51
|
Integrative bioinformatics links HNF1B with clear cell carcinoma and tumor-associated thrombosis. PLoS One 2013; 8:e74562. [PMID: 24040285 PMCID: PMC3767734 DOI: 10.1371/journal.pone.0074562] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 07/14/2013] [Indexed: 01/21/2023] Open
Abstract
Clear cell carcinoma (CCC) is a histologically distinct carcinoma subtype that arises in several organ systems and is marked by cytoplasmic clearing, attributed to abundant intracellular glycogen. Previously, transcription factor hepatocyte nuclear factor 1-beta (HNF1B) was identified as a biomarker of ovarian CCC. Here, we set out to explore more broadly the relation between HNF1B and carcinomas with clear cell histology. HNF1B expression, evaluated by immunohistochemistry, was significantly associated with clear cell histology across diverse gynecologic and renal carcinomas (P<0.001), as was hypomethylation of the HNF1B promoter (P<0.001). From microarray analysis, an empirically-derived HNF1B signature was significantly enriched for computationally-predicted targets (with HNF1 binding sites) (P<0.03), as well as genes associated with glycogen metabolism, including glucose-6-phophatase, and strikingly the blood clotting cascade, including fibrinogen, prothrombin and factor XIII. Enrichment of the clotting cascade was also evident in microarray data from ovarian CCC versus other histotypes (P<0.01), and HNF1B-associated prothrombin expression was verified by immunohistochemistry (P = 0.015). Finally, among gynecologic carcinomas with cytoplasmic clearing, HNF1B immunostaining was linked to a 3.0-fold increased risk of clinically-significant venous thrombosis (P = 0.043), and with a 2.3-fold increased risk (P = 0.011) in a combined gynecologic and renal carcinoma cohort. Our results define HNF1B as a broad marker of clear cell phenotype, and support a mechanistic link to glycogen accumulation and thrombosis, possibly reflecting (for gynecologic CCC) derivation from secretory endometrium. Our findings also implicate a novel mechanism of tumor-associated thrombosis (a major cause of cancer mortality), based on the direct production of clotting factors by cancer cells.
Collapse
|
52
|
Uekuri C, Shigetomi H, Ono S, Sasaki Y, Matsuura M, Kobayashi H. Toward an understanding of the pathophysiology of clear cell carcinoma of the ovary (Review). Oncol Lett 2013; 6:1163-1173. [PMID: 24179489 PMCID: PMC3813717 DOI: 10.3892/ol.2013.1550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022] Open
Abstract
Endometriosis-associated ovarian cancers demonstrate substantial morphological and genetic diversity. The transcription factor, hepatocyte nuclear factor (HNF)-1β, may be one of several key genes involved in the identity of ovarian clear cell carcinoma (CCC). The present study reviews a considerably expanded set of HNF-1β-associated genes and proteins that determine the pathophysiology of CCC. The current literature was reviewed by searching MEDLINE/PubMed. Functional interpretations of gene expression profiling in CCC are provided. Several important CCC-related genes overlap with those known to be regulated by the upregulation of HNF-1β expression, along with a lack of estrogen receptor (ER) expression. Furthermore, the genetic expression pattern in CCC resembles that of the Arias-Stella reaction, decidualization and placentation. HNF-1β regulates a subset of progesterone target genes. HNF-1β may also act as a modulator of female reproduction, playing a role in endometrial regeneration, differentiation, decidualization, glycogen synthesis, detoxification, cell cycle regulation, implantation, uterine receptivity and a successful pregnancy. In conclusion, the present study focused on reviewing the aberrant expression of CCC-specific genes and provided an update on the pathological implications and molecular functions of well-characterized CCC-specific genes.
Collapse
Affiliation(s)
- Chiharu Uekuri
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | | | | | | | | | | |
Collapse
|
53
|
Alter ML, Ott IM, von Websky K, Tsuprykov O, Sharkovska Y, Krause-Relle K, Raila J, Henze A, Klein T, Hocher B. DPP-4 Inhibition on Top of Angiotensin Receptor Blockade Offers a New Therapeutic Approach for Diabetic Nephropathy. ACTA ACUST UNITED AC 2012; 36:119-30. [DOI: 10.1159/000341487] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 01/09/2023]
|
54
|
Abstract
INTRODUCTION This study examined the temporal expression of angiotensin (Ang)-converting enzyme 2 (ACE2) during renal, heart, lung, and brain organogenesis in the mouse. RESULTS We demonstrate that kidney ACE2 mRNA levels are low on embryonic day (E) 12.5, increase fourfold during development, and decline in adulthood. In extrarenal tissues, ACE2 mRNA levels are also low during early gestation, increase in perinatal period, and peak in adulthood. The lung shows the highest age-related increase in ACE2 mRNA levels followed by the brain, kidney, and heart. ACE2 protein levels and enzymatic activity are high in all organs studied during gestation and decline postnatally. Ang II decreases ACE2 mRNA levels and enzymatic activity in kidneys grown ex vivo. These effects of Ang II are blocked by the specific Ang II AT(1) receptor (AT(1)R) antagonist candesartan, but not by the AT(2) receptor (AT(2)R) antagonist PD123319. DISCUSSION We conclude that ACE2 gene and protein expression and enzymatic activity are developmentally regulated in a tissue-specific manner. Ang II, acting through AT(1)R, exerts a negative feedback on ACE2 during kidney development. We postulate that relatively high ACE2 protein levels and enzymatic activity observed during gestation may play a role in kidney, lung, brain, and heart organogenesis.
Collapse
Affiliation(s)
- Renfang Song
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
55
|
Faguer S, Decramer S, Devuyst O, Lengelé JP, Fournié GJ, Chauveau D. Expression of Renal Cystic Genes in Patients with HNF1B Mutations. ACTA ACUST UNITED AC 2012; 120:c71-8. [DOI: 10.1159/000334954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/27/2011] [Indexed: 12/20/2022]
|
56
|
HNF1B polymorphism associated with development of prostate cancer in Korean patients. Urology 2011; 78:969.e1-6. [PMID: 21982019 DOI: 10.1016/j.urology.2011.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 06/24/2011] [Accepted: 06/24/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To identify whether the genetic variations in HNF1B are associated with the development of prostate cancer in Korean patients. Genome-wide association studies have found the HNF1B gene at 17q12 to be a major causal gene for the risk of prostate cancer. METHODS We evaluated the association of 47 single nucleotide polymorphisms (SNPs) in the HNF1B gene with prostate cancer risk and clinical characteristics (Gleason score and tumor stage) in Korean men (240 case subjects and 223 control subjects) using unconditional logistic regression analysis. RESULTS Of the 47 SNPs, 14 were associated with prostate cancer risk (P = .002-.02); 9 SNPs were associated with a lower risk of prostate cancer (odds ratio 0.67-0.71, P = .005-.05), and 5 SNPs were associated with a greater risk of disease (odds ratio 1.49-1.51, P = .002-.02). In an analysis involving only patients with prostate cancer, 1 SNP (rs11868513) in the HNF1B gene was more frequent in patients with tumors with a greater stage than in those with a lower tumor stage. Two SNPs (rs4430796 and rs2074429) and 1 haplotype (Block3_ht1) were more frequent in patients with Gleason score of ≥7 than in those with Gleason score <6. CONCLUSION As in studies from other populations, our findings indicate that HNF1B is also associated with prostate cancer risk in the Korean population.
Collapse
|
57
|
Chaykovska L, von Websky K, Rahnenführer J, Alter M, Heiden S, Fuchs H, Runge F, Klein T, Hocher B. Effects of DPP-4 inhibitors on the heart in a rat model of uremic cardiomyopathy. PLoS One 2011; 6:e27861. [PMID: 22125632 PMCID: PMC3220703 DOI: 10.1371/journal.pone.0027861] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/26/2011] [Indexed: 12/20/2022] Open
Abstract
Background Uremic cardiomyopathy contributes substantially to mortality in chronic kidney disease (CKD) patients. Glucagon-like peptide-1 (GLP-1) may improve cardiac function, but is mainly degraded by dipeptidyl peptidase-4 (DPP-4). Methodology/Principal Findings In a rat model of chronic renal failure, 5/6-nephrectomized [5/6N] rats were treated orally with DPP-4 inhibitors (linagliptin, sitagliptin, alogliptin) or placebo once daily for 4 days from 8 weeks after surgery, to identify the most appropriate treatment for cardiac dysfunction associated with CKD. Linagliptin showed no significant change in blood level AUC(0-∞) in 5/6N rats, but sitagliptin and alogliptin had significantly higher AUC(0-∞) values; 41% and 28% (p = 0.0001 and p = 0.0324), respectively. No correlation of markers of renal tubular and glomerular function with AUC was observed for linagliptin, which required no dose adjustment in uremic rats. Linagliptin 7 µmol/kg caused a 2-fold increase in GLP-1 (AUC 201.0 ng/l*h) in 5/6N rats compared with sham-treated rats (AUC 108.6 ng/l*h) (p = 0.01). The mRNA levels of heart tissue fibrosis markers were all significantly increased in 5/6N vs control rats and reduced/normalized by linagliptin. Conclusions/Significance DPP-4 inhibition increases plasma GLP-1 levels, particularly in uremia, and reduces expression of cardiac mRNA levels of matrix proteins and B-type natriuretic peptides (BNP). Linagliptin may offer a unique approach for treating uremic cardiomyopathy in CKD patients, with no need for dose-adjustment.
Collapse
Affiliation(s)
- Lyubov Chaykovska
- Charité - Universitätsmedizin Berlin, Center for Cardiovascular Research, Institute for Pharmacology and Toxicology, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam-Nuthetal, Germany
| | - Karoline von Websky
- Charité - Universitätsmedizin Berlin, Center for Cardiovascular Research, Institute for Pharmacology and Toxicology, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam-Nuthetal, Germany
| | - Jan Rahnenführer
- Charité - Universitätsmedizin Berlin, Center for Cardiovascular Research, Institute for Pharmacology and Toxicology, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam-Nuthetal, Germany
| | - Markus Alter
- Charité - Universitätsmedizin Berlin, Center for Cardiovascular Research, Institute for Pharmacology and Toxicology, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam-Nuthetal, Germany
- Charité - Universitätsmedizin Berlin, Medizinische Klinik für Endokrinologie und Nephrologie, Berlin, Germany
| | - Susi Heiden
- Charité - Universitätsmedizin Berlin, Center for Cardiovascular Research, Institute for Pharmacology and Toxicology, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam-Nuthetal, Germany
| | - Holger Fuchs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Frank Runge
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Berthold Hocher
- Charité - Universitätsmedizin Berlin, Center for Cardiovascular Research, Institute for Pharmacology and Toxicology, Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam-Nuthetal, Germany
- * E-mail:
| |
Collapse
|
58
|
Kuan TC, Yang TH, Wen CH, Chen MY, Lee IL, Lin CS. Identifying the regulatory element for human angiotensin-converting enzyme 2 (ACE2) expression in human cardiofibroblasts. Peptides 2011; 32:1832-9. [PMID: 21864606 DOI: 10.1016/j.peptides.2011.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/09/2011] [Indexed: 02/06/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been proposed as a potential target for cardioprotection in regulating cardiovascular functions, owing to its key role in the formation of the vasoprotective peptides angiotensin-(1-7) from angiotensin II (Ang II). The regulatory mechanism of ace2 expression, however, remains to be explored. In this study, we investigated the regulatory element within the upstream of ace2. The human ace2 promoter region, from position -2069 to +20, was cloned and a series of upstream deletion mutants were constructed and cloned into a luciferase reporter vector. The reporter luciferase activity was analyzed by transient transfection of the constructs into human cardiofibroblasts (HCFs) and an activating domain was identified in the -516/-481 region. Deletion or reversal of this domain within ace2 resulted in a significant decrease in promoter activity. The nuclear proteins isolated from the HCFs formed a DNA-protein complex with double stranded oligonucleotides of the -516/-481 domain, as detected by electrophoretic mobility shift assay. Site-directed mutagenesis of this region identified a putative protein binding domain and a potential binding site, ATTTGGA, homologous to that of an Ikaros binding domain. This regulatory element was responsible for Ang II stimulation via the Ang II-Ang II type-1 receptor (AT1R) signaling pathway, but was not responsible for pro-inflammatory cytokines TGF-β1 and TNF-α. Our results suggest that the nucleotide sequences -516/-481 of human ace2 may be a binding domain for an as yet unidentified regulatory factor(s) that regulates ace2 expression and is associated with Ang II stimulation.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin-Converting Enzyme 2
- Base Sequence
- Binding Sites
- Blotting, Western
- Cells, Cultured
- Cloning, Molecular
- Electrophoretic Mobility Shift Assay
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/enzymology
- Gene Expression Regulation, Enzymologic
- Genome, Human
- Humans
- Luciferases/metabolism
- Mutagenesis, Site-Directed
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Regulatory Elements, Transcriptional
- Sequence Deletion
- Signal Transduction
- Transcriptional Activation
- Transfection
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Tang-Ching Kuan
- Department of Biological Science and Technology, National Chiao Tung University, No. 75 Po-Ai Street, Hsinchu 30068, Taiwan
| | | | | | | | | | | |
Collapse
|
59
|
Ishak MB, Giri VN. A systematic review of replication studies of prostate cancer susceptibility genetic variants in high-risk men originally identified from genome-wide association studies. Cancer Epidemiol Biomarkers Prev 2011; 20:1599-610. [PMID: 21715604 DOI: 10.1158/1055-9965.epi-11-0312] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several prostate cancer genome-wide association studies (GWAS) have identified risk-associated genetic variants primarily in populations of European descent. Less is known about the association of these variants in high-risk populations, including men of African descent and men with a family history of prostate cancer. This article provides a detailed review of published studies of prostate cancer-associated genetic variants originally identified in GWAS and replicated in high-risk populations. METHODS Articles replicating GWAS findings (National Human Genome Research Institute GWAS database) were identified by searching PubMed and relevant data were extracted. RESULTS Eleven replication studies were eligible for inclusion in this review. Of more than 30 single-nucleotide polymorphisms (SNP) identified in prostate cancer GWAS, 19 SNPs (63%) were replicated in men of African descent and 10 SNPs (33%) were replicated in men with familial and/or hereditary prostate cancer (FPC/HPC). The majority of SNPs were located at the 8q24 region with modest effect sizes (OR 1.11-2.63 in African American men and OR 1.3-2.51 in men with FPC). All replicated SNPs at 8q24 among men of African descent were within or near regions 2 and 3. CONCLUSIONS This systematic review revealed several GWAS markers with replicated associations with prostate cancer in men of African descent and men with FPC/HPC. The 8q24 region continues to be the most implicated in prostate cancer risk. These replication data support ongoing study of clinical utility and potential function of these prostate cancer-associated variants in high-risk men. IMPACT The replicated SNPs presented in this review hold promise for personalizing risk assessment for prostate cancer for high-risk men upon further study.
Collapse
Affiliation(s)
- Miriam B Ishak
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | |
Collapse
|
60
|
Hepatocyte nuclear factor-1β expression in clear cell adenocarcinomas of the bladder and urethra: diagnostic utility and implications for histogenesis. Hum Pathol 2011; 42:1613-9. [PMID: 21496868 DOI: 10.1016/j.humpath.2011.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 01/19/2011] [Accepted: 01/21/2011] [Indexed: 11/22/2022]
Abstract
The histogenesis of clear cell adenocarcinoma of the bladder/urethra is uncertain. Hepatocyte nuclear factor-1β is a homeodomain protein that has been reported to be frequently overexpressed in ovarian clear cell adenocarcinoma in comparison with rare or no expression in other types of epithelial ovarian tumors. We assessed the expression of hepatocyte nuclear factor-1β in a series of 18 clear cell adenocarcinomas of the bladder and urethra and compared it with that of invasive high-grade transitional/urothelial carcinoma (n = 35); adenocarcinomas of the bladder, urethra, and paraurethral glands (n = 21); as well as nephrogenic adenomas of the bladder (n = 8). Staining intensity and extent were evaluated using a 4-tiered grading system (0-3). A case was considered positive for hepatocyte nuclear factor-1β if 10% or more of tumor cells showed at least weak nuclear staining or if any moderate or strong nuclear staining was observed. All 18 clear cell adenocarcinomas exhibited nuclear staining in at least 50% of tumor cells (16 strong, 1 moderate, and 1 weak with focal strong nuclear staining) in comparison with positive nuclear staining (moderate) in 1 of 21 bladder adenocarcinoma, 1 of 35 invasive high-grade transitional/urothelial carcinoma (weak to moderate staining), and 2 of 8 nephrogenic adenomas (1 weak and 1 moderate to strong staining). We concluded that hepatocyte nuclear factor-1β is a useful marker in differentiating clear cell adenocarcinomas of the bladder/urethra from invasive high-grade transitional/urothelial carcinoma and other types of bladder adenocarcinomas and to a lesser extent from nephrogenic adenomas. Hepatocyte nuclear factor-1β is of no diagnostic utility in discriminating primary bladder/urethral clear cell adenocarcinomas from metastatic clear cell adenocarcinomas of the female genital tract to the bladder/urethra. From a histogenesis standpoint, although the expression of hepatocyte nuclear factor-1β in both gynecologic and urologic tract clear cell adenocarcinomas may point to a Müllerian derivation/differentiation, this immunohistochemical evidence is insufficient to completely exclude an urothelial association.
Collapse
|
61
|
Drews C, Senkel S, Ryffel GU. The nephrogenic potential of the transcription factors osr1, osr2, hnf1b, lhx1 and pax8 assessed in Xenopus animal caps. BMC DEVELOPMENTAL BIOLOGY 2011; 11:5. [PMID: 21281489 PMCID: PMC3042965 DOI: 10.1186/1471-213x-11-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/31/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The three distinct types of kidneys, pronephros, mesonephros and metanephros, develop consecutively in vertebrates. The earliest form of embryonic kidney, the pronephros, is derived from intermediate mesoderm and the first expressed genes localized in the pronephros anlage are the transcription factors osr1, osr2, hnf1b, lhx1 and pax8, here referred to as the early nephrogenic transcription factors. However, the pathway inducing nephrogenesis and the network of theses factors are poorly understood. Treatment of the undifferentiated animal pole explant (animal cap) of Xenopus with activin A and retinoic acid induces pronephros formation providing a powerful tool to analyze key molecular events in nephrogenesis. RESULTS We have investigated the expression kinetics of the early nephrogenic transcription factors in activin A and retinoic acid treated animal caps and their potential to induce pronephric differentiation. In treated animal caps, expression of osr1, osr2, hnf1b and lhx1 are induced early, whereas pax8 expression occurs later implying an indirect activation. Activin A alone is able to induce osr2 and lhx1 after three hours treatment in animal caps while retinoic acid fails to induce any of these nephrogenic transcription factors. The early expression of the five transcription factors and their interference with pronephros development when overexpressed in embryos suggest that these factors potentially induce nephrogenesis upon expression in animal caps. But no pronephros development is achieved by either overexpression of OSR1, by HNF1B injection with activin A treatment, or the combined application of LHX1 and PAX8, although they influenced the expression of several early nephrogenic transcription factors in some cases. In an additional approach we could show that HNF1B induces several genes important in nephrogenesis and regulates lhx1 expression by an HNF1 binding site in the lhx1 promoter. CONCLUSIONS The early nephrogenic transcription factors play an important role in nephrogenesis, but have no pronephros induction potential upon overexpression in animal caps. They activate transcriptional cascades that partially reflect the gene activation initiated by activin A and retinoic acid. Significantly, HNF1B activates the lhx1 promoter directly, thus extending the known activin A regulation of the lhx1 gene via an activin A responsive element.
Collapse
Affiliation(s)
- Christiane Drews
- Institut für Zellbiologie (Tumorforschung) Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Sabine Senkel
- Institut für Zellbiologie (Tumorforschung) Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Gerhart U Ryffel
- Institut für Zellbiologie (Tumorforschung) Universitätsklinikum Essen, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| |
Collapse
|
62
|
Yuan Y, Ferguson LR. Nutrigenetics and Prostate Cancer: 2011 and Beyond. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 4:121-36. [DOI: 10.1159/000327902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
63
|
Matsuura M, Suzuki T, Saito T. Osteopontin is a new target molecule for ovarian clear cell carcinoma therapy. Cancer Sci 2010; 101:1828-33. [PMID: 20545695 PMCID: PMC11158669 DOI: 10.1111/j.1349-7006.2010.01615.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent studies have demonstrated overexpression of osteopontin (OPN) in ovarian clear cell carcinoma. Here, we revealed the role of OPN in invasiveness in ovarian clear cell carcinoma. We used immunofluorescence analysis to detect OPN in a total of 160 patient-derived specimens. Ovarian clear cell carcinoma cell lines, RMG-1 and TOV-21G, were used to monitor changes in OPN and integrin levels, and cell invasiveness following treatment with OPN, simvastatin, and transfection with siRNA. Immunofluorescence analysis revealed statistically significant differences among the histological groups, and ovarian clear cell carcinoma expressed a strong OPN signal. The OPN receptors, alpha v and 5, and beta 1 and 3 integrins, were increased after treatment with OPN. Invasion assays indicated that OPN enhanced in vitro extracellular matrix invasion dose-dependently in ovarian clear cell carcinoma. Simvastatin significantly reduced expression of OPN and the integrins, and decreased ECM invasion. RNA interference also suppressed ECM invasion. These results suggest that down- or up-regulation of OPN is involved in carcinoma cell invasion. We thus conclude that OPN regulation could have a crucial role in ovarian clear cell carcinoma therapy.
Collapse
Affiliation(s)
- Motoki Matsuura
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo, Japan.
| | | | | |
Collapse
|
64
|
Bozek K, Rosahl AL, Gaub S, Lorenzen S, Herzel H. Circadian transcription in liver. Biosystems 2010; 102:61-9. [PMID: 20655353 DOI: 10.1016/j.biosystems.2010.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 07/15/2010] [Indexed: 02/02/2023]
Abstract
Circadian rhythms regulate a wide range of cellular, physiological, metabolic and behavioral activities in mammals. The complexity of tissue- and day-time specific regulation of thousands of clock controlled genes (CCGs) suggests that many transcriptional regulators are involved. Our bioinformatic analysis is based on two published DNA-array studies from mouse liver. We search overrepresented transcription factor binding sites in promoter regions of CCGs using GC-matched controls. Analyzing a large set of CCG promoters, we find known motifs such as E-boxes, D-boxes and cAMP responsive elements. In addition, we find overrepresented GC-rich motifs (Sp1, ETF, Nrf1), AT-rich motifs (TBP, Fox04, MEF-2), Y-box motifs (NF-Y, C/EBP) and cell cycle regulators (E2F, Elk-1). In a subset of system-driven genes, we find overrepresented motifs of the serum response factor SRF and the estrogen receptor ER. The analysis of published ChIP data reveals that some of our predicted regulators (C/EBP, E2F, HNF-1, Myc, MEF-2) target relatively many clock controlled genes. Our analysis of CCG promoters contributes to an understanding of the complex transcriptional regulation of circadian rhythms in liver.
Collapse
Affiliation(s)
- K Bozek
- Max Planck Institute for Informatics, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
65
|
Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther 2010; 128:119-28. [PMID: 20599443 PMCID: PMC7112678 DOI: 10.1016/j.pharmthera.2010.06.003] [Citation(s) in RCA: 382] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 06/09/2010] [Indexed: 02/07/2023]
Abstract
Angiotensin-converting enzyme (ACE) 2 is a homolog to the carboxypeptidase ACE, which generates angiotensin II, the main active peptide of renin-angiotensin system (RAS). After the cloning of ACE2 in 2000, three major ACE2 functions have been described so far. First ACE2 has emerged as a potent negative regulator of the RAS counterbalancing the multiple functions of ACE. By targeting angiotensin II ACE2 exhibits a protective role in the cardiovascular system and many other organs. Second ACE2 was identified as an essential receptor for the SARS coronavirus that causes severe acute lung failure. Downregulation of ACE2 strongly contributes to the pathogenesis of severe lung failure. Third, both ACE2 and its homologue Collectrin can associate with amino acid transporters and play essential role in the absorption of amino acids in the kidney and gut. In this review, we will discuss the multiple biological functions of ACE2.
Collapse
Affiliation(s)
- Keiji Kuba
- Department of Biological Informatics and Experimental Therapeutics, Akita University Graduate School of Medicine, Akita 010-8543, Japan.
| | | | | | | |
Collapse
|
66
|
Wirsing A, Johnstone KA, Harries LW, Ellard S, Ryffel GU, Stanik J, Gasperikova D, Klimes I, Murphy R. Novel monogenic diabetes mutations in the P2 promoter of the HNF4A gene are associated with impaired function in vitro. Diabet Med 2010; 27:631-5. [PMID: 20546279 DOI: 10.1111/j.1464-5491.2010.03003.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Mutations in HNF4A cause a form of monogenic beta-cell diabetes. We aimed to identify mutations in the pancreas-specific P2 promoter of HNF4A in families with suspected HNF4A diabetes and to show that they impaired the function of the promoter in vitro. METHODS We screened families with a clinical suspicion of HNF4A monogenic beta-cell diabetes for mutations in the HNF4A P2 promoter. We investigated the function of the previously reported HNF4A P2 promoter mutation -192C>G linked to late-onset diabetes in several families, along with two new segregating mutations, in vitro using a modified luciferase reporter assay system with enhanced sensitivity. RESULTS We identified two novel HNF4A P2 promoter mutations that co-segregate with diabetes in two families, -136A>G and -169C>T. Both families displayed phenotypes typical of HNF4A monogenic beta-cell diabetes, including at least two affected generations, good response to sulphonylurea treatment and increased birthweight and/or neonatal hypoglycaemia. We show that both of these novel mutations and -192C>G impair the function of the promoter in transient transfection assays. CONCLUSIONS Two novel mutations identified here and the previously identified late-onset diabetes mutation, -192C>G, impair the function of the HNF4A P2 promoter in vitro.
Collapse
Affiliation(s)
- A Wirsing
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Stevens VL, Ahn J, Sun J, Jacobs EJ, Moore SC, Patel AV, Berndt SI, Albanes D, Hayes RB. HNF1B and JAZF1 genes, diabetes, and prostate cancer risk. Prostate 2010; 70:601-7. [PMID: 19998368 PMCID: PMC3086139 DOI: 10.1002/pros.21094] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epidemiologic studies have shown that men with type II diabetes have a lower risk of prostate cancer than non-diabetic men. Recently, common variants in two genes, HNF1B and JAZF1, were found to be associated with both of these diseases. METHODS We examined whether the relationship between HNF1B and JAZF1 variants and decreased prostate cancer risk may potentially be mediated through diabetes in two large prospective studies, the Cancer Prevention Study II Nutrition Cohort and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. RESULTS Three HNF1B SNPS, rs11649743, rs4430796, and rs7501939, were associated with decreased risk of prostate cancer and were also associated, with marginal statistical significance, with increased risk of diabetes. The JAZF1 SNPs rs6968704 and rs10486567 were associated with decreased risk of prostate cancer but were not associated with diabetes. All five SNP-prostate cancer relationships did not substantially differ when the analyses were stratified by diabetic status or when diabetic status was controlled for in the model. Furthermore, the association of diabetes with prostate cancer was not altered when the SNPs were included in the logistic model. CONCLUSIONS These findings indicate that the HNF1B variants are directly associated with both diabetes and prostate cancer, that diabetes does not mediate these gene variant-prostate cancer relationships, and the relationship between these diseases is not mediated through these gene variants.
Collapse
Affiliation(s)
- Victoria L Stevens
- Department of Epidemiology, American Cancer Society, Atlanta, Georgia 30303-1002, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Kobayashi H, Yamada Y, Kanayama S, Furukawa N, Noguchi T, Haruta S, Yoshida S, Sakata M, Sado T, Oi H. The role of hepatocyte nuclear factor-1beta in the pathogenesis of clear cell carcinoma of the ovary. Int J Gynecol Cancer 2009; 19:471-9. [PMID: 19407577 DOI: 10.1111/igc.0b013e3181a19eca] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PROBLEM Clear cell carcinoma (CCC) of the ovary has a number of features distinguishing it from other epithelial ovarian carcinomas (EOC) because of its characteristic histology and biology, frequent concurrence with endometriotic lesion, and highly chemoresistant nature resulting in an extremely poor prognosis. The incidence of CCC has been steadily increasing in Japan. They comprise approximately 20% of all EOC. Understanding the mechanisms of CCC development and elucidating pathogenesis and pathophysiology are intrinsic to prevention and effective therapies for CCC. METHOD OF STUDY This article reviews the English language literature for biology, pathogenesis, and pathophysiological studies on endometriosis-associated EOC. Several data are discussed in the context of endometriosis and CCC biology. RESULTS Recent studies based on genome-wide expression analysis technology have noted specific expression of hepatocyte nuclear factor-1beta (HNF-1beta) in endometriosis and CCC, suggesting that early differentiation into the clear cell lineage takes place in the endometriosis. The HNF-1beta-dependent pathway of CCC will be discussed, which are providing new insights into regulation of apoptosis and glycogen synthesis and resistance of CCC to anticancer agents. CONCLUSIONS This review summarizes recent advances in the HNF-1beta and its target genes; the potential challenges to the understanding of carcinogenesis, pathogenesis, and pathophysiology of CCC; and a possible novel model is proposed.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Yoshida S, Furukawa N, Haruta S, Tanase Y, Kanayama S, Noguchi T, Sakata M, Yamada Y, Oi H, Kobayashi H. Theoretical model of treatment strategies for clear cell carcinoma of the ovary: focus on perspectives. Cancer Treat Rev 2009; 35:608-15. [PMID: 19665848 DOI: 10.1016/j.ctrv.2009.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/02/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Among epithelial ovarian cancer (EOC), clear cell carcinomas (CCC) differ from the other histologic types with respect to their clinical characteristics, carcinogenesis and prognosis. The aim of this review is to summarize the current knowledge and future perspective on the new therapeutic targets and treatment strategies for CCC. MATERIALS AND METHODS The present article reviews the English language literature for preclinical and clinical trials and promising molecular targets on CCC of the ovary, based on the gene expression profiling studies. RESULTS Here, we show that (1) the expression of the genes involved in transcription, signaling, cell cycle, adhesion, matrix, proteinase, and detoxification was greatly increased in the CCC carcinogenesis; (2) upregulation of hepatocyte nuclear factor-1beta (HNF-1beta) and Polo-like kinase (PLK)-Early mitotic inhibitor-1 (Emi1) as well as their downstream targets are specifically found in most CCC. The promising molecular targeting approach will emerge in the context of HNF-1beta and PLK-Emi1 biology; and 3) several significant common pathways observed in CCC of the ovary overlap the datasets identified in CCC of the kidney. To improve the outcome in CCC therapy, we must learn various adaptive treatment strategies for renal CCC, although it is not supported by any preliminary clinical data. CONCLUSION The inhibitors that target HNF-1beta and PLK-Emi1 and their downstream signaling molecules would be evaluated. In addition, the therapy currently used in renal CCC should be considered as an alternative for the present treatments or an attractive therapeutic option for ovarian CCC. The challenges accompanying the recent advance are described in this review article.
Collapse
Affiliation(s)
- Shozo Yoshida
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Liu P, Khurana A, Rattan R, He X, Kalloger S, Dowdy S, Gilks B, Shridhar V. Regulation of HSulf-1 expression by variant hepatic nuclear factor 1 in ovarian cancer. Cancer Res 2009; 69:4843-50. [PMID: 19487294 DOI: 10.1158/0008-5472.can-08-3065] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We recently identified HSulf-1 as a down-regulated gene in ovarian carcinomas. Our previous analysis indicated that HSulf-1 inactivation in ovarian cancers is partly mediated by loss of heterozygosity and epigenetic silencing. Here, we show that variant hepatic nuclear factor 1 (vHNF1), encoded by transcription factor 2 gene (TCF2, HNF1beta), negatively regulates HSulf-1 expression in ovarian cancer. Immunoblot assay revealed that vHNF1 is highly expressed in HSulf-1-deficient OV207, SKOV3, and TOV-21G cell lines but not in HSulf-1-expressing OSE, OV167, and OV202 cells. By short hairpin RNA-mediated down-regulation of vHNF1 in TOV-21G cells and transient enhanced vHNF1 expression in OV202 cells, we showed that vHNF1 suppresses HSulf-1 expression in ovarian cancer cell lines. Reporter assay and chromatin immunoprecipitation experiments showed that vHNF1 is specifically recruited to HSulf-1 promoter at two different vHNF1-responsive elements in OV207 and TOV-21G cells. Additionally, down-regulation of vHNF1 expression in OV207 and TOV-21G cells increased cisplatin- or paclitaxel-mediated cytotoxicity as determined by both 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and clonogenic assays and this effect was reversed by down-regulation of HSulf-1. Moreover, nude mice bearing TOV-21G cell xenografts with stably down-regulated vHNF1 were more sensitive to cisplatin- or paclitaxel-induced cytotoxicity compared with xenografts of TOV-21G clonal lines with nontargeted control short hairpin RNA. Finally, immunohistochemical analysis of 501 ovarian tumors including 140 clear-cell tumors on tissue microarrays showed that vHNF1 inversely correlates to HSulf-1 expression. Collectively, these results indicate that vHNF1 acts as a repressor of HSulf-1 expression and might be a molecular target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Peng Liu
- Departments of Experimental Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Ovarian carcinomas are a heterogeneous group of neoplasms and are traditionally subclassified based on type and degree of differentiation. Although current clinical management of ovarian carcinoma largely fails to take this heterogeneity into account, it is becoming evident that each major histological type has characteristic genetic defects that deregulate specific signaling pathways in the tumor cells. Moreover, within the most common histological types, the molecular pathogenesis of low-grade versus high-grade tumors appears to be largely distinct. Mouse models of ovarian carcinoma have been developed that recapitulate many of the morphological features, biological behavior, and gene-expression patterns of selected subtypes of ovarian cancer. Such models will likely prove useful for studying ovarian cancer biology and for preclinical testing of molecularly targeted therapeutics, which may ultimately lead to better clinical outcomes for women with ovarian cancer.
Collapse
Affiliation(s)
- Kathleen R Cho
- Departments of Pathology and Internal Medicine and the Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
72
|
Adalat S, Woolf AS, Johnstone KA, Wirsing A, Harries LW, Long DA, Hennekam RC, Ledermann SE, Rees L, van't Hoff W, Marks SD, Trompeter RS, Tullus K, Winyard PJ, Cansick J, Mushtaq I, Dhillon HK, Bingham C, Edghill EL, Shroff R, Stanescu H, Ryffel GU, Ellard S, Bockenhauer D. HNF1B mutations associate with hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol 2009; 20:1123-31. [PMID: 19389850 PMCID: PMC2678044 DOI: 10.1681/asn.2008060633] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 01/05/2009] [Indexed: 01/12/2023] Open
Abstract
Mutations in hepatocyte nuclear factor 1B (HNF1B), which is a transcription factor expressed in tissues including renal epithelia, associate with abnormal renal development. While studying renal phenotypes of children with HNF1B mutations, we identified a teenager who presented with tetany and hypomagnesemia. We retrospectively reviewed radiographic and laboratory data for all patients from a single center who had been screened for an HNF1B mutation. We found heterozygous mutations in 21 (23%) of 91 cases of renal malformation. All mutation carriers had abnormal fetal renal ultrasonography. Plasma magnesium levels were available for 66 patients with chronic kidney disease (stages 1 to 3). Striking, 44% (eight of 18) of mutation carriers had hypomagnesemia (<1.58 mg/dl) compared with 2% (one of 48) of those without mutations (P < 0.0001). The median plasma magnesium was significantly lower among mutation carriers than those without mutations (1.68 versus 2.02 mg/dl; P < 0.0001). Because hypermagnesuria and hypocalciuria accompanied the hypomagnesemia, we analyzed genes associated with hypermagnesuria and detected highly conserved HNF1 recognition sites in FXYD2, a gene that can cause autosomal dominant hypomagnesemia and hypocalciuria when mutated. Using a luciferase reporter assay, we demonstrated HNF1B-mediated transactivation of FXYD2. These results extend the phenotype of HNF1B mutations to include hypomagnesemia. HNF1B regulates transcription of FXYD2, which participates in the tubular handling of Mg(2+), thus describing a role for HNF1B not only in nephrogenesis but also in the maintenance of tubular function.
Collapse
Affiliation(s)
- Shazia Adalat
- Nephrology Unit, Great Ormond Street Hospital NHS Trust, London WCIN 3JH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Angelova PR, Müller WS. Arachidonic acid potently inhibits both postsynaptic-type Kv4.2 and presynaptic-type Kv1.4 IApotassium channels. Eur J Neurosci 2009; 29:1943-50. [DOI: 10.1111/j.1460-9568.2009.06737.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
74
|
Abstract
Hepatocyte nuclear factor (HNF)-1α and HNF-1β are transcription factors that regulate many target genes in various tissues including liver, pancreas and kidney. Heterozygous mutations in the HNF-1α and HNF-1β genes result in maturity-onset diabetes of the young (MODY)3 and MODY5, respectively. The discovery of these 'hepatocyte nuclear factors' as MODY-responsible genes provided a breakthrough in the field of diabetes. Patients with HNF-1α and HNF-1β mutations, as well as their model mice, show impaired pancreatic β-cell function. The mechanism of impaired β-cell function and the target genes has been intensively investigated by considerable in vitro and in vivo studies. The insulin gene is one of the target genes of HNF-1α and HNF-1β in the β-cells, and may contribute to the diabetes. The IGF-1 gene is also regulated by HNF-1α and HNF-1β, and its decreased expression may contribute to growth failure and impaired β-cell proliferation. Mutations in HNF-1β result in symptoms in multiple organs, including kidney and liver, and several target genes have been reported to be involved in the pathogenesis. HNF-1α and HNF-1β may be one of the master regulators of hepatocyte and islet transcription, and further investigations by microarray and genome-scale analyses are providing information for the better understanding of the complex transcriptional network involving HNF-1α and -1β.
Collapse
Affiliation(s)
- Sachiko Kitanaka
- a Department of Pediatrics, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan.
| |
Collapse
|
75
|
Abstract
Heterozygous mutations of the tissue-specific transcription factor hepatocyte nuclear factor (HNF)1beta, cause maturity onset diabetes of the young (MODY5) and kidney anomalies including agenesis, hypoplasia, dysplasia and cysts. Because of these renal anomalies, HNF1beta is classified as a CAKUT (congenital anomalies of the kidney and urinary tract) gene. We searched for human fetal kidney proteins interacting with the N-terminal region of HNF1beta using a bacterial two-hybrid system and identified five novel proteins along with the known partner DCoH. The interactions were confirmed for four of these proteins by GST pull-down assays. Overexpression of two proteins, E4F1 and ZFP36L1, in Xenopus embryos interfered with pronephros formation. Further, in situ hybridization showed overlapping expression of HNF1beta, E4F1 and ZFP36L1 in the developing pronephros. HNF1beta is present largely in the nucleus where it colocalized with E4F1. However, ZFP36L1 was located predominantly in the cytoplasm. A nuclear function for ZFP36L1 was shown as it was able to reduce HNF1beta transactivation in a luciferase reporter system. Our studies show novel proteins may cooperate with HNF1beta in human metanephric development and propose that E4F1 and ZFP36L1 are CAKUT genes. We searched for mutations in the open reading frame of the ZFP36L1 gene in 58 patients with renal anomalies but found none.
Collapse
|
76
|
Kato N, Motoyama T. Overexpression of osteopontin in clear cell carcinoma of the ovary: close association with HNF-1beta expression. Histopathology 2008; 52:682-8. [PMID: 18393978 DOI: 10.1111/j.1365-2559.2008.03006.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Transcription factor hepatocyte nuclear factor (HNF)-1beta is selectively expressed in clear cell carcinoma (CCC) of the ovary. One of the potential HNF-1beta target genes is osteopontin (OPN). Although elevation of OPN mRNA has been reported in CCC, it remains unclear whether CCC cells overexpress OPN protein. The aim was to investigate the expression of OPN protein and its correlation with HNF-1beta status in CCC. METHODS AND RESULTS Three CCC and two serous adenocarcinoma (SA) cell lines were evaluated for expression of OPN by reverse transcriptase-polymerase chain reaction and immunocytochemistry. OPN expression, at both the mRNA and protein levels, was higher in the three CCCs than in the two SAs. HNF-1beta expression was detected in the CCCs but not in the SAs. Subsequently, 60 surgical specimens (30 CCCs and 30 SAs) were examined immunohistochemically for expression of OPN and HNF-1beta. All 30 CCCs showed immunopositivity for both OPN and HNF-1beta. The 12 (40%) CCCs with a high OPN score all had a high HNF-1beta score. In contrast, SAs rarely showed immunoreactivity for OPN or HNF-1beta. CONCLUSIONS OPN expression is elevated in ovarian CCC and is closely associated with HNF-1beta overexpression. HNF-1beta is likely to participate in OPN up-regulation in CCC.
Collapse
Affiliation(s)
- N Kato
- Department of Pathology, Yamagata University School of Medicine, Yamagata, Japan.
| | | |
Collapse
|
77
|
Barrera LO, Li Z, Smith AD, Arden KC, Cavenee WK, Zhang MQ, Green RD, Ren B. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome Res 2007; 18:46-59. [PMID: 18042645 DOI: 10.1101/gr.6654808] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
By integrating genome-wide maps of RNA polymerase II (Polr2a) binding with gene expression data and H3ac and H3K4me3 profiles, we characterized promoters with enriched activity in mouse embryonic stem cells (mES) as well as adult brain, heart, kidney, and liver. We identified approximately 24,000 promoters across these samples, including 16,976 annotated mRNA 5' ends and 5153 additional sites validating cap-analysis of gene expression (CAGE) 5' end data. We showed that promoters with CpG islands are typically non-tissue specific, with the majority associated with Polr2a and the active chromatin modifications in nearly all the tissues examined. By contrast, the promoters without CpG islands are generally associated with Polr2a and the active chromatin marks in a tissue-dependent way. We defined 4396 tissue-specific promoters by adapting a quantitative index of tissue-specificity based on Polr2a occupancy. While there is a general correspondence between Polr2a occupancy and active chromatin modifications at the tissue-specific promoters, a subset of them appear to be persistently marked by active chromatin modifications in the absence of detectable Polr2a binding, highlighting the complexity of the functional relationship between chromatin modification and gene expression. Our results provide a resource for exploring promoter Polr2a binding and epigenetic states across pluripotent and differentiated cell types in mammals.
Collapse
Affiliation(s)
- Leah O Barrera
- Ludwig Institute for Cancer Research, UCSD School of Medicine, La Jolla, California 92093-0653, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Lu P, Rha GB, Chi YI. Structural basis of disease-causing mutations in hepatocyte nuclear factor 1beta. Biochemistry 2007; 46:12071-80. [PMID: 17924661 PMCID: PMC2367142 DOI: 10.1021/bi7010527] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HNF1beta is an atypical POU transcription factor that participates in a hierarchical network of transcription factors controlling the development and proper function of vital organs such as liver, pancreas, and kidney. Many inheritable mutations on HNF1beta are the monogenic causes of diabetes and several kidney diseases. To elucidate the molecular mechanism of its function and the structural basis of mutations, we have determined the crystal structure of human HNF1beta DNA binding domain in complex with a high-affinity promoter. Disease-causing mutations have been mapped to our structure, and their predicted effects have been tested by a set of biochemical/ functional studies. These findings together with earlier findings with a homologous protein HNF1alpha, help us to understand the structural basis of promoter recognition by these atypical POU transcription factors and the site-specific functional disruption by disease-causing mutations.
Collapse
Affiliation(s)
- Peng Lu
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Geun Bae Rha
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Young-In Chi
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
79
|
Wiener RS, Cao YX, Hinds A, Ramirez MI, Williams MC. Angiotensin converting enzyme 2 is primarily epithelial and is developmentally regulated in the mouse lung. J Cell Biochem 2007; 101:1278-91. [PMID: 17340620 PMCID: PMC7166549 DOI: 10.1002/jcb.21248] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiotensin converting enzyme (ACE) 2 is a carboxypeptidase that shares 42% amino acid homology with ACE. Little is known about the regulation or pattern of expression of ACE2 in the mouse lung, including its definitive cellular distribution or developmental changes. Based on Northern blot and RT‐PCR data, we report two distinct transcripts of ACE2 in the mouse lung and kidney and describe a 5′ exon 1a previously unidentified in the mouse. Western blots show multiple isoforms of ACE2, with predominance of a 75–80 kDa protein in the mouse lung versus a 120 kDa form in the mouse kidney. Immunohistochemistry localizes ACE2 protein to Clara cells, type II cells, and endothelium and smooth muscle of small and medium vessels in the mouse lung. ACE2 mRNA levels peak at embryonic day 18.5 in the mouse lung, and immunostaining demonstrates protein primarily in the bronchiolar epithelium at that developmental time point. In murine cell lines ACE2 is strongly expressed in the Clara cell line mtCC, as opposed to the low mRNA expression detected in E10 (type I‐like alveolar epithelial cell line), MLE‐15 (type II alveolar epithelial cell line), MFLM‐4 (fetal pulmonary vasculature cell line), and BUMPT‐7 (renal proximal tubule cell line). In summary, murine pulmonary ACE2 appears to be primarily epithelial, is developmentally regulated, and has two transcripts that include a previously undescribed exon. J. Cell. Biochem. 101:1278–1291, 2007. © 2007 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Renda Soylemez Wiener
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
80
|
Kato N, Toukairin M, Asanuma I, Motoyama T. Immunocytochemistry for hepatocyte nuclear factor-1beta (HNF-1beta): a marker for ovarian clear cell carcinoma. Diagn Cytopathol 2007; 35:193-7. [PMID: 17351940 DOI: 10.1002/dc.20623] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent microarray studies have shown that the expression of hepatocyte nuclear factor-1beta (HNF-1beta) was significantly up-regulated in clear cell carcinoma (CCC) of the ovary. HNF-1beta may be a useful marker for CCC in peritoneal fluid cytology. We designed an experimental study using three CCC cell lines to evaluate the influence of alcohol fixation or air drying on immunocytochemistry for HNF-1beta. Each cell line was cultured on chamber slides or transplanted into the abdominal cavity of nude mice, then the slides or ascites smears of nude mice were immunostained with or without microwave-mediated epitope retrieval. Immunoreactivity with HNF-1beta, which was either alcohol-fixed or air-dried, was noticeably improved after microwave heating. In contrast, two serous adenocarcinoma cell lines never showed immunoreactivity. Based on these results, 21 archival Papanicolaou-stained slides of peritoneal fluid (5 CCCs, 12 serous, 2 mucinous, and 2 endometrioid adenocarcinomas) were decolorized and immunostained under heating pretreatment. Five of 5 CCCs were distinctively positive for HNF-1beta, whereas all non-CCC ovarian cancers were negative for this protein. The present study clearly demonstrated that heating epitope retrieval improved the immunoreactivity for a nuclear protein in alcohol-fixed or air-dried cytology specimens. HNF-1beta is likely to be helpful for the diagnosis of CCC in the peritoneal fluid.
Collapse
Affiliation(s)
- Noriko Kato
- Department of Pathology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 900-9585, Japan.
| | | | | | | |
Collapse
|