51
|
Zarea M, Powell D, Renaud N, Wasielewski MR, Ratner MA. Decoherence and Quantum Interference in a Four-Site Model System: Mechanisms and Turnovers. J Phys Chem B 2013; 117:1010-20. [DOI: 10.1021/jp3102942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahdi Zarea
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois,
United States
| | - Daniel Powell
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois,
United States
| | - Nicolas Renaud
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois,
United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois,
United States
| | - Mark A. Ratner
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois,
United States
| |
Collapse
|
52
|
Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A. Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1483-9. [PMID: 22285745 DOI: 10.1016/j.bbabio.2012.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 01/10/2023]
Abstract
Cyanobacteria change the quantity and/or quality of their pigment-protein complexes in response to light conditions. In the present study, we analyzed excitation relaxation dynamics in the cyanobacterium, Arthrospira (Spirulina) platensis, grown under lights exhibiting different spectral profiles, by means of steady-state absorption and picosecond time-resolved fluorescence spectroscopies. It was found that F760, which is the PSI red-chlorophyll characteristic of A. platensis, contributes to slower energy-transfer phase in the PSI of A. platensis. Excitation energy transfers in phycobilisome and those from PSII to PSI were modified depending on the light quality. Existence of quencher was suggested in PSI of the blue-light grown cells. Phycobilisomes in the green-light grown cells and the far-red-light grown cells transferred excitation energy from phycobilisome to chlorophyll without loss of energy. In these cells, excitation energy was shared between two photosystems. Fast energy transfer was established in phycobilisome under the yellow-light condition where only the phycobilisome can absorb the cultivation light. Differences in light-harvesting and energy-transfer processes under different cultivation-light conditions are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
53
|
Brecht M, Hussels M, Schlodder E, Karapetyan NV. Red antenna states of Photosystem I trimers from Arthrospira platensis revealed by single-molecule spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:445-52. [PMID: 22155210 DOI: 10.1016/j.bbabio.2011.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
Single-molecule fluorescence spectroscopy at 1.4K was used to investigate the spectral properties of red (long-wavelength) chlorophylls in trimeric Photosystem I (PSI) complexes from the cyanobacterium Arthrospira platensis. Three distinct red antenna states could be identified in the fluorescence spectra of single PSI trimers from A. platensis in the presence of oxidized P700. Two of them are responsible for broad emission bands centered at 726 and 760nm. These bands are similar to those found in bulk fluorescence spectra measured at cryogenic temperatures. The broad fluorescence bands at ≅726 and ≅760nm belong to individual emitters that are broadened by strong electron-phonon coupling giving rise to a large Stokes-shift of about 20nm and rapid spectral diffusion. An almost perpendicular orientation of the transition dipole moments of F726 and F760 has to be assumed because direct excitation energy transfer does not occur between F726 and F760. For the first time a third red state assigned to the pool absorbing around 708nm could be detected by its zero-phonon lines. The center of the zero-phonon line distribution is found at ≅714nm. The spectral properties of the three red antenna states show a high similarity to the red antenna states found in trimeric PSI of Thermosynechoccocus elongatus. Based on these findings a similar organization of the red antenna states in PSI of these two cyanobacteria is discussed.
Collapse
Affiliation(s)
- Marc Brecht
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
54
|
Schlodder E, Hussels M, Çetin M, Karapetyan NV, Brecht M. Fluorescence of the various red antenna states in photosystem I complexes from cyanobacteria is affected differently by the redox state of P700. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1423-31. [DOI: 10.1016/j.bbabio.2011.06.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 11/30/2022]
|
55
|
Chen M, Blankenship RE. Expanding the solar spectrum used by photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:427-31. [PMID: 21493120 DOI: 10.1016/j.tplants.2011.03.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 05/03/2023]
Abstract
A limiting factor for photosynthetic organisms is their light-harvesting efficiency, that is the efficiency of their conversion of light energy to chemical energy. Small modifications or variations of chlorophylls allow photosynthetic organisms to harvest sunlight at different wavelengths. Oxygenic photosynthetic organisms usually utilize only the visible portion of the solar spectrum. The cyanobacterium Acaryochloris marina carries out oxygenic photosynthesis but contains mostly chlorophyll d and only traces of chlorophyll a. Chlorophyll d provides a potential selective advantage because it enables Acaryochloris to use infrared light (700-750 nm) that is not absorbed by chlorophyll a. Recently, an even more red-shifted chlorophyll termed chlorophyll f has been reported. Here, we discuss using modified chlorophylls to extend the spectral region of light that drives photosynthetic organisms.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
56
|
El-Mohsnawy E, Kopczak MJ, Schlodder E, Nowaczyk M, Meyer HE, Warscheid B, Karapetyan NV, Rögner M. Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 2010; 49:4740-51. [PMID: 20359245 DOI: 10.1021/bi901807p] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Until now, the functional and structural characterization of monomeric photosystem 1 (PS1) complexes from Thermosynechococcus elongatus has been hampered by the lack of a fully intact PS1 preparation; for this reason, the three-dimensional crystal structure at 2.5 A resolution was determined with the trimeric PS1 complex [Jordan, P., et al. (2001) Nature 411 (6840), 909-917]. Here we show the possibility of isolating from this cyanobacterium the intact monomeric PS1 complex which preserves all subunits and the photochemical activity of the isolated trimeric complex. Moreover, the equilibrium between these complexes in the thylakoid membrane can be shifted by a high-salt treatment in favor of monomeric PS1 which can be quantitatively extracted below the phase transition temperature. Both monomers and trimers exhibit identical posttranslational modifications of their subunits and the same reaction centers but differ in the long-wavelength antenna chlorophylls. Their chlorophyll/P700 ratio (108 for the monomer and 112 for the trimer) is slightly higher than in the crystal structure, confirming mild preparation conditions. Interaction of antenna chlorophylls of the monomers within the trimer leads to a larger amount of long-wavelength chlorophylls, resulting in a higher photochemical activity of the trimers under red or far-red illumination. The dynamic equilibrium between monomers and trimers in the thylakoid membrane may indicate a transient monomer population in the course of biogenesis and could also be the basis for short-term adaptation of the cell to changing environmental conditions.
Collapse
|
57
|
Shubin VV, Roegner M, El-Mohsnawy E, Terekhova IV, Schlodder E, Karapetyan NV. Variability of light-induced circular dichroism spectra of photosystem I complexes of cyanobacteria. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Renger T, Schlodder E. Primary Photophysical Processes in Photosystem II: Bridging the Gap between Crystal Structure and Optical Spectra. Chemphyschem 2010; 11:1141-53. [DOI: 10.1002/cphc.200900932] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
59
|
Excitation energy transfer to Photosystem I in filaments and heterocysts of Nostoc punctiforme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:425-33. [DOI: 10.1016/j.bbabio.2009.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 11/23/2022]
|
60
|
Karapetyan NV. Protective dissipation of excess absorbed energy by photosynthetic apparatus of cyanobacteria: role of antenna terminal emitters. PHOTOSYNTHESIS RESEARCH 2008; 97:195-204. [PMID: 18720026 DOI: 10.1007/s11120-008-9336-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/17/2008] [Indexed: 05/26/2023]
Abstract
Two mechanisms of photoprotective dissipation of the excessively absorbed energy by photosynthetic apparatus of cyanobacteria are described that divert energy from reaction centers. Energy dissipation, monitored as nonphotochemical fluorescence quenching, occurs at different steps of energy transfer within the phycobilisomes or core antenna of photosystem I. Although these mechanisms differ significantly, in both cases, energy dissipates mainly from terminal emitters: allophycocyanin B or core membrane linker protein (L(CM)) in phycobilisomes, or the longest-wavelength chlorophylls in photosystem I antenna. It is supposed that carotenoid-induced energy dissipation in phycobilisomes is triggered by light-induced transformation of the nonquenched state of antenna into quenched state due to conformation changes caused by orange carotinoid-binding protein (OCP)-phycobilisome interaction. Fluorescence of the longest-wavelength chlorophylls of photosystem I antenna is strongly quenched by P700 cation radical or by P700 triplet state, dependent on redox state of the acceptor side cofactors of photosystem I.
Collapse
Affiliation(s)
- Navassard V Karapetyan
- A.N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia.
| |
Collapse
|
61
|
Shubin VV, Terekhova IN, Kirillov BA, Karapetyan NV. Quantum yield of P700+ photodestruction in isolated photosystem I complexes of the cyanobacterium Arthrospira platensis. Photochem Photobiol Sci 2008; 7:956-62. [PMID: 18688503 DOI: 10.1039/b719122g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photostability of P700 cation radical (P700+) was studied by evaluating the quantum yields of P700(+) photodestruction in photosystem I (PSI) complexes of the cyanobacterium Arthrospira platensis. The time courses of P700+ photodestruction in PSI trimers and monomers have been measured in aerobic conditions under selective excitation of far-red absorption band of P700+ by intense light of laser diodes. Long-term exposure of PSI complexes to 808 or 870 nm laser light caused destruction of P700+ and antenna chlorophylls. The true integral quantum yield of P700+ photodestruction calculated from these data was less than 0.7-1.4 x 10(-8). Illumination of PSI complexes by 650 nm light caused destruction of antenna chlorophylls with true quantum yield of about 6-7 x 10(-6) and damage of P700 with apparent quantum yield 2-3 x 10(-8). Preferential photodestruction of the long-wavelength antenna chlorophyll absorbing at 710 nm as compared with bulk chlorophylls was observed. About three orders of difference in magnitude between quantum yields of P700+ and bulk chlorophyll photodestruction indicates that P700+ is extremely photostable for functioning as an efficient quencher of singlet excitation energy in PSI.
Collapse
Affiliation(s)
- Vladimir V Shubin
- A.N. Bakh Institute of Biochemistry RAS, Leninsky pr. 33, 119071, Moscow, Russia
| | | | | | | |
Collapse
|
62
|
Vermaas WFJ, Timlin JA, Jones HDT, Sinclair MB, Nieman LT, Hamad SW, Melgaard DK, Haaland DM. In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. Proc Natl Acad Sci U S A 2008; 105:4050-5. [PMID: 18316743 PMCID: PMC2268818 DOI: 10.1073/pnas.0708090105] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Indexed: 11/18/2022] Open
Abstract
Hyperspectral confocal fluorescence imaging provides the opportunity to obtain individual fluorescence emission spectra in small ( approximately 0.03-microm(3)) volumes. Using multivariate curve resolution, individual fluorescence components can be resolved, and their intensities can be calculated. Here we localize, in vivo, photosynthesis-related pigments (chlorophylls, phycobilins, and carotenoids) in wild-type and mutant cells of the cyanobacterium Synechocystis sp. PCC 6803. Cells were excited at 488 nm, exciting primarily phycobilins and carotenoids. Fluorescence from phycocyanin, allophycocyanin, allophycocyanin-B/terminal emitter, and chlorophyll a was resolved. Moreover, resonance-enhanced Raman signals and very weak fluorescence from carotenoids were observed. Phycobilin emission was most intense along the periphery of the cell whereas chlorophyll fluorescence was distributed more evenly throughout the cell, suggesting that fluorescing phycobilisomes are more prevalent along the outer thylakoids. Carotenoids were prevalent in the cell wall and also were present in thylakoids. Two chlorophyll fluorescence components were resolved: the short-wavelength component originates primarily from photosystem II and is most intense near the periphery of the cell; and the long-wavelength component that is attributed to photosystem I because it disappears in mutants lacking this photosystem is of higher relative intensity toward the inner rings of the thylakoids. Together, the results suggest compositional heterogeneity between thylakoid rings, with the inner thylakoids enriched in photosystem I. In cells depleted in chlorophyll, the amount of both chlorophyll emission components was decreased, confirming the accuracy of the spectral assignments. These results show that hyperspectral fluorescence imaging can provide unique information regarding pigment organization and localization in the cell.
Collapse
Affiliation(s)
- Wim F. J. Vermaas
- *School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Box 874501, Tempe, AZ 85287-4501; and
| | | | | | | | | | - Sawsan W. Hamad
- *School of Life Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Box 874501, Tempe, AZ 85287-4501; and
| | | | | |
Collapse
|
63
|
Papageorgiou GC, Tsimilli-Michael M, Stamatakis K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. PHOTOSYNTHESIS RESEARCH 2007; 94:275-90. [PMID: 17665151 DOI: 10.1007/s11120-007-9193-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/03/2007] [Indexed: 05/16/2023]
Abstract
The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the mus-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 --> 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 --> 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.
Collapse
Affiliation(s)
- George C Papageorgiou
- National Center for Scientific Research Demokritos, Institute of Biology, Athens, 153 10, Greece.
| | | | | |
Collapse
|
64
|
Karapetyan NV. Non-photochemical quenching of fluorescence in cyanobacteria. BIOCHEMISTRY (MOSCOW) 2007; 72:1127-35. [DOI: 10.1134/s0006297907100100] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
65
|
Schlodder E, Shubin VV, El-Mohsnawy E, Roegner M, Karapetyan NV. Steady-state and transient polarized absorption spectroscopy of photosytem I complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:732-41. [PMID: 17321489 DOI: 10.1016/j.bbabio.2007.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 01/05/2007] [Accepted: 01/22/2007] [Indexed: 11/29/2022]
Abstract
Core antenna and reaction centre of photosystem I (PS I) complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus have been characterized by steady-state polarized absorption spectroscopy, including linear dichroism (LD) and circular dichroism (CD). CD spectra and the second derivatives of measured 77 K CD spectra reveal the spectral components found in the polarized absorption spectra indicating the excitonic origin of the spectral forms of chlorophyll in the PS I complexes. The CD bands at 669-670(+), 673(+), 680(-), 683-685(-), 696-697(-), and 711(-) nm are a common feature of used PSI complexes. The 77 K CD spectra of the trimeric PS I complexes exhibit also low amplitude components around 736 nm for A. platensis and 720 nm for T. elongatus attributed to red-most chlorophylls. The LD measurements indicate that the transition dipole moments of the red-most states are oriented parallel to the membrane plane. The formation of P700(+)A(1)(-) or (3)P700 was monitored by time-resolved difference absorbance and LD spectroscopy to elucidate the spectral properties of the PS I reaction centre. The difference spectra give strong evidence for the delocalization of the excited singlet states in the reaction centre. Therefore, P700 cannot be considered as a dimer but should be regarded as a multimer of the six nearly equally coupled reaction centre chlorophylls in accordance with structure-based calculations. On the basis of the results presented in this work and earlier work in the literature it is concluded that the triplet state is localized most likely on P(A), whereas the cation is localized most likely on P(B).
Collapse
Affiliation(s)
- Eberhard Schlodder
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17.Juni 135, 10623 Berlin, Germany.
| | | | | | | | | |
Collapse
|
66
|
Holzwarth AR, Müller MG, Niklas J, Lubitz W. Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. Biophys J 2006; 90:552-65. [PMID: 16258055 PMCID: PMC1367060 DOI: 10.1529/biophysj.105.059824] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 10/03/2005] [Indexed: 11/18/2022] Open
Abstract
The energy transfer and charge separation kinetics in several core Photosystem I particles of Chlamydomonas reinhardtii with point mutations around the PA and PB reaction center chlorophylls (Chls) have been studied using ultrafast transient absorption spectroscopy in the femtosecond to nanosecond time range to characterize the influence on the early electron transfer processes. The data have been analyzed in terms of kinetic compartment models. The adequate description of the transient absorption kinetics requires three different radical pairs in the time range up to approximately 100 ps. Also a charge recombination process from the first radical pair back to the excited state is present in all the mutants, as already shown previously for the wild-type (Müller, M. G., J. Niklas, W. Lubitz, and A. R. Holzwarth. 2003. Biophys. J. 85:3899-3922; and Holzwarth, A. R., M. G. Müller, J. Niklas, and W. Lubitz. 2005. J. Phys. Chem. B. 109:5903-59115). In all mutants, the primary charge separation occurs with the same effective rate constant within the error limits as in the wild-type (>>350 ns(-1)), which implies an intrinsic rate constant of charge separation of <1 ps(-1). The rate constant of the secondary electron transfer process is slowed down by a factor of approximately 2 in the mutant B-H656C, which lacks the ligand to the central metal of Chl PB. For the mutant A-T739V, which breaks the hydrogen bond to the keto carbonyl of Chl PA, only a slight slowing down of the secondary electron transfer is observed. Finally for mutant A-W679A, which has the Trp near the PA Chl replaced, either no pronounced effect or, at best, a slight increase on the secondary electron transfer rate constants is observed. The effective charge recombination rate constant is modified in all mutants to some extent, with the strongest effect observed in mutant B-H656C. Our data strongly suggest that the Chls of the PA and PB pair, constituting what is traditionally called the "primary electron donor P700", are not oxidized in the first electron transfer process, but rather only in the secondary electron transfer step. We thus propose a new electron transfer mechanism for Photosystem I where the accessory Chl(s) function as the primary electron donor(s) and the A0 Chl(s) are the primary electron acceptor(s). This new mechanism also resolves in a straightforward manner the difficulty with the previous mechanism, where an electron would have to overcome a distance of approximately 14 A in <1 ps in a single step. If interpreted within a scheme of single-sided electron transfer, our data suggest that the B-branch is the active branch, although parallel A-branch activity cannot be excluded. All the mutations do affect to a varying extent the energy difference between the reaction center excited state RC* and the first radical pair and thus affect the rate constant of charge recombination. It is interesting to note that the new mechanism proposed is in fact analogous to the electron transfer mechanism in Photosystem II, where the accessory Chl also plays the role of the primary electron donor, rather than the special Chl pair P680 (Prokhorenko, V. and A. R. Holzwarth. 2000. J. Phys. Chem. B. 104:11563-11578).
Collapse
Affiliation(s)
- Alfred R Holzwarth
- Max-Planck-Institut für Bioanorganische Chemie, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | |
Collapse
|