51
|
Kirtane AR, Langer R, Traverso G. Past, Present, and Future Drug Delivery Systems for Antiretrovirals. J Pharm Sci 2016; 105:3471-3482. [PMID: 27771050 DOI: 10.1016/j.xphs.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
The human immunodeficiency virus has infected millions of people and the epidemic continues to grow rapidly in some parts of the world. Antiretroviral (ARV) therapy has provided improved treatment and prolonged the life expectancy of patients. Moreover, there is growing interest in using ARVs to protect against new infections. Hence, ARVs have emerged as our primary strategy in combating the virus. Unfortunately, several challenges limit the optimal performance of these drugs. First, ARVs often require life-long use and complex dosing regimens. This results in low patient adherence and periods of lapsed treatment manifesting in drug resistance. This has prompted the development of alternate dosage forms such as vaginal rings and long-acting injectables that stand to improve patient adherence. Another problem central to therapeutic failure is the inadequate penetration of drugs into infected tissues. This can lead to incomplete treatment, development of resistance, and viral rebound. Several strategies have been developed to improve drug penetration into these drug-free sanctuaries. These include encapsulation of drugs in nanoparticles, use of pharmacokinetic enhancers, and cell-based drug delivery platforms. In this review, we discuss issues surrounding ARV therapy and their impact on drug efficacy. We also describe various drug delivery-based approaches developed to overcome these issues.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - Giovanni Traverso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
52
|
Alam M, Kuwata T, Shimura K, Yokoyama M, Ramirez Valdez KP, Tanaka K, Maruta Y, Oishi S, Fujii N, Sato H, Matsuoka M, Matsushita S. Enhanced antibody-mediated neutralization of HIV-1 variants that are resistant to fusion inhibitors. Retrovirology 2016; 13:70. [PMID: 27670680 PMCID: PMC5037607 DOI: 10.1186/s12977-016-0304-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HIV-1 typically develops resistance to any single antiretroviral agent. Combined anti-retroviral therapy to reduce drug-resistance development is necessary to control HIV-1 infection. Here, to assess the utility of a combination of antibody and fusion inhibitor treatments, we investigated the potency of monoclonal antibodies at neutralizing HIV-1 variants that are resistant to fusion inhibitors. RESULTS Mutations that confer resistance to four fusion inhibitors, enfuvirtide, C34, SC34, and SC34EK, were introduced into the envelope of HIV-1JR-FL, a CCR5-tropic tier 2 strain. Pseudoviruses with these mutations were prepared and used for the assessment of neutralization sensitivity to an array of antibodies. The resulting neutralization data indicate that the potencies of some antibodies, especially of those against the CD4 binding site, V3 loop, and membrane-proximal external region epitopes, were increased by the mutations in gp41 that conferred resistance to the fusion inhibitors. C34-, SC34-, and SC34EK-resistant mutants showed more sensitivity to monoclonal antibodies than enfuvirtide-resistant mutants. An analysis of C34-resistant mutations revealed that the I37K mutation in gp41 HR1 is a key mutation for C34 resistance, low infectivity, neutralization sensitivity, epitope exposure, and slow fusion kinetics. The N126K mutation in the gp41 HR2 domain contributed to C34 resistance and neutralization sensitivity to anti-CD4 binding site antibodies. In the absence of L204I, the effect of N126K was antagonistic to that of I37K. The results of a molecular dynamic simulation of the envelope trimer confirmation suggest that an I37K mutation induces the augmentation of structural fluctuations prominently in the interface between gp41 and gp120. Our observations indicate that the "conformational unmasking" of envelope glycoprotein by an I37K mutation is one of the mechanisms of neutralization sensitivity enhancement. Furthermore, the enhanced neutralization of C34-resistant mutants in vivo was shown by its high rate of neutralization by IgG from HIV patient samples. CONCLUSIONS Mutations in gp41 that confer fusion inhibitor resistance exert enhanced sensitivity to broad neutralizing antibodies (e.g., VRC01 and 10E8) and other conventional antibodies developed in HIV-1 infected patients. Therefore, next-generation fusion inhibitors and monoclonal antibodies could be a potential combination for future regimens of combined antiretroviral therapy.
Collapse
Affiliation(s)
- Muntasir Alam
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Takeo Kuwata
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Kazuya Shimura
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kristel Paola Ramirez Valdez
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Kazuki Tanaka
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Yasuhiro Maruta
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shuzo Matsushita
- Matsushita Project Laboratory, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811 Japan
| |
Collapse
|
53
|
Site-specific Isopeptide Bridge Tethering of Chimeric gp41 N-terminal Heptad Repeat Helical Trimers for the Treatment of HIV-1 Infection. Sci Rep 2016; 6:32161. [PMID: 27562370 PMCID: PMC4999862 DOI: 10.1038/srep32161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022] Open
Abstract
Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection.
Collapse
|
54
|
Ju T, Hu D, Xiang SH, Guo J. Sulfotyrosine dipeptide: Synthesis and evaluation as HIV-entry inhibitor. Bioorg Chem 2016; 68:105-11. [PMID: 27475281 DOI: 10.1016/j.bioorg.2016.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is responsible for the worldwide AIDS pandemic. Due to the lack of prophylactic HIV-1 vaccine, drug treatment of the infected patients becomes essential to reduce the viral load and to slow down progression of the disease. Because of drug resistance, finding new antiviral agents is necessary for AIDS drug therapies. The interaction of gp120 and co-receptor (CCR5/CXCR4) mediates the entry of HIV-1 into host cells, which has been increasingly exploited in recent years as the target for new antiviral agents. A conserved co-receptor binding site on gp120 that recognizes sulfotyrosine (sTyr) residues represents a structural target to design novel HIV entry inhibitors. In this work, we developed an efficient synthesis of sulfotyrosine dipeptide and evaluated it as an HIV-1 entry inhibitor.
Collapse
Affiliation(s)
- Tong Ju
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Duoyi Hu
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
55
|
Soleimani Farsani M, Behbahani M, Isfahani HZ. The Effect of Root, Shoot and Seed Extracts of The Iranian Thymus L. (Family: Lamiaceae) Species on HIV-1 Replication and CD4 Expression. CELL JOURNAL 2016; 18:255-61. [PMID: 27540531 PMCID: PMC4988425 DOI: 10.22074/cellj.2016.4321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/22/2015] [Indexed: 12/01/2022]
Abstract
Objective The genus Thymus L. is a cushion plant that was previously used for the treatment
of bronchitis and rheumatism. The present investigation was carried out to study the
effects of root, shoot, leaf and seed extracts of five Thymus species and subspecies on
peripheral blood mononuclear cells (PBMCs) toxicity and HIV-1 replication.
Materials and Methods In this experimental study, the activity of the Thymus extracts
on HIV-1 replication and lymphocytes population were examined respectively using HIV-1
p24 Antigen kit and flow-cytometer. The Thymus species effect was investigated, including
Thymus kotschyanus, Thymus vulgaris, Thymus carmanicus, Thymus daenensis subspecies lancifolius and Thymus daenensis subspecies daenensis.
Results The effect of root methanol extracts of all species on PBMCs proliferation was
significantly higher than the other extracts. The intensity of CD4, CD3 and CD45 were
decreased in the presence of all root extracts. Although the average median fluorescence
intensity (MFI) values of CD19 were increased in the cells treated with these extracts. All
methanol extracts showed anti-HIV-1 activity at high concentrations (200 and 500 µg/ml).
Anti-HIV-1 activity of Thymus daenensis subspecies daenensis was significantly more
than the other species.
Conclusion These results demonstrated that root extracts of Thymus species might be
a good candidate to investigate anti-HIV infection in vivo.
Collapse
Affiliation(s)
- Maryam Soleimani Farsani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamid Zarkesh Isfahani
- Department of Immunology, Medical Sciences Faculty, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
56
|
Xu GG, Guo J, Wu Y. Chemokine receptor CCR5 antagonist maraviroc: medicinal chemistry and clinical applications. Curr Top Med Chem 2016; 14:1504-14. [PMID: 25159165 DOI: 10.2174/1568026614666140827143745] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus (HIV) causes acquired immumodeficiency syndrome (AIDS), one of the worst global pandemic. The virus infects human CD4 T cells and macrophages, and causes CD4 depletion. HIV enters target cells through the binding of the viral envelope glycoprotein to CD4 and the chemokine coreceptor, CXCR4 or CCR5. In particular, the CCR5-utilizing viruses predominate in the blood during the disease course. CCR5 is expressed on the surface of various immune cells including macrophages, monocytes, microglia, dendric cells, and active memory CD4 T cells. In the human population, the CCR5 genomic mutation, CCR5Δ32, is associated with relative resistance to HIV. These findings paved the way for the discovery and development of CCR5 inhibitors to block HIV transmission and replication. Maraviroc, discovered as a CCR5 antagonist, is the only CCR5 inhibitor that has been approved by both US FDA and the European Medicines Agency (EMA) for treating HIV/AIDS patients. In this review, we summarize the medicinal chemistry and clinical studies of Maraviroc.
Collapse
Affiliation(s)
| | | | - Yuntao Wu
- Department of Molecular and Microbiology, National Center for Biodefense & Infectious Diseases, George Mason University, 10900 University Drive, Manassas, VA 20220, USA.
| |
Collapse
|
57
|
Rebensburg S, Helfer M, Schneider M, Koppensteiner H, Eberle J, Schindler M, Gürtler L, Brack-Werner R. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci Rep 2016; 6:20394. [PMID: 26833261 PMCID: PMC4735868 DOI: 10.1038/srep20394] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022] Open
Abstract
Novel therapeutic options are urgently needed to improve global treatment of virus infections. Herbal products with confirmed clinical safety features are attractive starting material for the identification of new antiviral activities. Here we demonstrate that Cistus incanus (Ci) herbal products inhibit human immunodeficiency virus (HIV) infections in vitro. Ci extract inhibited clinical HIV-1 and HIV-2 isolates, and, importantly, a virus isolate with multiple drug resistances, confirming broad anti-HIV activity. Antiviral activity was highly selective for virus particles, preventing primary attachment of the virus to the cell surface and viral envelope proteins from binding to heparin. Bioassay-guided fractionation indicated that Ci extract contains numerous antiviral compounds and therefore has favorably low propensity to induce virus resistance. Indeed, no resistant viruses emerged during 24 weeks of continuous propagation of the virus in the presence of Ci extracts. Finally, Ci extracts also inhibited infection by virus particles pseudotyped with Ebola and Marburg virus envelope proteins, indicating that antiviral activity of Ci extract extends to emerging viral pathogens. These results demonstrate that Ci extracts show potent and broad in vitro antiviral activity against viruses that cause life-threatening diseases in humans and are promising sources of agents that target virus particles.
Collapse
Affiliation(s)
- Stephanie Rebensburg
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Markus Helfer
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Martha Schneider
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Herwig Koppensteiner
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
| | - Josef Eberle
- Ludwig Maximilian’s University, Max von Pettenkofer Institute, Munich
| | - Michael Schindler
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
- University Hospital of Tübingen, Department of Medical Virology and Epidemiology of Viral Diseases, Tübingen
| | - Lutz Gürtler
- Ludwig Maximilian’s University, Max von Pettenkofer Institute, Munich
| | - Ruth Brack-Werner
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Virology, Oberschleißheim
- German Center for Infection Research, partner site Munich, Germany
| |
Collapse
|
58
|
Sobhy H. A Review of Functional Motifs Utilized by Viruses. Proteomes 2016; 4:proteomes4010003. [PMID: 28248213 PMCID: PMC5217368 DOI: 10.3390/proteomes4010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
Short linear motifs (SLiM) are short peptides that facilitate protein function and protein-protein interactions. Viruses utilize these motifs to enter into the host, interact with cellular proteins, or egress from host cells. Studying functional motifs may help to predict protein characteristics, interactions, or the putative cellular role of a protein. In virology, it may reveal aspects of the virus tropism and help find antiviral therapeutics. This review highlights the recent understanding of functional motifs utilized by viruses. Special attention was paid to the function of proteins harboring these motifs, and viruses encoding these proteins. The review highlights motifs involved in (i) immune response and post-translational modifications (e.g., ubiquitylation, SUMOylation or ISGylation); (ii) virus-host cell interactions, including virus attachment, entry, fusion, egress and nuclear trafficking; (iii) virulence and antiviral activities; (iv) virion structure; and (v) low-complexity regions (LCRs) or motifs enriched with residues (Xaa-rich motifs).
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
59
|
Justino GC, Pinheiro PF, Roseiro APS, Knittel ASO, Gonçalves J, Justino MC, Carvalho MFNN. Camphor-based CCR5 blocker lead compounds – a computational and experimental approach. RSC Adv 2016. [DOI: 10.1039/c6ra09627a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study identifies novel camphor-derived compounds that bind the CCR5 receptor and can be used as lead compounds for drug discovery.
Collapse
Affiliation(s)
- Gonçalo C. Justino
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Pedro F. Pinheiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Alexandra P. S. Roseiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Ana S. O. Knittel
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - João Gonçalves
- URIA-Centro de Patogénese Molecular
- Faculdade de Farmácia
- Universidade de Lisboa
- 1649-028 Lisboa
- Portugal
| | - Marta C. Justino
- Escola Superior de Tecnologia do Barreiro
- Instituto Politécnico de Setúbal
- 2830-144 Barreiro
- Portugal
| | | |
Collapse
|
60
|
Liang TJ, Block TM, McMahon BJ, Ghany MG, Urban S, Guo JT, Locarnini S, Zoulim F, Chang KM, Lok AS. Present and future therapies of hepatitis B: From discovery to cure. Hepatology 2015; 62:1893-908. [PMID: 26239691 PMCID: PMC4681668 DOI: 10.1002/hep.28025] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/31/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatitis B virus (HBV) is a significant global pathogen, infecting more than 240 million people worldwide. While treatment for HBV has improved, HBV patients often require lifelong therapies and cure is still a challenging goal. Recent advances in technologies and pharmaceutical sciences have heralded a new horizon of innovative therapeutic approaches that are bringing us closer to the possibility of a functional cure of chronic HBV infection. In this article, we review the current state of science in HBV therapy and highlight new and exciting therapeutic strategies spurred by recent scientific advances. Some of these therapies have already entered into clinical phase, and we will likely see more of them moving along the development pipeline. CONCLUSION With growing interest in developing and efforts to develop more effective therapies for HBV, the challenging goal of a cure may be well within reach in the near future.
Collapse
Affiliation(s)
- T. Jake Liang
- Liver Diseases Branch, NIDDK, NIH, Bethesda, MD. USA
| | | | - Brian J. McMahon
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, AK. USA
| | - Marc G. Ghany
- Liver Diseases Branch, NIDDK, NIH, Bethesda, MD. USA
| | - Stephan Urban
- Dept of Infectious Diseases, Molecular Virology and German Center for Infection Diseases (DZIF), Univ Hospital Heidelberg, Heidelberg, Germany
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA. USA
| | | | - Fabien Zoulim
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute, Melbourne, VIC, Australia
| | - Kyong-Mi Chang
- Dept of Medicine, Philadelphia VAMC & University of Pennsylvania, Philadelphia, PA. USA
| | - Anna S. Lok
- Div of Gastroenterology and Hepatology, Univ of Michigan, Ann Arbor, MI. USA
| |
Collapse
|
61
|
Tryptophan dendrimers that inhibit HIV replication, prevent virus entry and bind to the HIV envelope glycoproteins gp120 and gp41. Eur J Med Chem 2015; 106:34-43. [DOI: 10.1016/j.ejmech.2015.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/17/2022]
|
62
|
Tai CJ, Li CL, Tai CJ, Wang CK, Lin LT. Early Viral Entry Assays for the Identification and Evaluation of Antiviral Compounds. J Vis Exp 2015:e53124. [PMID: 26555014 DOI: 10.3791/53124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cell-based systems are useful for discovering antiviral agents. Dissecting the viral life cycle, particularly the early entry stages, allows a mechanistic approach to identify and evaluate antiviral agents that target specific steps of the viral entry. In this report, the methods of examining viral inactivation, viral attachment, and viral entry/fusion as antiviral assays for such purposes are described, using hepatitis C virus as a model. These assays should be useful for discovering novel antagonists/inhibitors to early viral entry and help expand the scope of candidate antiviral agents for further drug development.
Collapse
Affiliation(s)
- Chen-Jei Tai
- Department of Chinese Medicine, Taipei Medical University Hospital; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University
| | - Chia-Lin Li
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University
| | - Cheng-Jeng Tai
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
| | - Chien-Kai Wang
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University; Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University;
| |
Collapse
|
63
|
Abstract
Maraviroc is a first-in-class selective CCR5 antagonist only approved in combination with other antiretrovirals for the treatment of HIV-infection. However, sometimes, off-label prescribing is necessary. In this regard, interesting data have been obtained with maraviroc from studies using murine models. In human daily clinical practice there are many researching areas of interest where CCR5 could play an important role. Nowadays few clinical trials are evaluating maraviroc's role in non-HIV-infected patients but there are many open issues that need to be answered about CCR5 antagonists. In this article we review some of them.
Collapse
Affiliation(s)
- José-Ramón Blanco
- a Infectious Diseases Area , Hospital San Pedro - Center for Biomedical Research of La Rioja (CIBIR) , Logroño , Spain
| | - Laura Ochoa-Callejero
- b Oncology Area , Center for Biomedical Research of La Rioja (CIBIR) , Logroño , Spain
| |
Collapse
|
64
|
Piccini LE, Castilla V, Damonte EB. Dengue-3 Virus Entry into Vero Cells: Role of Clathrin-Mediated Endocytosis in the Outcome of Infection. PLoS One 2015; 10:e0140824. [PMID: 26469784 PMCID: PMC4607419 DOI: 10.1371/journal.pone.0140824] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023] Open
Abstract
The endocytic uptake and intracellular trafficking for penetration of DENV-3 strain H-87 into Vero cells was analyzed by using several biochemical inhibitors and dominant negative mutants of cellular proteins. The results presented show that the infective entry of DENV-3 into Vero cells occurs through a non-classical endocytosis pathway dependent on low pH and dynamin, but non-mediated by clathrin. After uptake, DENV-3 transits through early endosomes to reach Rab 7-regulated late endosomes, and according with the half-time for ammonium chloride resistance viral nucleocapsid is released into the cytosol approximately at 12 min post-infection. Furthermore, the influence of the clathrin pathway in DENV-3 infective entry in other mammalian cell lines of human origin, such as A549, HepG2 and U937 cells, was evaluated demonstrating that variable entry pathways are employed depending on the host cell. Results show for the first time the simultaneous coexistence of infective and non -infective routes for DENV entry into the host cell, depending on the usage of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Luana E. Piccini
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Buenos Aires, Argentina
| | - Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa B. Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
65
|
Heredia A, Latinovic OS, Barbault F, de Leeuw EPH. A novel small-molecule inhibitor of HIV-1 entry. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5469-78. [PMID: 26491257 PMCID: PMC4598220 DOI: 10.2147/dddt.s89338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Antiretroviral therapy has transformed HIV-1 infection into a managed condition with near-normal life expectancy. However, a significant number of patients remain with limited therapeutic options due to HIV-1 resistance, side effects, or drug costs. Further, it is likely that current drugs will not retain efficacy, due to risks of side effects and transmitted resistance. Results We describe compound 5660386 (3-ethyl-2-[3-(1,3,3-trimethyl-1,3-dihydro-2H-indol-2-ylidene)-1-propen-1-yl]-1,3-benzothiazol-3-ium) as a novel inhibitor of HIV-1 entry. Compound 5660386 inhibits HIV-1 entry in cell lines and primary cells, binds to HIV-1 envelope protein, and inhibits the interaction of GP120 to CD4. Further, compound 5660386 showed a unique and broad-range activity against primary HIV-1 isolates from different subtypes and geographical areas. Conclusion Development of small-molecule entry inhibitors of HIV-1 such as 5660386 may lead to novel classes of anti-HIV-1 therapeutics. These inhibitors may be particularly effective against viruses resistant to current antiretroviral drugs and could have potential applications in both treatment and prevention.
Collapse
Affiliation(s)
- Alonso Heredia
- Department of Medicine, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA ; Institute of Human Virology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Olga S Latinovic
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA ; Institute of Human Virology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Florent Barbault
- Univ Paris Diderot, Sorbonne Paris Cité, ITODYS, UMRCNRS7086, Paris, France
| | - Erik P H de Leeuw
- Institute of Human Virology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA ; Department of Biochemistry and Molecular Biology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| |
Collapse
|
66
|
Ng TB, Cheung RCF, Wong JH, Chan WY. Proteins, peptides, polysaccharides, and nucleotides with inhibitory activity on human immunodeficiency virus and its enzymes. Appl Microbiol Biotechnol 2015; 99:10399-414. [PMID: 26411457 DOI: 10.1007/s00253-015-6997-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome, has claimed innumerable lives in the past. Many biomolecules which suppress HIV replication and also other biomolecules that inhibit enzymes essential to HIV replication have been reported. Proteins including a variety of milk proteins, ribosome-inactivating proteins, ribonucleases, antifungal proteins, and trypsin inhibitors; peptides comprising cathelicidins, defensins, synthetic peptides, and others; polysaccharides and polysaccharopeptides; nucleosides, nucleotides, and ribozymes, demonstrated anti-HIV activity. In many cases, the mechanism of anti-HIV action has been elucidated. Strategies have been devised to augment the anti-HIV potency of these compounds.
Collapse
Affiliation(s)
- Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, New Territories, China.
| |
Collapse
|
67
|
Exclusive Decoration of Simian Immunodeficiency Virus Env with High-Mannose Type N-Glycans Is Not Compatible with Mucosal Transmission in Rhesus Macaques. J Virol 2015; 89:11727-33. [PMID: 26355090 PMCID: PMC4645679 DOI: 10.1128/jvi.01358-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelope (Env) proteins are extensively decorated with N-glycans, predominantly of the high-mannose type. However, it is unclear how high-mannose N-glycans on Env impact viral spread. We show that exclusive modification of SIV Env with these N-glycans reduces viral infectivity and abrogates mucosal transmission, despite increasing viral capture by immune cell lectins. Thus, high-mannose N-glycans have opposed effects on SIV infectivity and lectin reactivity, and a balance might be required for efficient mucosal transmission.
Collapse
|
68
|
Garcia-Perez J, Staropoli I, Azoulay S, Heinrich JT, Cascajero A, Colin P, Lortat-Jacob H, Arenzana-Seisdedos F, Alcami J, Kellenberger E, Lagane B. A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity. Retrovirology 2015; 12:50. [PMID: 26081316 PMCID: PMC4470041 DOI: 10.1186/s12977-015-0177-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
Background Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited. Results Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3. Conclusion These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their fusion and replication efficiencies. This study thus sheds light on unsuspected mechanisms whereby MVC-resistant HIV-1 could emerge and grow in treated patients. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Garcia-Perez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Isabelle Staropoli
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | | | | | - Almudena Cascajero
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Philippe Colin
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France. .,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, 75015, Paris, France.
| | - Hugues Lortat-Jacob
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), 38027, Grenoble, France. .,CNRS, IBS, 38027, Grenoble, France. .,CEA, DSV, IBS, 38027, Grenoble, France.
| | - Fernando Arenzana-Seisdedos
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | | | - Bernard Lagane
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
69
|
Llibre JM, Rivero A, Rojas JF, Garcia Del Toro M, Herrero C, Arroyo D, Pineda JA, Pasquau J, Masiá M, Crespo M, Blanco JR, Moreno S. Safety, efficacy and indications of prescription of maraviroc in clinical practice: Factors associated with clinical outcomes. Antiviral Res 2015; 120:79-84. [PMID: 25977241 DOI: 10.1016/j.antiviral.2015.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 11/18/2022]
Abstract
Maraviroc is approved for treatment-experienced HIV+ adults in twice-daily administration. Limited data are available on safety, efficacy and use in routine clinical practice, outside of restrictive clinical trials. This retrospective multicenter (27 centers) study included 667 subjects starting a regimen with maraviroc. The primary endpoint was plasma HIV-RNA <50copies/mL and CD4(+) cell count change at 48 and 96weeks (FDA snapshot analysis). 94.4% had CCR5 tropism (58.3% Trofile™, 29.2% population genotype, and 12% genotyping proviral DNA). Half of the subjects received the drug in scenarios or dosages outside the initial approval. Maraviroc was prescribed for salvage in 346 (51.9%) individuals, as a switch strategy due to toxicity in 135 (38.7%), for immune discordance in 75 (11.2%), and for simplification in 48 (7.2%). After salvage therapy, 223 (64.5%) subjects had HIV-RNA <50copies/mL at 48weeks, and 178 (51.4%) at 96weeks. Darunavir/r was included in 224 (64.7%) subjects and associated with higher rates of virological and immunologic efficacy (p<0.001). In multivariate analysis MSM (OR 2.25; 95%CI 1.29-3.94) and baseline HIV-RNA <100,000copies/mL (OR 1.96; 1.06-3.70) were associated with virological suppression. An increase in CD4(+) counts was seen at 48 and 96weeks in subjects with immune discordance (p<0.001). Maraviroc was used once-daily in 142 (21.3%) subjects overall, and 68 (57.4%) in switch/simplification. No new safety signals were identified. Besides in salvage regimens, maraviroc was frequently used in switch due to toxicity, simplification, and immune discordance. The efficacy in salvage in clinical practice was higher than in phase III clinical trials, likely due to availability of new active drugs in the regimen. These results increase our understanding of the efficacy, safety, and conditions of prescription of maraviroc beyond the initial registrational trials and the early manufacturer pharmacovigilance programs.
Collapse
Affiliation(s)
- Josep M Llibre
- HIV Unit and "Lluita contra la SIDA" Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Universitat Autònoma de Barcelona, Spain.
| | | | | | | | - Cristina Herrero
- HIV Unit and "Lluita contra la SIDA" Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Universitat Autònoma de Barcelona, Spain
| | - David Arroyo
- Clinical Biostatistics Unit, Hospital Ramón y Cajal, CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - Juan Pasquau
- Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Mar Masiá
- Hospital Universitario de Elche, Spain
| | | | | | | |
Collapse
|
70
|
Castilla V, Piccini LE, Damonte EB. Dengue virus entry and trafficking: perspectives as antiviral target for prevention and therapy. Future Virol 2015. [DOI: 10.2217/fvl.15.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT Dengue virus (DENV) is the etiological agent of the most important human viral infection transmitted by mosquitoes in the world. In spite of the serious health threat that dengue represents, at present there are no vaccine or antiviral agents available and treatment of patients consists of supportive therapy. This review will focus on the process of DENV entry into the host cell as a potential target for antiviral therapy. The recent advances in the knowledge of viral and cellular molecules and mechanisms involved in binding, internalization and trafficking of DENV into the host cell until virion uncoating are discussed, together with an overview of the strategies and compounds evaluated for development of antiviral agents targeted to DENV entry.
Collapse
Affiliation(s)
- Viviana Castilla
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Luana E Piccini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| |
Collapse
|
71
|
Affiliation(s)
- Elena Bekerman
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
72
|
Kuhn RJ, Dowd KA, Beth Post C, Pierson TC. Shake, rattle, and roll: Impact of the dynamics of flavivirus particles on their interactions with the host. Virology 2015; 479-480:508-17. [PMID: 25835729 DOI: 10.1016/j.virol.2015.03.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/29/2015] [Accepted: 03/08/2015] [Indexed: 12/20/2022]
Abstract
Remarkable progress in structural biology has equipped virologists with insight into structures of viral proteins and virions at increasingly high resolution. Structural information has been used extensively to address fundamental questions about virtually all aspects of how viruses replicate in cells, interact with the host, and in the design of antiviral compounds. However, many critical aspects of virology exist outside the snapshots captured by traditional methods used to generate high-resolution structures. Like all proteins, viral proteins are not static structures. The conformational flexibility and dynamics of proteins play a significant role in protein-protein interactions, and in the structure and biology of virus particles. This review will discuss the implications of the dynamics of viral proteins on the biology, antigenicity, and immunogenicity of flaviviruses.
Collapse
Affiliation(s)
- Richard J Kuhn
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Kimberly A Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carol Beth Post
- Departments of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
73
|
Tedbury PR, Freed EO. HIV-1 gag: an emerging target for antiretroviral therapy. Curr Top Microbiol Immunol 2015; 389:171-201. [PMID: 25731773 DOI: 10.1007/82_2015_436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The advances made in the treatment of HIV-1 infection represent a major success of modern biomedical research, prolonging healthy life and reducing virus transmission. There remain, however, many challenges relating primarily to side effects of long-term therapy and the ever-present danger of the emergence of drug-resistant strains. To counter these threats, there is a continuing need for new and better drugs, ideally targeting multiple independent steps in the HIV-1 replication cycle. The most successful current drugs target the viral enzymes: protease (PR), reverse transcriptase (RT), and integrase (IN). In this review, we outline the advances made in targeting the Gag protein and its mature products, particularly capsid and nucleocapsid, and highlight possible targets for future pharmacological intervention.
Collapse
Affiliation(s)
- Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Center for Cancer Research, Frederick, MD, 21702-1201, USA
| | | |
Collapse
|
74
|
Rosemary Bastian A, Nangarlia A, Bailey LD, Holmes A, Kalyana Sundaram RV, Ang C, Moreira DRM, Freedman K, Duffy C, Contarino M, Abrams C, Root M, Chaiken I. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J Biol Chem 2014; 290:529-43. [PMID: 25371202 DOI: 10.1074/jbc.m114.608315] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Entry of HIV-1 into host cells remains a compelling yet elusive target for developing agents to prevent infection. A peptide triazole (PT) class of entry inhibitor has previously been shown to bind to HIV-1 gp120, suppress interactions of the Env protein at host cell receptor binding sites, inhibit cell infection, and cause envelope spike protein breakdown, including gp120 shedding and, for some variants, virus membrane lysis. We found that gold nanoparticle-conjugated forms of peptide triazoles (AuNP-PT) exhibit substantially more potent antiviral effects against HIV-1 than corresponding peptide triazoles alone. Here, we sought to reveal the mechanism of potency enhancement underlying nanoparticle conjugate function. We found that altering the physical properties of the nanoparticle conjugate, by increasing the AuNP diameter and/or the density of PT conjugated on the AuNP surface, enhanced potency of infection inhibition to impressive picomolar levels. Further, compared with unconjugated PT, AuNP-PT was less susceptible to reduction of antiviral potency when the density of PT-competent Env spikes on the virus was reduced by incorporating a peptide-resistant mutant gp120. We conclude that potency enhancement of virolytic activity and corresponding irreversible HIV-1 inactivation of PTs upon AuNP conjugation derives from multivalent contact between the nanoconjugates and metastable Env spikes on the HIV-1 virus. The findings reveal that multispike engagement can exploit the metastability built into virus the envelope to irreversibly inactivate HIV-1 and provide a conceptual platform to design nanoparticle-based antiviral agents for HIV-1 specifically and putatively for metastable enveloped viruses generally.
Collapse
Affiliation(s)
- Arangassery Rosemary Bastian
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Aakansha Nangarlia
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Lauren D Bailey
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Andrew Holmes
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - R Venkat Kalyana Sundaram
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Charles Ang
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Diogo R M Moreira
- the Fundação Oswaldo Cruz, Centro de Pesquisas Goncalo Moniz, Salvador-BA 40296-710, Brazil
| | - Kevin Freedman
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Caitlin Duffy
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Mark Contarino
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Cameron Abrams
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Michael Root
- the Department of Biochemistry and Molecular Biology, Jefferson University, Philadelphia, Pennsylvania 19107
| | - Irwin Chaiken
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102,
| |
Collapse
|
75
|
Tiefenbrunn T, Stout CD. Towards novel therapeutics for HIV through fragment-based screening and drug design. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 116:124-40. [DOI: 10.1016/j.pbiomolbio.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/15/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
|
76
|
Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014; 6:4095-139. [PMID: 25341668 PMCID: PMC4213579 DOI: 10.3390/v6104095] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
77
|
Synergistic combinations of the CCR5 inhibitor VCH-286 with other classes of HIV-1 inhibitors. Antimicrob Agents Chemother 2014; 58:7565-9. [PMID: 25267674 DOI: 10.1128/aac.03630-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here, we evaluated the in vitro anti-HIV-1 activity of the experimental CCR5 inhibitor VCH-286 as a single agent or in combination with various classes of HIV-1 inhibitors. Although VCH-286 used alone had highly inhibitory activity, paired combinations with different drug classes led to synergistic or additive interactions. However, combinations with other CCR5 inhibitors led to effects ranging from synergy to antagonism. We suggest that caution should be exercised when combining CCR5 inhibitors in vivo.
Collapse
|
78
|
Behbahani M. Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro. Int Immunopharmacol 2014; 23:262-6. [PMID: 25239814 DOI: 10.1016/j.intimp.2014.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/23/2014] [Accepted: 09/04/2014] [Indexed: 11/18/2022]
Abstract
This study was carried out to check the efficacy of methanol seed extract of Avicenna marina and its column chromatographic fractions on Peripheral Blood Mono nuclear Cells (PBMCs) toxicity and HIV-1 replication. The anti-HIV-1 activities of crude methanol extract and its fractions were performed by use of real-time polymerase chain reaction (PCR) assay and HIV-1 p24 antigen kit. A time of drug addiction approach was also done to identify target of anti-HIV compound. The activity of the extracts on CD4, CD3, CD19 and CD45 expression in lymphocytes population was performed by use of flow cytometry. The most active anti-HIV agent was detected by spectroscopic analysis as 2'-O-(4-methoxycinnamoyl) mussaenosidic acid. The apparent effective concentrations for 50% virus replication (EC50) of methanol extract and iridoid glycoside were 45 and 0.1 μg/ml respectively. The iridoid glycoside also did not have any observable effect on the proportion of CD4, CD3, CD19 and CD45 cells or on the intensity of their expressions on PBMCs. In addition, the expression level of C-C chemokine receptor type 5 (CCR5) and chemokine receptor type 4 (CXCR4) on CD4(+) T cells were decreased in cells treated with this iridoid glycoside. The reduction of these two HIV coreceptors and the result of time of addition study demonstrated that this iridoid glycoside restricts HIV-1 replication on the early stage of HIV infection.
Collapse
Affiliation(s)
- Mandana Behbahani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan 81746-73441 Isfahan, Iran
| |
Collapse
|
79
|
Liu T, Huang B, Zhan P, De Clercq E, Liu X. Discovery of small molecular inhibitors targeting HIV-1 gp120-CD4 interaction drived from BMS-378806. Eur J Med Chem 2014; 86:481-90. [PMID: 25203778 DOI: 10.1016/j.ejmech.2014.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
The HIV-1 entry into host cells is a complex, multi-factors involved, and multi-step process. Especially, the attachment of HIV-1 envelope glycoprotein gp120 to the host cell receptor CD4 is the first key step during entry process, representing a promising antiviral therapeutic target. Among the HIV-1 attachment inhibitors blocking the interaction between gp120 and CD4 cells, BMS-378806 and NBD-556 are two representative small molecular chemical entities. Particularly, BMS-378806 and its derivatives are newly identified class of orally bioavailable HIV-1 inhibitors that interfere gp120-CD4 interaction. In this review, we focused on describing the structure-activity relationships (SARs), structural modifications, in vitro or even in vivo pharmacodynamics and pharmacokinetics of BMS-378806 and its analogues as HIV-1 gp120 attachment inhibitors. In addition, the brief SARs, structural modifications of NBD-556 and its derivatives targeting the "Phe-43 cavity" as CD4 mimics were also described.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
80
|
Bon I, Turriziani O, Musumeci G, Clò A, Montagna C, Morini S, Calza L, Gibellini D, Antonelli G, Re MC. HIV-1 coreceptor usage in paired plasma RNA and proviral DNA from patients with acute and chronic infection never treated with antiretroviral therapy. J Med Virol 2014; 87:315-22. [PMID: 25138591 DOI: 10.1002/jmv.24036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 01/28/2023]
Abstract
Although an independent evolution of viral quasispecies in different body sites might determine a differential compartmentalization of viral variants, the aim of this paper was to establish whether sequences from peripheral blood mononuclear cells (PBMCs) and plasma provide different or complementary information on HIV tropism in patients with acute or chronic infection. Tropism was predicted using genotypic testing combined with geno2pheno (coreceptor) analysis at a 10% false positive rate in paired RNA and DNA samples from 75 antiretroviral-naïve patients (divided on the basis of avidity index into patients with a recent or long-lasting infection). A high prevalence of R5 HIV strains (97%) was observed in both compartments (plasma and PBMCs) in patients infected recently. By contrast, patients with a long-lasting infection showed a quite different situation in the two compartments, revealing more (46%) X4/DM in PBMCs than patients infected recently (3%) (P = 0.008). As- a knowledge of viral strains in different biological compartments might be crucial to establish a therapeutic protocol, it could be extremely useful to detect not only viral strains in plasma, but also viruses hidden or archived in different cell compartments to better understand disease evolution and treatment efficacy in patients infected with HIV.
Collapse
Affiliation(s)
- I Bon
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Hadrup N. Evidence from pharmacology and pathophysiology suggests that chemicals with dissimilar mechanisms of action could be of bigger concern in the toxicological risk assessment of chemical mixtures than chemicals with a similar mechanism of action. Regul Toxicol Pharmacol 2014; 69:281-3. [DOI: 10.1016/j.yrtph.2014.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/13/2014] [Accepted: 05/12/2014] [Indexed: 01/16/2023]
|
82
|
Bhat R, Adam AT, Lee JJ, Deloison G, Rouillé Y, Séron K, Rotella DP. Structure-activity studies of (-)-epigallocatechin gallate derivatives as HCV entry inhibitors. Bioorg Med Chem Lett 2014; 24:4162-5. [PMID: 25103601 DOI: 10.1016/j.bmcl.2014.07.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022]
Abstract
Preventing viral entry into cells is a recognized approach for HIV therapy and has attracted attention for use against the hepatitis C virus (HCV). Recent reports described the activity of (-)-epigallocatechin gallate (EGCG) as an inhibitor of HCV entry with modest potency. EGCG is a polyphenolic natural product with a wide range of biological activity and unfavorable pharmaceutical properties. In an attempt to identify more drug-like EGCG derivatives with improved efficacy as HCV entry inhibitors, we initiated structure-activity investigations using semi-synthetic and synthetic EGCG analogs. The data show that there are multiple regions in the EGCG structure that contribute to activity. The gallate ester portion of the molecule appears to be of particular importance as a 3,4-difluoro analog of EGCG enhanced potency. This derivative and other active compounds were shown not to be cytotoxic in Huh-7 cell culture. These data suggest that more potent, non-cytotoxic EGCG analogs can be prepared in an attempt to identify more drug-like candidates to treat HCV infection by this mechanism.
Collapse
Affiliation(s)
- Rohit Bhat
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ 07043, United States
| | - Amna T Adam
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ 07043, United States
| | - Jungeun Jasmine Lee
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ 07043, United States
| | - Gaspard Deloison
- BioImaging Center Lille-Nord de France, IFR142, Institut Pasteur de Lille, F-59021 Lille, France
| | - Yves Rouillé
- Hepatitis C Laboratory, Center for Infection & Immunity of Lille (CIIL), Université Lille Nord de France, Institut Pasteur de Lille, CNRS-UMR8204, Inserm-U1019, F-59021 Lille, France
| | - Karin Séron
- Hepatitis C Laboratory, Center for Infection & Immunity of Lille (CIIL), Université Lille Nord de France, Institut Pasteur de Lille, CNRS-UMR8204, Inserm-U1019, F-59021 Lille, France.
| | - David P Rotella
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ 07043, United States.
| |
Collapse
|
83
|
Urban S, Bartenschlager R, Kubitz R, Zoulim F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 2014; 147:48-64. [PMID: 24768844 DOI: 10.1053/j.gastro.2014.04.030] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/11/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023]
Abstract
Although there has been much research into the pathogenesis and treatment of hepatitis B virus (HBV) and hepatitis D virus (HDV) infections, we still do not completely understand how these pathogens enter hepatocytes. This is because in vitro infection studies have only been performed in primary human hepatocytes. Development of a polarizable, HBV-susceptible human hepatoma cell line and studies of primary hepatocytes from Tupaia belangeri have provided important insights into the viral and cellular factors involved in virus binding and infection. The large envelope (L) protein on the surface of HBV and HDV particles has many different functions and is required for virus entry. The L protein mediates attachment of virions to heparan sulfate proteoglycans on the surface of hepatocytes. The myristoylated N-terminal preS1 domain of the L protein subsequently binds to the sodium taurocholate cotransporting polypeptide (NTCP, encoded by SLC10A1), the recently identified bona fide receptor for HBV and HDV. The receptor functions of NTCP and virus entry are blocked, in vitro and in vivo, by Myrcludex B, a synthetic N-acylated preS1 lipopeptide. Currently, the only agents available to treat chronic HBV infection target the viral polymerase, and no selective therapies are available for HDV infection. It is therefore important to study the therapeutic potential of virus entry inhibitors, especially when combined with strategies to induce immune-mediated killing of infected hepatocytes.
Collapse
Affiliation(s)
- Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research, Heidelberg University, Heidelberg, Germany.
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Fabien Zoulim
- INSERM Unité 1052, Cancer Research Center of Lyon, Lyon University, Lyon, France
| |
Collapse
|
84
|
Jin J, Colin P, Staropoli I, Lima-Fernandes E, Ferret C, Demir A, Rogée S, Hartley O, Randriamampita C, Scott MGH, Marullo S, Sauvonnet N, Arenzana-Seisdedos F, Lagane B, Brelot A. Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry. J Biol Chem 2014; 289:19042-52. [PMID: 24855645 DOI: 10.1074/jbc.m114.559831] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade.
Collapse
Affiliation(s)
- Jun Jin
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Philippe Colin
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France, the Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75015 Paris, France
| | - Isabelle Staropoli
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Evelyne Lima-Fernandes
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Cécile Ferret
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Arzu Demir
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Sophie Rogée
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Oliver Hartley
- the Department of Pathology and Immunology, University of Geneva, 1211 Geneva 4, Switzerland, and
| | - Clotilde Randriamampita
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Mark G H Scott
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Stefano Marullo
- the Institut Cochin, Université Paris Descartes, CNRS UMR 8104, INSERM U1016, 75014 Paris, France
| | - Nathalie Sauvonnet
- the Unité de Biologie des Interactions Cellulaires, Institut Pasteur, 75015 Paris, France
| | - Fernando Arenzana-Seisdedos
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Bernard Lagane
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Anne Brelot
- From the INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015 Paris, France,
| |
Collapse
|
85
|
Anti-HIV activities of novel synthetic peptide conjugated chitosan oligomers. Int J Biol Macromol 2014; 66:260-6. [DOI: 10.1016/j.ijbiomac.2014.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/10/2014] [Accepted: 02/11/2014] [Indexed: 11/18/2022]
|
86
|
Vadlapatla RK, Patel M, Paturi DK, Pal D, Mitra AK. Clinically relevant drug-drug interactions between antiretrovirals and antifungals. Expert Opin Drug Metab Toxicol 2014; 10:561-80. [PMID: 24521092 PMCID: PMC4516223 DOI: 10.1517/17425255.2014.883379] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Complete delineation of the HIV-1 life cycle has resulted in the development of several antiretroviral drugs. Twenty-five therapeutic agents belonging to five different classes are currently available for the treatment of HIV-1 infections. Advent of triple combination antiretroviral therapy has significantly lowered the mortality rate in HIV patients. However, fungal infections still represent major opportunistic diseases in immunocompromised patients worldwide. AREAS COVERED Antiretroviral drugs that target enzymes and/or proteins indispensable for viral replication are discussed in this article. Fungal infections, causative organisms, epidemiology and preferred treatment modalities are also outlined. Finally, observed/predicted drug-drug interactions between antiretrovirals and antifungals are summarized along with clinical recommendations. EXPERT OPINION Concomitant use of amphotericin B and tenofovir must be closely monitored for renal functioning. Due to relatively weak interactive potential with the CYP450 system, fluconazole is the preferred antifungal drug. High itraconazole doses (> 200 mg/day) are not advised in patients receiving booster protease inhibitor (PI) regimen. Posaconazole is contraindicated in combination with either efavirenz or fosamprenavir. Moreover, voriconazole is contraindicated with high-dose ritonavir-boosted PI. Echinocandins may aid in overcoming the limitations of existing antifungal therapy. An increasing number of documented or predicted drug-drug interactions and therapeutic drug monitoring may aid in the management of HIV-associated opportunistic fungal infections.
Collapse
Affiliation(s)
- Ramya Krishna Vadlapatla
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmaceutical Sciences, Kansas City, MO 64108, USA
| | - Mitesh Patel
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmaceutical Sciences, Kansas City, MO 64108, USA
| | - Durga K Paturi
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmaceutical Sciences, Kansas City, MO 64108, USA
| | - Dhananjay Pal
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmaceutical Sciences, Kansas City, MO 64108, USA
| | - Ashim K Mitra
- Professor of Pharmacy, Chairman-Division of Pharmaceutical Sciences, Vice-Provost for Interdisciplinary Research, University of Missouri Curators’, 2464 Charlotte Street HSB 5258, Kansas City, MO 64108-2718, USA, Tel: +1 816 235 1615; Fax: +1 816 235 5779;
| |
Collapse
|
87
|
Badia R, Riveira-Muñoz E, Clotet B, Esté JA, Ballana E. Gene editing using a zinc-finger nuclease mimicking the CCR5Δ32 mutation induces resistance to CCR5-using HIV-1. J Antimicrob Chemother 2014; 69:1755-9. [DOI: 10.1093/jac/dku072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
88
|
Watashi K, Urban S, Li W, Wakita T. NTCP and beyond: opening the door to unveil hepatitis B virus entry. Int J Mol Sci 2014; 15:2892-905. [PMID: 24557582 PMCID: PMC3958888 DOI: 10.3390/ijms15022892] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/19/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection, affecting approximately 240 million people worldwide, is a major public health problem that elevates the risk of developing liver cirrhosis and hepatocellular carcinoma. Given that current anti-HBV drugs are limited to interferon-based regimens and nucleos(t)ide analogs, the development of new anti-HBV agents is urgently needed. The viral entry process is generally an attractive target implicated in antiviral strategies. Using primary cells from humans and Tupaia belangeri, as well as HepaRG cells, important determinants of viral entry have been achieved. Recently, sodium taurocholate cotransporting polypeptide (NTCP) was identified as an HBV entry receptor and enabled the establishment of a susceptible cell line that can efficiently support HBV infection. This finding will allow a deeper understanding of the requirements for efficient HBV infection, including the elucidation of the molecular entry mechanism. In addition, pharmacological studies suggest that NTCP is able to serve as a therapeutic target. This article summarizes our current knowledge on the mechanisms of HBV entry and the role of NTCP in this process.
Collapse
Affiliation(s)
- Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany.
| | - Wenhui Li
- National Institute of Biological Sciences, No.7 Science Park Road, ZGC Life Science Park, Changping, 102206 Beijing, China.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan.
| |
Collapse
|
89
|
Caruz A, Neukam K, Rivero-Juárez A, Herrero R, Real LM, Camacho A, Barreiro P, Labarga P, Rivero A, Pineda JA. Association of low-density lipoprotein receptor genotypes with hepatitis C viral load. Genes Immun 2014; 15:16-24. [PMID: 24173146 DOI: 10.1038/gene.2013.56] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 01/03/2023]
Abstract
Several data suggest that low-density lipoprotein receptor (LDLR) is a co-receptor for hepatitis C virus (HCV). Soluble LDLR can inhibit HCV infectivity; greater plasma low-density lipoprotein levels are associated with treatment success; LDLR genotypes have a synergistic impact on the likelihood of achieving SVR with Peg-IFN plus RBV, as well as on viral kinetics after starting treatment. The objective of this study was to assess the impact of genetic polymorphisms in genes related to cholesterol synthesis and transport pathways on pre-treatment plasma HCV viral load (VL). A total of 442 patients infected with HCV and treatment naive were prospectively recruited. One hundred forty-four SNPs located in 40 genes from the cholesterol synthesis/transport and IL28B were genotyped and analyzed for genetic association with pre-treatment plasma HCV VL. SNPs rs1433099 and rs2569540 of LDLR showed association with plasma HCV VL (P=4 × 10(-4) and P=2 × 10(-3)) in patients infected with genotypes 1 and 4. A haplotype including the last three exons of LDLR showed association with the cutoff level of 600 000 IU ml(-1) VL for genotypes 1 and 4 (OR=0.27; P=8 × 10(-6)), as well as a quantitative VL (mean±s.d.: 6.19±0.9 vs CC+CG 5.58±1.1 logIU ml(-1), P=8 × 10(-5)). LDLR genotypes are a major genetic factor influencing HCV VL in patients infected with genotypes 1 and 4.
Collapse
Affiliation(s)
- A Caruz
- Immunogenetics Unit, Department of Experimental, Biology Faculty of Sciences, Universidad de Jaén, Jaén, Spain
| | - K Neukam
- Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme, Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - A Rivero-Juárez
- Unit of Infectious Diseases, Maimonides Institute for Biomedical Research (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - R Herrero
- Immunogenetics Unit, Department of Experimental, Biology Faculty of Sciences, Universidad de Jaén, Jaén, Spain
| | - L M Real
- Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme, Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - A Camacho
- Unit of Infectious Diseases, Maimonides Institute for Biomedical Research (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - P Barreiro
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| | - P Labarga
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| | - A Rivero
- Unit of Infectious Diseases, Maimonides Institute for Biomedical Research (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - J A Pineda
- Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme, Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| |
Collapse
|
90
|
Dürr R, Keppler O, Christ F, Crespan E, Garbelli A, Maga G, Dietrich U. Targeting Cellular Cofactors in HIV Therapy. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_45] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
91
|
Abad Martínez MJ, del Olmo LMB, Benito PB. Interactions Between Natural Health Products and Antiretroviral Drugs. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63430-6.00006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
92
|
Bastian AR, Contarino M, Bailey LD, Aneja R, Moreira DRM, Freedman K, McFadden K, Duffy C, Emileh A, Leslie G, Jacobson JM, Hoxie JA, Chaiken I. Interactions of peptide triazole thiols with Env gp120 induce irreversible breakdown and inactivation of HIV-1 virions. Retrovirology 2013; 10:153. [PMID: 24330857 PMCID: PMC3878761 DOI: 10.1186/1742-4690-10-153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
Background We examined the underlying mechanism of action of the peptide triazole thiol, KR13 that has been shown previously to specifically bind gp120, block cell receptor site interactions and potently inhibit HIV-1 infectivity. Results KR13, the sulfhydryl blocked KR13b and its parent non-sulfhydryl peptide triazole, HNG156, induced gp120 shedding but only KR13 induced p24 capsid protein release. The resulting virion post virolysis had an altered morphology, contained no gp120, but retained gp41 that bound to neutralizing gp41 antibodies. Remarkably, HIV-1 p24 release by KR13 was inhibited by enfuvirtide, which blocks formation of the gp41 6-helix bundle during membrane fusion, while no inhibition of p24 release occurred for enfuvirtide-resistant virus. KR13 thus appears to induce structural changes in gp41 normally associated with membrane fusion and cell entry. The HIV-1 p24 release induced by KR13 was observed in several clades of HIV-1 as well as in fully infectious HIV-1 virions. Conclusions The antiviral activity of KR13 and its ability to inactivate virions prior to target cell engagement suggest that peptide triazole thiols could be highly effective in inhibiting HIV transmission across mucosal barriers and provide a novel probe to understand biochemical signals within envelope that are involved in membrane fusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N 15th Street, New College Building, Room No, 11102, Philadelphia, PA 19102, USA.
| |
Collapse
|
93
|
Permanyer M, Pauls E, Badia R, Esté JA, Ballana E. The cortical actin determines different susceptibility of naïve and memory CD4+ T cells to HIV-1 cell-to-cell transmission and infection. PLoS One 2013; 8:e79221. [PMID: 24244453 PMCID: PMC3823590 DOI: 10.1371/journal.pone.0079221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
Memory CD4+ T cells are preferentially infected by HIV-1 compared to naïve cells. HIV-1 fusion and entry is a dynamic process in which the cytoskeleton plays an important role by allowing virion internalization and uncoating. Here, we evaluate the role of the cortical actin in cell-to-cell transfer of virus antigens and infection of target CD4+ T cells. Using different actin remodeling compounds we demonstrate that efficiency of HIV-internalization was proportional to the actin polymerization of the target cell. Naïve (CD45RA+) and memory (CD45RA−) CD4+ T cells could be phenotypically differentiated by the degree of cortical actin density and their capacity to capture virus. Thus, the higher cortical actin density of memory CD4+ T cells was associated to increased efficiency of HIV-antigen internalization and the establishment of a productive infection. Conversely, the lower cortical actin density in naïve CD4+ T cells restricted viral antigen transfer and consequently HIV-1 infection. In conclusion, the cortical actin density differentially affects the susceptibility to HIV-1 infection in naïve and memory CD4+ T cells by modulating the efficiency of HIV antigen internalization.
Collapse
Affiliation(s)
- Marc Permanyer
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eduardo Pauls
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Roger Badia
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José A. Esté
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- * E-mail:
| | - Ester Ballana
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
94
|
Cantisani M, Falanga A, Incoronato N, Russo L, De Simone A, Morelli G, Berisio R, Galdiero M, Galdiero S. Conformational modifications of gB from herpes simplex virus type 1 analyzed by synthetic peptides. J Med Chem 2013; 56:8366-76. [PMID: 24160917 DOI: 10.1021/jm400771k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. The crystallized trimeric glycoprotein gB of herpes simplex virus has been described as a postfusion conformation, and several studies prove that like other class III fusion proteins, gB undergoes a pH-dependent switch between the pre- and postfusion conformations. Using several biophysical techniques, we show that peptides corresponding to the long helix of the gB postfusion structure interfere with the membrane fusion event, likely hampering the conformational rearrangements from the pre- to the postfusion structures. Those peptides represent good candidates for further design of peptidomimetic antagonists capable of blocking the fusion process.
Collapse
Affiliation(s)
- Marco Cantisani
- Department of Pharmacy, ‡CIRPEB, and §DFM Scarl, University of Naples "Federico II" , Via Mezzocannone 16, 80134, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Ballana E, Esté JA. Insights from host genomics into HIV infection and disease: Identification of host targets for drug development. Antiviral Res 2013; 100:473-86. [PMID: 24084487 DOI: 10.1016/j.antiviral.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/11/2023]
Abstract
HIV susceptibility and disease progression show a substantial degree of individual heterogeneity, ranging from fast progressors to long-term non progressors or elite controllers, that is, subjects that control infection in the absence of therapy. Recent years have seen a significant increase in understanding of the host genetic determinants of susceptibility to HIV infection and disease progression, driven in large part by candidate gene studies, genome-wide association studies, genome-wide transcriptome analyses, and large-scale functional screens. These studies have identified common variants in host loci that clearly influence disease progression, characterized the scale and dynamics of gene and protein expression changes in response to infection, and provided the first comprehensive catalogue of genes and pathways involved in viral replication. This review highlights the potential of host genomic influences in antiviral therapy by pointing to promising novel drug targets but also providing the basis of the identification and validation of host mechanisms that might be susceptible targets for novel antiviral therapies.
Collapse
Affiliation(s)
- Ester Ballana
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | |
Collapse
|