration of wound healing and scar prevention, and some strategies for the treatment of scar free wound repair.
Collapse
Affiliation(s)
- Shengxi Zhou
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
62
|
Pectin-based inks development for 3D bioprinting of scaffolds. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
63
|
Saraiva MM, Campelo MDS, Câmara Neto JF, Lima ABN, Silva GDA, Dias ATDFF, Ricardo NMPS, Kaplan DL, Ribeiro MENP. Alginate/polyvinyl alcohol films for wound healing: Advantages and challenges. J Biomed Mater Res B Appl Biomater 2023; 111:220-233. [PMID: 35959858 DOI: 10.1002/jbm.b.35146] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The skin is the largest organ in the human body and its physical integrity must be maintained for body homeostasis and to prevent the entry of pathogenic microorganisms. Sodium alginate (SA) and polyvinyl alcohol (PVA) are two polymers widely used in films for wound dressing applications. Furthermore, blends between SA and PVA improve physical, mechanical and biological properties of the final wound healing material when compared to the individual polymers. Different drugs have been incorporated into SA/PVA-based films to improve wound healing activity. It is noteworthy that SA/PVA films can be crosslinked with Ca2+ or other agents, which improves physicochemical and biological properties. Thus, SA/PVA associations are promising for the biomedical field, as a potential alternative for wound treatment. This review focuses on the main techniques for obtaining SA/PVA films, their physical-chemical characterization, drug incorporation, and the advantages and challenges of these films for wound healing.
Collapse
Affiliation(s)
- Matheus Morais Saraiva
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Matheus da Silva Campelo
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - João Francisco Câmara Neto
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Beatriz Nogueira Lima
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - George de Almeida Silva
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Andre Tavares de Freitas Figueredo Dias
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Maria Elenir Nobre Pinho Ribeiro
- Department of Organic and Inorganic Chemistry, Sciences Center, Laboratory of Polymers and Materials Innovation, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
64
|
Dong J, Wu B, Tian W. How to maximize the therapeutic effect of exosomes on skin wounds in diabetes mellitus: Review and discussion. Front Endocrinol (Lausanne) 2023; 14:1146991. [PMID: 37051206 PMCID: PMC10083381 DOI: 10.3389/fendo.2023.1146991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic skin wound healing, especially in diabetes mellitus, is still unsolved. Although many efforts have been made to treat diabetic skin wounds, current strategies have achieved limited effectiveness. Nowadays, a great number of studies have shown that exosomes might be a promising approach for treating diabetic wounds. Many studies and reviews have focused on investigating and discussing the effectiveness and mechanism of exosomes. However, maximizing its value in treating skin wounds in diabetes mellitus requires further consideration. In this review, we reviewed and discussed the aspects that could be further improved in this process, including finding a better source of exosomes, engineering exosomes, adjusting dosage and frequency, and combining more efficient delivery methods. This review provided an overview and idea of what we can do to improve the therapeutic effect of exosomes on skin wounds in diabetes mellitus. Only by combining all the factors that affect the effectiveness of exosomes in diabetic wound healing can we further promote their clinical usefulness.
Collapse
Affiliation(s)
- Jia Dong
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Jia Dong, ; Weidong Tian,
| | - Bin Wu
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Jia Dong, ; Weidong Tian,
| |
Collapse
|
65
|
Single and multi-dose drug loaded electrospun fiber mats for wound healing applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
66
|
Ahmad N. In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics 2022; 15:42. [PMID: 36678671 PMCID: PMC9864730 DOI: 10.3390/pharmaceutics15010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic wound management represents a major challenge in the healthcare sector owing to its delayed wound-healing process progression and huge financial burden. In this regard, wound dressings provide an appropriate platform for facilitating wound healing for several decades. However, adherent traditional wound dressings do not provide effective wound healing for highly exudating chronic wounds and need the development of newer and innovative wound dressings to facilitate accelerated wound healing. In addition, these dressings need frequent changing, resulting in more pain and discomfort. In order to overcome these issues, a wide range of affordable and innovative modern wound dressings have been developed and explored recently to accelerate and improve the wound healing process. However, a comprehensive understanding of various in vitro and in vivo characterization methods being utilized for the evaluation of different modern wound dressings is lacking. In this context, an overview of modern dressings and their complete in vitro and in vivo characterization methods for wound healing assessment is provided in this review. Herein, various emerging modern wound dressings with advantages and challenges have also been reviewed. Furthermore, different in vitro wound healing assays and in vivo wound models being utilized for the evaluation of wound healing progression and wound healing rate using wound dressings are discussed in detail. Finally, a summary of modern wound dressings with challenges and the future outlook is highlighted.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
67
|
Sadeghi-Aghbash M, Rahimnejad M, Adeli H, Feizi F. Fabrication and development of PVA/Alginate nanofibrous mats containing Arnebia Euchroma extract as a burn wound dressing. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
68
|
Bahú JO, Melo de Andrade LR, Crivellin S, Khouri NG, Sousa SO, Fernandes LMI, Souza SDA, Concha LSC, Schiavon MIRB, Benites CI, Severino P, Souto EB, Concha VOC. Rotary Jet Spinning (RJS): A Key Process to Produce Biopolymeric Wound Dressings. Pharmaceutics 2022; 14:pharmaceutics14112500. [PMID: 36432691 PMCID: PMC9699276 DOI: 10.3390/pharmaceutics14112500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Wounds result from different causes (e.g., trauma, surgeries, and diabetic ulcers), requiring even extended periods of intensive care for healing, according to the patient's organism and treatment. Currently, wound dressings generated by polymeric fibers at micro and nanometric scales are promising for healing the injured area. They offer great surface area and porosity, mimicking the fibrous extracellular matrix structure, facilitating cell adhesion, migration, and proliferation, and accelerating the wound healing process. Such properties resulted in countless applications of these materials in biomedical and tissue engineering, also as drug delivery systems for bioactive molecules to help tissue regeneration. The techniques used to engineer these fibers include spinning methods (electro-, rotary jet-), airbrushing, and 3D printing. These techniques have important advantages, such as easy-handle procedure and process parameters variability (type of polymer), but encounter some scalability problems. RJS is described as a simple and low-cost technique resulting in high efficiency and yield for fiber production, also capable of bioactive agents' incorporation to improve the healing potential of RJS wound dressings. This review addresses the use of RJS to produce polymeric fibers, describing the concept, type of configuration, comparison to other spinning techniques, most commonly used polymers, and the relevant parameters that influence the manufacture of the fibers, for the ultimate use in the development of wound dressings.
Collapse
Affiliation(s)
- Juliana O. Bahú
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
- Correspondence: (J.O.B.); (E.B.S.)
| | - Lucas R. Melo de Andrade
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Mato Grosso do Sul, Brazil
| | - Sara Crivellin
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Nadia G. Khouri
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Sara O. Sousa
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema 09913-030, São Paulo, Brazil
| | - Luiza M. I. Fernandes
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema 09913-030, São Paulo, Brazil
| | - Samuel D. A. Souza
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Luz S. Cárdenas Concha
- Graduate School, Sciences and Engineering, National University of Trujillo, Av. Juan Pablo II S/N Urb. San Andrés, Trujillo 13011, La Libertad, Peru
| | - Maria I. R. B. Schiavon
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
| | - Cibelem I. Benites
- Federal Laboratory of Agricultural and Livestock Defense (LFDA-SP), Ministry of Agriculture, Livestock and Food Supply (MAPA), Campinas 70043-900, São Paulo, Brazil
| | - Patrícia Severino
- Technology and Research Institute (ITP), Tiradentes University (UNIT), Murilo Dantas Ave., Farolândia, nº 300, Aracaju 49032-490, Sergipe, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto (FFUP), Rua Jorge de Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, de Jorge Viterbo Ferreira, nº. 228, 4050-313 Porto, Portugal
- Correspondence: (J.O.B.); (E.B.S.)
| | - Viktor O. Cárdenas Concha
- INCT—BIOFABRIS, School of Chemical Engineering, University of Campinas, Albert Einstein Ave., Cidade Universitária Zeferino Vaz, nº. 500, Campinas 13083-852, São Paulo, Brazil
- Institute of Environmental, Chemical and Pharmaceutical Science, School of Chemical Engineering, Federal University of São Paulo (UNIFESP), São Nicolau St., Jd. Pitangueiras, Diadema 09913-030, São Paulo, Brazil
| |
Collapse
|
69
|
Mehravaran M, Haeri A, Rabbani S, Mortazavi SA, Torshabi M. Preparation and characterization of benzydamine hydrochloride-loaded lyophilized mucoadhesive wafers for the treatment of oral mucositis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
70
|
Hasson SO, Jasim AM, Salman SAK, Akrami S, Saki M, Hassan MA. Evaluation of antibacterial and wound-healing activities of alcoholic extract of Boswellia carterii, in vitro and in vivo study. J Cosmet Dermatol 2022; 21:6199-6208. [PMID: 35778893 DOI: 10.1111/jocd.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Today, despite the existence of various chemical and physical treatments for wound healing, the use of traditional medicine including herbal medicine is still widely used in most developed and developing countries. OBJECTIVES To investigate the antimicrobial and wound-healing activities of alcoholic extract of Boswellia carterii (BC) plant. METHODS The BC extract was prepared using alcohol 70%. The chemical groups and extract compounds were determined using Fourier transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC) analysis, respectively. The antimicrobial and wound-healing activities of different concentrations of BC extract and its combination with penicillin-streptomycin were assessed by agar well diffusion and infected wound model in albino rabbits, respectively. RESULTS FTIR revealed the presence of hydroxyl, amide, carboxyl, alkyl C-H stretches, aromatic C=C bends, and aromatic C-H bends in the BC extract. The HPLC revealed 14 different compounds including thujene (48.0%) as the most abundant ingredient. All BC concentrations showed antibacterial and wound-healing activities. The 10% concentration of BC extract had the strongest antibacterial effect. Also, the combination of penicillin-streptomycin with BC extract showed synergistic antibacterial effect. The 5% concentration of BC was the best wound-healing compound which healed the wound in 6 days and decreased the wound size 10 mm each day. CONCLUSIONS This study demonstrated the potential abilities of BC as an antibacterial and wound-healing medicinal plant. Further studies are required to justify the in vivo use of this plant.
Collapse
Affiliation(s)
- Shaimaa Obaid Hasson
- Department of Biotechnology, College of Biotechnology, Al-Qasim Green University, Al-Qasim, Iraq
| | - Adnan Mansour Jasim
- Department of Pharmacology, College of Veterinary Medicine, Al-Qasim Green University, Al-Qasim, Iraq
| | - Sumod Abdul Kadhem Salman
- Department of Microbiology, College of Veterinary Medicine, Al-Qasim Green University, Al-Qasim, Iraq
| | - Sousan Akrami
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
71
|
Design and Optimization of a Natural Medicine from Copaifera reticulata Ducke for Skin Wound Care. Polymers (Basel) 2022; 14:polym14214483. [DOI: 10.3390/polym14214483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
In this study, we developed a bioadhesive emulsion-filled gel containing a high amount of Copaifera reticulata Ducke oil-resin as a veterinary or human clinical proposal. The phytotherapeutic system had easy preparation, low cost, satisfactory healing ability, and fly repellency, making it a cost-effective clinical strategy for wound care and myiasis prevention. Mechanical, rheological, morphological, and physical stability assessments were performed. The results highlight the crosslinked nature of the gelling agent, with three-dimensional channel networks stabilizing the Copaifera reticulata Ducke oil-resin (CrD-Ore). The emulgel presented antimicrobial activity, satisfactory adhesion, hardness, cohesiveness, and viscosity profiles, ensuring the easy spreading of the formulation. Considering dermatological application, the oscillatory responses showed a viscoelastic performance that ensures emulgel retention at the action site, reducing the dosage frequencies. In Vivo evaluations were performed using a case report to treat ulcerative skin wounds aggravated by myiasis in calves and heifers, which demonstrated healing, anti-inflammatory, and repellent performance for the emulsion-filled gel. The emulgel preparation, which is low in cost, shows promise as a drug for wound therapy.
Collapse
|
72
|
Palanisamy CP, Cui B, Zhang H, Gunasekaran VP, Ariyo AL, Jayaraman S, Rajagopal P, Long Q. A critical review on starch-based electrospun nanofibrous scaffolds for wound healing application. Int J Biol Macromol 2022; 222:1852-1860. [PMID: 36195229 DOI: 10.1016/j.ijbiomac.2022.09.274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Starch-based nanofibrous scaffolds exhibit a potential wound healing processes as they are cost-effective, flexible, and biocompatible. Recently, natural polymers have received greater importance in regenerative medicine, mainly in the process of healing wounds and burns due to their unique properties which also include safety, biocompatibility, and biodegradability. In this respect, starch is considered to be one of the reliable natural polymers to promote the process of wound healing at a significantly faster rate. Starch and starch-based electrospun nanofibrous scaffolds have been used for the wound healing process which includes the process of adhesion, proliferation, differentiation, and regeneration of cells. It also possesses significant activity to encapsulate and deliver biomaterials at a specific site which persuades the wound healing process at an increased rate. As the aforementioned scaffolds mimic the native extracellular matrix more closely, may help in the acceleration of wound closure, which in turn may lead to the promotion of tissue reorganization and remodeling. In-depth knowledge in understanding the properties of nanofibrous scaffolds paves a way to unfold novel methods and therapies, also to overcome challenges associated with wound healing. This review is intended to provide comprehensive information and recent advances in starch-based electrospun nanofibrous scaffolds for wound healing.
Collapse
Affiliation(s)
- Chella Perumal Palanisamy
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an 710003, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China.
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | | | - Adeniran Lateef Ariyo
- Department of Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Abuja, FCT, Abuja, Nigeria
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakhsi Academy of Higher Education and Research, West K.K. Nagar, Chennai 600 078, India
| | - Qianfa Long
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an 710003, China.
| |
Collapse
|
73
|
Antimicrobial Fibrous Bandage-like Scaffolds Using Clove Bud Oil. J Funct Biomater 2022; 13:jfb13030136. [PMID: 36135571 PMCID: PMC9501437 DOI: 10.3390/jfb13030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Wounds are characterised by an anatomical disruption of the skin; this leaves the body exposed to opportunistic pathogens which contribute to infections. Current wound healing bandages do little to protect against this and when they do, they can often utilise harmful additions. Historically, plant-based constituents have been extensively used for wound treatment and are proven beneficial in such environments. In this work, the essential oil of clove bud (Syzygium aromaticum) was incorporated in a polycaprolactone (PCL) solution, and 44.4% (v/v) oil-containing fibres were produced through pressurised gyration. The antimicrobial activity of these bandage-like fibres was analysed using in vitro disk diffusion and the physical fibre properties were also assessed. The work showed that advantageous fibre morphologies were achieved with diameters of 10.90 ± 4.99 μm. The clove bud oil fibres demonstrated good antimicrobial properties. They exhibited inhibition zone diameters of 30, 18, 11, and 20 mm against microbial colonies of C. albicans, E. coli, S. aureus, and S. pyogenes, respectively. These microbial species are commonly problematic in environments where the skin barrier is compromised. The outcomes of this study are thus very promising and suggest that clove bud oil is highly suitable to be applied as a natural sustainable alternative to modern medicine.
Collapse
|
74
|
Cardoso-Daodu IM, Ilomuanya MO, Azubuike CP. Development of curcumin-loaded liposomes in lysine–collagen hydrogel for surgical wound healing. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A surgical wound is an incision made by a surgeon. Slow surgical wound healing may lead to chronic wounds which may be a potential health problem. The aim of this study is to formulate curcumin-loaded liposomes in lysine–collagen hydrogel for enhancing surgical wound healing. Curcumin-loaded liposomes were prepared using thin-film hydration method. The liposomal formulation was characterized by analysing its size, morphology, encapsulation efficiency, and in vitro release. The hydrogel base was prepared, and then, curcumin-loaded liposomes were infused to give formulation (F1). Curcumin-loaded liposomes were infused into the hydrogel base after which lysine and collagen were incorporated to give (F2), while (F3) comprised lysine and collagen incorporated in hydrogel base. All formulations were characterized by evaluation of the safety, stability, swelling index, pH, rheological properties, and in vivo wound healing assay. Histology and histomorphometry of tissue samples of wound area treated with formulations F1, F2, and F3 and the control, respectively, were examined.
Results
Curcumin-loaded liposomes were 5–10 µm in size, and the values for encapsulation efficiency and flux of the loaded liposomes are 99.934% and 51.229 µg/cm2/h, respectively. Formulations F1, F2, and F3 had a pH of 5.8. F1 had the highest viscosity, while F2 had the highest swelling index indications for efficient sustained release of drug from the formulation. The in vivo wound healing evaluation showed that curcumin-loaded liposomes in lysine–collagen hydrogel had the highest percentage wound contraction at 79.25% by day three post-surgical operation. Histological evaluation reflected a normal physiological structure of the layers of the epidermis and dermis after surgical wound healing in tissue samples from wound areas treated with formulations F1 and F2. The histomorphometrical values show highest percentage of collagen, lowest inflammatory rates, highest presence of microvessels, and re-epithelization rates at wound site in wounds treated with formulation F2 (curcumin-loaded liposomes in lysine–collagen hydrogel).
Conclusion
Curcumin-loaded liposomes in lysine–collagen hydrogel was found to be the most effective of the three formulations in promoting wound healing. Hence, this formulation can serve as a prototype for further development and has great potential as a smart wound dressing for the treatment of surgical wounds.
Collapse
|
75
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
76
|
|
77
|
Ibrahim R, Mndlovu H, Kumar P, Adeyemi SA, Choonara YE. Cell Secretome Strategies for Controlled Drug Delivery and Wound-Healing Applications. Polymers (Basel) 2022; 14:2929. [PMID: 35890705 PMCID: PMC9324118 DOI: 10.3390/polym14142929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
There is significant interest in using stem cells in the management of cutaneous wounds. However, potential safety, efficacy, and cost problems associated with whole-cell transplantation hinder their clinical application. Secretome, a collective of mesenchymal stem-cell-stored paracrine factors, and immunomodulatory cytokines offer therapeutic potential as a cell-free therapy for the treatment of cutaneous wounds. This review explores the possibility of secretome as a treatment for cutaneous wounds and tissue regeneration. The review mainly focuses on in vitro and in vivo investigations that use biomaterials and secretome together to treat wounds, extend secretome retention, and control release to preserve their biological function. The approaches employed for the fabrication of biomaterials with condition media or extracellular vesicles are discussed to identify their future clinical application in wound treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (R.I.); (H.M.); (P.K.); (S.A.A.)
| |
Collapse
|
78
|
Mascarenhas-Melo F, Gonçalves MBS, Peixoto D, Pawar KD, Bell V, Chavda VP, Zafar H, Raza F, Paiva-Santos AC, Paiva-Santos AC. Application of nanotechnology in management and treatment of diabetic wounds. J Drug Target 2022; 30:1034-1054. [PMID: 35735061 DOI: 10.1080/1061186x.2022.2092624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diabetic wounds are one of the most common health problems worldwide, enhancing the demand for new management strategies. Nanotechnology, as a developing subject in diabetic wound healing, is proving to be a promising and effective tool in treatment and care. It is, therefore, necessary to ascertain the available and distinct nanosystems and evaluate their performance when topically applied to the injury site, especially in diabetic wound healing. Several active ingredients, including bioactive ingredients, growth factors, mesenchymal stem cells, nucleic acids, and drugs, benefit from improved properties when loaded into nanosystems. Given the risk of problems associated with systemic administration, the topical application should be considered, provided stability and efficacy are assured. After nanoencapsulation, active ingredients-loaded nanosystems have been showing remarkable features of biocompatibility, healing process hastening, angiogenesis, and extracellular matrix compounds synthesis stimulation, contributing to a decrease in wound inflammation. Despite limitations, nanotechnology has attracted widespread attention in the scientific community and seems to be a valuable technological ally in the treatment and dressing of diabetic wounds. The use of nanotechnology in topical applications enables efficient delivery of the active ingredients to the specific skin site, increasing their bioavailability, stability, and half-life time, without compromising their safety.
Collapse
Affiliation(s)
- Filipa Mascarenhas-Melo
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Maria Beatriz S Gonçalves
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Diana Peixoto
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, India
| | - Victoria Bell
- Laboratory of Social Pharmacy and Public Health, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, Gujarat, India
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
79
|
Green synthesis of chitosan-silver nanocomposite reinforced with curcumin nanoparticles: characterization and antibacterial effect. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
80
|
Bioactive Natural and Synthetic Polymers for Wound Repair. Macromol Res 2022. [DOI: 10.1007/s13233-022-0062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
81
|
Teixeira MA, Antunes JC, Seabra CL, Tohidi SD, Reis S, Amorim MTP, Felgueiras HP. Tiger 17 and pexiganan as antimicrobial and hemostatic boosters of cellulose acetate-containing poly(vinyl alcohol) electrospun mats for potential wound care purposes. Int J Biol Macromol 2022; 209:1526-1541. [PMID: 35469947 DOI: 10.1016/j.ijbiomac.2022.04.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022]
Abstract
In this research, we propose to engineer a nanostructured mat that can simultaneously kill bacteria and promote an environment conducive to healing for prospective wound care. Polyvinyl alcohol (PVA) and cellulose acetate (CA) were combined at different polymer ratios (100/0, 90/10, 80/20% v/v), electrospun and crosslinked with glutaraldehyde vapor. Crosslinked fibers increased in diameter (from 194 to 278 nm), retaining their uniform structure. Fourier-transform infrared spectroscopy and thermal analyses proved the excellent miscibility between polymers. CA incorporation incremented the fibers swelling capacity and reduced the water vapor and air permeabilities of the mats, preventing the excessive drying of wounds. The antimicrobial peptide cys-pexiganan and the immunoregulatory peptide Tiger 17 were incorporated onto the mats via polyethylene glycol spacer (hydroxyl-PEG2-maleimide) and physisorbed, respectively. Time-kill kinetics evaluations revealed the mats effectiveness against Staphylococcus aureus and Pseudomonas aeruginosa. Tiger 17 played a major role in accelerating clotting of re-calcified plasma. Data reports for the first time the collaborative effect of pexiganan and Tiger 17 against bacterial infections and in boosting hemostasis. Cytocompatibility data verified the peptide-modified mats safety. Croslinked 90/10 PVA/CA mats were deemed the most promising combination due to their moderate hydrophilicity and permeabilities, swelling capacity, and high yields of peptide loading.
Collapse
Affiliation(s)
- Marta A Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Catarina L Seabra
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Shafagh D Tohidi
- Digital Transformation Colab (DTX), Department of Mechanical Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Salette Reis
- Associate Laboratory for Green Chemistry (LAQV), Network of Chemistry and Technology (REQUIMTE), Departament of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Teresa P Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
| |
Collapse
|
82
|
Ongarora BG. Recent technological advances in the management of chronic wounds: A literature review. Health Sci Rep 2022; 5:e641. [PMID: 35601031 PMCID: PMC9117969 DOI: 10.1002/hsr2.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Wound treatment comprises a substantial portion of the healthcare budgets in developed countries. Studies suggest that about 50% of patients admitted to hospitals have wounds, while 1%−2% of the general population in the developed world suffers from chronic wounds. Chronic wounds fail to repair themselves within the expected period of 30 days. Technologies have been developed to address challenges encountered during wound care with the aim of alleviating pain, promoting healing, or controlling wound infections. Objective The objective of this study was to explore the technological improvements that have been made in this field over time. Methods To gain insight into the future of wound management, a systematic review of literature on the subject was conducted in scientific databases (PubMed, Scopus, Web of Science, Medline, and Clinical Trials). Results and Discussion Results indicate that wound dressings have evolved from the traditional cotton gauze to composite materials embedded with appropriate ingredients such as metal‐based nanoparticles. Studies on biodegradable dressing materials are also underway to explore their applicability in dressing large and irregular wounds. On the other hand, conventional drugs and traditional formulations for the management of pain, inflammation, infections, and accelerating healing have been developed. However, more research needs to be carried out to address the issue of microbial resistance to drugs. Drugs for managing other ailments also need to be designed in such a way that they can augment wound healing. In addition, it has been demonstrated that a coordinated integration of conventional and traditional medicine can produce laudable results in chronic wound management. Conclusion Accordingly, collaborative efforts and ingenuity of all players in the field can accelerate technological advances in the wound care market to the benefit of the patients. Wounds affect about 50% of patients admitted to hospitals.
Technologies have been developed including biodegradable dressing materials to address underlying challenges.
Technological advancement, rising incidences of chronic wounds, growing government support, and a rising elderly population will drive wound market growth.
A careful combination of recent research outputs can greatly change wound care technologies.
This review highlights the recent research advances and opportunities in the wound care field.
The future lies in biodegradable dressing materials, probably embedded with selected nanoparticles and which shall be combined in predetermined ratios.
Collapse
Affiliation(s)
- Benson G. Ongarora
- Department of Chemistry Dedan Kimathi University of Technology Nyeri Kenya
| |
Collapse
|
83
|
Zaghloul EH, Ibrahim MIA. Production and Characterization of Exopolysaccharide From Newly Isolated Marine Probiotic Lactiplantibacillus plantarum EI6 With in vitro Wound Healing Activity. Front Microbiol 2022; 13:903363. [PMID: 35668753 PMCID: PMC9164304 DOI: 10.3389/fmicb.2022.903363] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022] Open
Abstract
Because of its safety, biological activities, and unique properties, exopolysaccharide (EPS) from lactic acid bacteria (LAB) has been developed as a potential biopolymer. A few studies have investigated the EPS produced by marine LAB. This study reports the wound healing activity of an EPS produced by a marine isolate identified as Lactiplantibacillus plantarum EI6, in addition to assessing L. plantarum EI6's probiotic properties. EI6 demonstrated promising antimicrobial activity against different pathogenic bacteria, as well as the ability to withstand stomach pH 3, tolerate 0.3% bile salt concentration, and exhibit no signs of hemolysis. Furthermore, EI6 was able to produce 270 mg/L of EPS upon growth for 48 h at 37°C in an MRS medium enriched with 1.0% of sucrose. The chemical features of the novel EI6-EPS were investigated: the UV-vis estimated a high carbohydrate content of ~91.5%, and the FTIR emphasized its polysaccharide nature by the characteristic hydroxyl, amide I, II, & III, and glycosidic linkage regions. The GC-MS and NMR analyses revealed the existence of five monosaccharides, namely, rhamnose, galactose, mannose, glucose, and arabinose, existing mainly in the pyranose form and linked together by α- and β-glycosidic linkages. EI6-EPS was found to be safe (IC50 > 100 μg/ml) and induced human skin fibroblasts (HSF) proliferation and migration. These findings imply that EI6 can be used as a safe source of bioactive polymer in wound care.
Collapse
|
84
|
Solvent Casting and UV Photocuring for Easy and Safe Fabrication of Nanocomposite Film Dressings. Molecules 2022; 27:molecules27092959. [PMID: 35566306 PMCID: PMC9102005 DOI: 10.3390/molecules27092959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to optimize and characterize nanocomposite films based on gellan gum methacrylate (GG-MA) and silver nanoparticles (AgNPs) for application in the field of wound dressing. The films were produced using the solvent casting technique coupled with a photocuring process. The UV irradiation of GG-MA solutions containing glycerol as a plasticizer and different amounts of silver nitrate resulted in the concurrent crosslinking of the photocurable polymer and a reduction of Ag ions with consequent in situ generation of AgNPs. In the first part of the work, the composition of the films was optimized, varying the concentration of the different components, the GG-MA/glycerol and GG-MA/silver nitrate weight ratios as well as the volume of the film-forming mixture. Rheological analyses were performed on the starting solutions, whereas the obtained films were characterized for their mechanical properties. Colorimetric analyses and swelling studies were also performed in order to determine the AgNPs release and the water uptake capacity of the films. Finally, microbiological tests were carried out to evaluate the antimicrobial efficacy of the optimized films, in order to demonstrate their possible application as dressings for the treatment of infected hard-to-heal wounds, which is a demanding task for public healthcare.
Collapse
|
85
|
Ahmed R, Augustine R, Chaudhry M, Akhtar UA, Zahid AA, Tariq M, Falahati M, Ahmad IS, Hasan A. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Pharmacotherapy 2022; 149:112707. [PMID: 35303565 DOI: 10.1016/j.biopha.2022.112707] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Impaired diabetic wounds are serious pathophysiological complications associated with persistent microbial infections including failure in the closure of wounds, and the cause of a high frequency of lower limb amputations. The healing of diabetic wounds is attenuated due to the lack of secretion of growth factors, prolonged inflammation, and/or inhibition of angiogenic activity. Diabetic wound healing can be enhanced by supplying nitric oxide (NO) endogenously or exogenously. NO produced inside the cells by endothelial nitric oxide synthase (eNOS) naturally aids wound healing through its beneficial vasculogenic effects. However, during hyperglycemia, the activity of eNOS is affected, and thus there becomes an utmost need for the topical supply of NO from exogenous sources. Thus, NO-donors that can release NO are loaded into wound healing patches or wound coverage matrices to treat diabetic wounds. The burst release of NO from its donors is prevented by encapsulating them in polymeric hydrogels or nanoparticles for supplying NO for an extended duration of time to the diabetic wounds. In this article, we review the etiology of diabetic wounds, wound healing strategies, and the role of NO in the wound healing process. We further discuss the challenges faced in translating NO-donors as a clinically viable nanomedicine strategy for the treatment of diabetic wounds with a focus on the use of biomaterials for the encapsulation and in vivo controlled delivery of NO-donors.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar; Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Maryam Chaudhry
- Department of Continuing Education, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Usman A Akhtar
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Mojtaba Falahati
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, IL, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
86
|
Gupta D, Kaushik D, Mohan V. Role of neurotransmitters in the regulation of cutaneous wound healing. Exp Brain Res 2022; 240:1649-1659. [PMID: 35488904 DOI: 10.1007/s00221-022-06372-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
Abstract
Wound healing is a highly coordinated and dynamic process of tissue repair after injury. The global burden of disease associated with wounds, both acute and chronic, is a significantly rising health concern. Upon skin wounding, neurons have the ability to sense the disruption to mediate the release of neurotransmitters into the wound microenvironment. Serotonin that has long been recognised as a potential vasoconstrictor is now also being contemplated to play a role in re-epithelialisation of wounds. While the role of neuropeptides in stimulating diabetic wound healing is being increasingly emphasised, on the other hand, dopamine is being widely studied for its dual role in mediating both pro- and antiangiogenic effects at the site of the wounds. Similarly, epinephrine levels that are known to be elevated during stress is now recognised as a contributing factor towards delayed wound closure, thereby serving as an inhibitor of wound healing. Thus, each neurotransmitter regulates wound repair and their active regeneration in a typical way. Strengthening our understanding of the molecular pathways via which the neurotransmitter modulates the immune system to control wound healing can yield potential therapeutic measures. Further investigations regarding the safety, efficacy, and cost-effectiveness of these processes are a prerequisite for their possible translation into clinical trials.
Collapse
Affiliation(s)
- Divya Gupta
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India
| | - Dhirender Kaushik
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India
| | - Vandana Mohan
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India.
| |
Collapse
|
87
|
Kandregula B, Narisepalli S, Chitkara D, Mittal A. Exploration of Lipid-Based Nanocarriers as Drug Delivery Systems in Diabetic Foot Ulcer. Mol Pharm 2022; 19:1977-1998. [PMID: 35481377 DOI: 10.1021/acs.molpharmaceut.1c00970] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a chronic manifestation characterized by high levels of glucose in the blood resulting in several complications including diabetic wounds and ulcers, which predominantly require a longer duration of treatment and adversely affect the quality of life of the patients. Nanotechnology-based therapeutics (both intrinsic and extrinsic types) have emerged as a promising treatment in diabetic foot ulcer/chronic wounds owing to their unique characteristics and specific functional properties. In this review, we have focused on the significance of the use of lipids in the healing of diabetic ulcers, their interaction with the injured skin, and recent trends in lipid-based nanocarriers for the healing of diabetic wounds. Lipid nanocarriers are also being investigated for gene therapy in diabetic wound healing to encapsulate nucleic acids such as siRNA and miRNA, which could silence the expression of inflammatory cytokines overexpressed in chronic wounds. Additionally, these are also being explored for encapsulating proteins, peptides, growth factors, and other biological genetic material as therapeutic agents. Lipid-based nanocarriers encompassing a wide variety of carriers such as liposomes, niosomes, ethosomes, solid lipid nanoparticles, and lipidoid nanoparticles that are explored for the treatment of foot ulcers supplemented with relevant research studies have been discussed in the present review. Lipid-based nanodrug delivery systems have demonstrated promising wound healing potential, particularly in diabetic conditions due to the enhanced efficacy of the entrapped active molecules.
Collapse
Affiliation(s)
- Bhaskar Kandregula
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Saibhargav Narisepalli
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.,Department of Cellular and Molecular Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
88
|
Green Synthesis-Mediated Silver Nanoparticles Based Biocomposite Films for Wound Healing Application. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
89
|
Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17:299-332. [PMID: 35782330 PMCID: PMC9237591 DOI: 10.1016/j.ajps.2022.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
The rising prevalence of impaired wound healing and the consequential healthcare burdens have gained increased attention over recent years. This has prompted research into the development of novel wound dressings with augmented wound healing functions. Nanoparticle (NP)-based delivery systems have become attractive candidates in constructing such wound dressings due to their various favourable attributes. The non-toxicity, biocompatibility and bioactivity of chitosan (CS)-based NPs make them ideal candidates for wound applications. This review focusses on the application of CS-based NP systems for use in wound treatment. An overview of the wound healing process was presented, followed by discussion on the properties and suitability of CS and its NPs in wound healing. The wound healing mechanisms exerted by CS-based NPs were then critically analysed and discussed in sections, namely haemostasis, infection prevention, inflammatory response, oxidative stress, angiogenesis, collagen deposition, and wound closure time. The results of the studies were thoroughly reviewed, and contradicting findings were identified and discussed. Based on the literature, the gap in research and future prospects in this research area were identified and highlighted. Current evidence shows that CS-based NPs possess superior wound healing effects either used on their own, or as drug delivery vehicles to encapsulate wound healing agents. It is concluded that great opportunities and potentials exist surrounding the use of CSNPs in wound healing.
Collapse
|
90
|
Xu Z, Liu Y, Ma R, Chen J, Qiu J, Du S, Li C, Wu Z, Yang X, Chen Z, Chen T. Thermosensitive Hydrogel Incorporating Prussian Blue Nanoparticles Promotes Diabetic Wound Healing via ROS Scavenging and Mitochondrial Function Restoration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14059-14071. [PMID: 35298140 DOI: 10.1021/acsami.1c24569] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diabetic foot ulcer is a serious complication in diabetes patients, imposing a serious physical and economic burden to patients and to the healthcare system as a whole. Oxidative stress is thought to be a key driver of the pathogenesis of such ulcers. However, no antioxidant drugs have received clinical approval to date, underscoring the need for the further development of such medications. Hydrogels can be applied directly to the wound site, wherein they function to prevent infection and maintain local moisture concentrations, in addition to serving as a reservoir for the delivery of a range of therapeutic compounds with the potential to expedite wound healing in a synergistic manner. Herein, we synthesized Prussian blue nanoparticles (PBNPs) capable of efficiently scavenging reactive oxygen species (ROS) owing to their ability to mimic the activity of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). In the context of in vitro oxidative stress, these PBNPs were able to protect against cytotoxicity, protect mitochondria from oxidative stress-related damage, and restore nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) pathway activity. To expand on these results in an in vivo context, we prepared a thermosensitive poly (d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA) hydrogel (PLEL)-based wound dressing in which PBNPs had been homogenously incorporated, and we then used this dressing as a platform for controlled PBNP release. The resultant PBNPs@PLEL wound dressing was able to improve diabetic wound healing, decrease ROS production, promote angiogenesis, and reduce pro-inflammatory interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels within diabetic wounds. Overall, our results suggest that this PBNPs@PLEL platform holds great promise as a treatment for diabetic foot ulcers.
Collapse
Affiliation(s)
- Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Chengcheng Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zihan Wu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
91
|
Advanced drug delivery systems containing herbal components for wound healing. Int J Pharm 2022; 617:121617. [PMID: 35218900 DOI: 10.1016/j.ijpharm.2022.121617] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022]
Abstract
Management of chronic wound has an immense impact on social and economic conditions in the world. Healthcare costs, aging population, physical trauma, and comorbidities of diabetes and obesity seem to be the major factors of this increasing incidence of chronic wounds. Conditions of chronic wound could not restore functional epidermis; thus, delaying the closure of the wound opening in an expected manner. Failures in restoration of skin integrity delay healing due to changes in skin pathology, such as chronic ulceration or nonhealing. The role of different traditional medicines has been explored for use in the healing of cutaneous wounds, where several phytochemicals, such as flavonoids, alkaloids, phenolic acids, tannins are known to provide potential wound healing properties. However, the delivery of plant-based therapeutics could be improved by the novel platform of nanotechnology. Thus, the objectives of novel delivery strategies of principal bioactive from plant sources are to accelerate the wound healing process, avoid wound complications and enhance patient compliance. Therefore, the opportunities of nanotechnology-based drug delivery of natural wound healing therapeutics have been included in the present discussion with special emphasis on nanofibers, vesicular structures, nanoparticles, nanoemulsion, and nanogels.
Collapse
|
92
|
Asghari F, Rabiei Faradonbeh D, Malekshahi ZV, Nekounam H, Ghaemi B, Yousefpoor Y, Ghanbari H, Faridi-Majidi R. Hybrid PCL/chitosan-PEO nanofibrous scaffolds incorporated with A. euchroma extract for skin tissue engineering application. Carbohydr Polym 2022; 278:118926. [PMID: 34973744 DOI: 10.1016/j.carbpol.2021.118926] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Skin tissue engineering is an advanced method to repair and regenerate skin injuries. Recent research is focused on the development of scaffolds that are safe, bioactive, and cytocompatible. In this work, a new hybrid nanofibrous scaffold composed of polycaprolactone/chitosan-polyethylene oxide (PCL/Cs-PEO) incorporated with Arnebia euchroma (A. euchroma) extract were synthesized by the two-nozzle electrospinning method. Then the synthesized scaffold was characterized for morphology, sustainability, chemical structure and properties. Moreover, to verify their potential in the burn wound healing process, biodegradation rate, contact angle, swelling properties, water vapor permeability, mechanical properties, antibacterial activity and drug release profile were measured. Furthermore, cytotoxicity and biocompatibility tests were performed on human dermal fibroblasts cell line via XTT and LDH assay. It is shown that the scaffold improved and increased proliferation during in-vitro studies. Thus, results confirm the efficacy and potential of the hybrid nanofibrous scaffold for skin tissue engineering.
Collapse
Affiliation(s)
- Fatemeh Asghari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Rabiei Faradonbeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Ghaemi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Yousefpoor
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
93
|
Recent Advances on Bacterial Cellulose-Based Wound Management: Promises and Challenges. INT J POLYM SCI 2022. [DOI: 10.1155/2022/1214734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a therapeutic challenge due to the complexity of the wound. Various wounds could cause severe physiological trauma and bring social and economic burdens to the patient. The conventional wound healing treatments using bandages and gauze are limited particularly due to their susceptibility to infection. Different types of wound dressing have developed in different physical forms such as sponges, hydrocolloids, films, membranes, and hydrogels. Each of these formulations possesses distinct characteristics making them appropriate for the treatment of a specific wound. In this review, the pathology and microbiology of wounds are introduced. Then, the most recent progress on bacterial cellulose- (BC-) based wound dressing discussed and highlighted their antibacterial and reepithelization properties in vitro and in vivo wound closure. Finally, the challenges and future perspectives on the development of BC-based wound dressing biomaterials are outlined.
Collapse
|
94
|
de Souza GS, de Jesus Sonego L, Santos Mundim AC, de Miranda Moraes J, Sales-Campos H, Lorenzón EN. Antimicrobial-wound healing peptides: Dual-function molecules for the treatment of skin injuries. Peptides 2022; 148:170707. [PMID: 34896165 DOI: 10.1016/j.peptides.2021.170707] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Chronic non-healing wounds caused by microbial infections extend the necessity for hospital care and constitute a public health problem and a great financial burden. Classic therapies include a wide range of approaches, from wound debridement to vascular surgery. Antimicrobial peptides (AMPs) are a preserved trait of the innate immune response among different animal species, with known effects on the immune system and microorganisms. Thus, AMPs may represent promising candidates for the treatment of chronic wounds with dual functionality in two of the main agents that lead to this condition, proliferation of microorganisms and uncontrolled inflammation. Here, our goal is to critically review AMPs with wound healing properties. We strongly believe that these dual-function peptides alone, or in combination with other wound healing strategies, constitute an underexplored field that researchers can take advantage of.
Collapse
Affiliation(s)
| | | | | | | | - Helioswilton Sales-Campos
- Instituto de Patologia Tropical e Saúde Pública, Departamento de Biociências e Tecnologia, Universidade Federal de Goiás, Goiás, Brazil
| | | |
Collapse
|
95
|
Negm WA, El-Kadem AH, Elekhnawy E, Attallah NGM, Al-Hamoud GA, El-Masry TA, Zayed A. Wound-Healing Potential of Rhoifolin-Rich Fraction Isolated from Sanguisorba officinalis Roots Supported by Enhancing Re-Epithelization, Angiogenesis, Anti-Inflammatory, and Antimicrobial Effects. Pharmaceuticals (Basel) 2022; 15:178. [PMID: 35215291 PMCID: PMC8874642 DOI: 10.3390/ph15020178] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
A wound is a complicated bioprocess resulting in significant tissue damage, which is worsened by a secondary bacterial infection, commonly Pseudomonas aeruginosa and Staphylococcus aureus. The goal of our study was to investigate the metabolic profile and possible wound-healing effect of Sanguisorba officinalis roots rhoifolin rich fraction (RRF). The LC-ESI-MS/MS analysis of S. officinalis roots crude ethanol extract resulted in a tentative identification of 56 bioactive metabolites, while a major flavonoid fraction was isolated by column chromatography and identified by thin-layer chromatography coupled with electrospray ionization/mass spectrometry (TLC-ESI/MS), where rhoifolin was the major component representing 94.5% of its content. The antibiofilm activity of RRF on the mono-species and dual-species biofilm of P. aeruginosa and S. aureus was investigated. RRF exhibited inhibitory activity on P. aeruginosa and S. aureus mono-species biofilm at 2× minimum inhibitory concentration (MIC) and 4× MIC values. It also significantly inhibited the dual-species biofilm at 4× MIC values. Moreover, the wound-healing characteristics of RRF gel formulation were investigated. Rats were randomly allocated into four groups (eight rats in each): Untreated control; Blank gel; Betadine cream, and RRF gel groups. Animals were anesthetized, and full-thickness excisional skin wounds were created on the shaved area in the dorsal skin. The gels were topically applied to the wound's surface daily for 10 days. The results demonstrated that RRF had a promising wound-healing effect by up-regulating the platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF), and fibronectin, while metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), IL-1β, and nitric oxide (NO) levels were suppressed. It also enhanced the immune staining of transforming growth factor (TGF-β) and improved histopathological findings. Furthermore, it displayed an immunomodulatory action on lipopolysaccharide-induced peripheral blood mononuclear cells. Hence, the wound-healing effect of rhoifolin was confirmed by supporting re-epithelization, angiogenesis, antibacterial, immunomodulatory, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Aya H. El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.H.E.-K.); (T.A.E.-M.)
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Nashwah G. M. Attallah
- Department of Pharmaceutical Science College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.H.E.-K.); (T.A.E.-M.)
| | - Ahmed Zayed
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
96
|
3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02899-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
97
|
Deshmukh SB, Kulandainathan AM, Murugavel K. A review on Biopolymer-derived Electrospun Nanofibers for Biomedical and Antiviral Applications. Biomater Sci 2022; 10:4424-4442. [DOI: 10.1039/d2bm00820c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique aspects of polymer-derived nanofibers provide significant potential in the area of biomedical and health care applications. Much research has demonstrated several plausible nanofibers to overcome the modern-day challenges in...
Collapse
|
98
|
ÜSTÜNDAĞ OKUR N, ONAY E, KADIOĞLU YAMAN B, SİPAHİ H. New topical microemulsions of etofenamate as sufficient management of osteoarthritis. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
99
|
Kaur K, Singh A, Sharma H, Punj S, Bedi N. Formulation Strategies and Therapeutic Applications of Shikonin and Related Derivatives. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:55-67. [PMID: 35236278 DOI: 10.2174/2667387816666220302112201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Shikonin and its derivatives are excellent representatives of biologically active naphthoquinones. A wide range of investigations carried out in the last few decades validated their pharmacological efficacy. Besides having magnificent therapeutic potential, shikonin and its derivatives suffer from various pharmacokinetic, toxicity, and stability issues like poor bioavailability, nephrotoxicity, photodegradation, etc. Recently, various research groups have developed an extensive range of formulations to tackle these issues to ease their path to clinical practice. The latest formulation approaches have been focused on exploiting the unique features of novel functional excipients, which in turn escalate the therapeutic effect of shikonin. Moreover, the codelivery approach in various drug delivery systems has been taken into consideration in a recent while to reduce toxicity associated with shikonin and its derivatives. This review sheds light on the essential reports and patents published related to the array of formulations containing shikonin and its derivatives.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Hamayal Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sanha Punj
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
100
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|