51
|
Hendriks DFG, Vorrink SU, Smutny T, Sim SC, Nordling Å, Ullah S, Kumondai M, Jones BC, Johansson I, Andersson TB, Lauschke VM, Ingelman-Sundberg M. Clinically Relevant Cytochrome P450 3A4 Induction Mechanisms and Drug Screening in Three-Dimensional Spheroid Cultures of Primary Human Hepatocytes. Clin Pharmacol Ther 2020; 108:844-855. [PMID: 32320483 DOI: 10.1002/cpt.1860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
Cytochrome P450 (CYP) 3A4 induction is an important cause of drug-drug interactions, making early identification of drug candidates with CYP3A4 induction liability in drug development a prerequisite. Here, we present three-dimensional (3D) spheroid cultures of primary human hepatocytes (PHHs) as a novel CYP3A4 induction screening model. Screening of 25 drugs (12 known CYP3A4 inducers in vivo and 13 negative controls) at physiologically relevant concentrations revealed a 100% sensitivity and 100% specificity of the system. Three of the in vivo CYP3A4 inducers displayed much higher CYP3A4 induction capacity in 3D spheroid cultures as compared with in two-dimensional (2D) monolayer cultures. Among those, we identified AZD1208, a proviral integration site for Moloney murine leukemia virus (PIM) kinase inhibitor terminated in phase I of development due to unexpected CYP3A4 autoinduction, as a CYP3A4 inducer only active in 3D spheroids but not in 2D monolayer cultures. Gene knockdown experiments revealed that AZD1208 requires pregnane X receptor (PXR) to induce CYP3A4. Rifampicin requires solely PXR to induce CYP3A4 and CYP2B6, while phenobarbital-mediated induction of these CYPs did not show absolute dependency on either PXR or constitutive androstane receptor (CAR), suggesting its ability to switch nuclear receptor activation. Mechanistic studies into AZD1208 uncovered an involvement of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in CYP3A4 induction that is sensitive to the culture format used, as revealed by its inhibition of ERK1/2 Tyrosine 204 phosphorylation and sensitivity to epidermal growth factor (EGF) pressure. In line, we also identified lapatinib, a dual epidermal growth factor receptor/human epidermal growth factor receptor 2 (EGFR/HER2) inhibitor, as another CYP3A4 inducer only active in 3D spheroid culture. Our findings offer insights into the pathways involved in CYP3A4 induction and suggest PHH spheroids for preclinical CYP3A4 induction screening.
Collapse
Affiliation(s)
- Delilah F G Hendriks
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden.,Hubrecht Institute, KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, The Netherlands
| | - Sabine U Vorrink
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Smutny
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah C Sim
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Nordling
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Shahid Ullah
- Division of Clinical Pharmacology, Karolinska University Hospital Laboratory, Stockholm, Sweden
| | - Masaki Kumondai
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden.,Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | - Inger Johansson
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
52
|
Torres-Vergara P, Ho YS, Espinoza F, Nualart F, Escudero C, Penny J. The constitutive androstane receptor and pregnane X receptor in the brain. Br J Pharmacol 2020; 177:2666-2682. [PMID: 32201941 DOI: 10.1111/bph.15055] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Since their discovery, the orphan nuclear receptors constitutive androstane receptor (CAR;NR1I3) and pregnane X receptor (PXR;NR1I2) have been regarded as master regulators of drug disposition and detoxification mechanisms. They regulate the metabolism and transport of endogenous mediators and xenobiotics in organs including the liver, intestine and brain. However, with proposals of new physiological functions for NR1I3 and NR1I2, there is increasing interest in the role of these receptors in influencing brain function. This review will summarise key findings regarding the expression and function of NR1I3 and NR1I2 in the brain, hereby highlighting the need for further research in this field.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| | - Francisca Espinoza
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Laboratorio de FisiologíaVascular, Departamento de Ciencias Básicas, Facultad de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
53
|
Šimečková P, Hubatka F, Kotouček J, Turánek Knötigová P, Mašek J, Slavík J, Kováč O, Neča J, Kulich P, Hrebík D, Stráská J, Pěnčíková K, Procházková J, Diviš P, Macaulay S, Mikulík R, Raška M, Machala M, Turánek J. Gadolinium labelled nanoliposomes as the platform for MRI theranostics: in vitro safety study in liver cells and macrophages. Sci Rep 2020; 10:4780. [PMID: 32179785 PMCID: PMC7075985 DOI: 10.1038/s41598-020-60284-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd+3 prepared by lipid film hydration method. We detected no cytotoxicity of Gd-lip in human liver cells including cancer HepG2, progenitor (non-differentiated) HepaRG, and differentiated HepaRG cells. Furthermore, no potential side effects of Gd-lip were found using a complex system including general biomarkers of toxicity, such as induction of early response genes, oxidative, heat shock and endoplasmic reticulum stress, DNA damage responses, induction of xenobiotic metabolizing enzymes, and changes in sphingolipid metabolism in differentiated HepaRG. Moreover, Gd-lip did not show pro-inflammatory effects, as assessed in an assay based on activation of inflammasome NLRP3 in a model of human macrophages, and release of eicosanoids from HepaRG cells. In conclusion, this in vitro study indicates potential in vivo safety of Gd-lip with respect to hepatotoxicity and immunopathology caused by inflammation.
Collapse
Affiliation(s)
| | | | - Jan Kotouček
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Josef Mašek
- Veterinary Research Institute, Brno, Czech Republic
| | - Josef Slavík
- Veterinary Research Institute, Brno, Czech Republic
| | - Ondrej Kováč
- Veterinary Research Institute, Brno, Czech Republic
| | - Jiří Neča
- Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Kulich
- Veterinary Research Institute, Brno, Czech Republic
| | - Dominik Hrebík
- Central European Institute of Technology CEITEC, Structural Virology, Masaryk University, Brno, Czech Republic
| | - Jana Stráská
- Regional Centre of Advanced Technologies and Materials, Palacký University, Olomouc, Czech Republic
| | | | | | - Pavel Diviš
- Faculty of Chemistry, Technical University, Brno, Czech Republic
| | | | - Robert Mikulík
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- Neurology Department, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Milan Raška
- Veterinary Research Institute, Brno, Czech Republic
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | | | | |
Collapse
|
54
|
Reed L, Jarvis IWH, Phillips DH, Arlt VM. Enhanced DNA adduct formation by benzo[a]pyrene in human liver cells lacking cytochrome P450 oxidoreductase. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 852:503162. [PMID: 32265041 PMCID: PMC7184669 DOI: 10.1016/j.mrgentox.2020.503162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/01/2022]
Abstract
Diet is a major source of human exposure to polycyclic aromatic hydrocarbons (PAHs), of which benzo[a]pyrene (BaP) is the most commonly studied and measured. BaP has been considered to exert its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes whose activity can be modulated by cytochrome P450 oxidoreductase (POR), the electron donor to CYP enzymes. Previous studies showed that BaP-DNA adduct formation was greater in the livers of Hepatic Reductase Null (HRN) mice, in which POR is deleted specifically in hepatocytes, than in wild-type (WT) mice. In the present study we used human hepatoma HepG2 cells carrying a knockout (KO) in the POR gene as a human in vitro model that can mimic the HRN mouse model. Treatment to BaP for up to 48 h caused similar cytotoxicity in POR KO and WT HepG2 cells. However, levels of BaP activation (i.e. BaP-7,8-dihydrodiol formation) were higher in POR KO HepG2 cells than in WT HepG2 cells after 48 h. This also resulted in substantially higher BaP-DNA adduct formation in POR KO HepG2 cells indicating that BaP metabolism is delayed in POR KO HepG2 cells thereby prolonging the effective exposure of cells to unmetabolized BaP. As was seen in the HRN mouse model, these results suggest that cytochrome b5, another component of the mixed-function oxidase system, which can also serve as electron donor to CYP enzymes along with NADH:cytochrome b5 redutase, contributes to the bioactivation of BaP in POR KO HepG2 cells. Collectively, these findings indicate that CYPs play a more important role in BaP detoxication as opposed to activation.
Collapse
Affiliation(s)
- Lindsay Reed
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, United Kingdom
| | - Ian W H Jarvis
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, United Kingdom
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, United Kingdom; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London in Partnership With Public Health England and Imperial College London, London, SE1 9NH, United Kingdom
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, United Kingdom; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London in Partnership With Public Health England and Imperial College London, London, SE1 9NH, United Kingdom.
| |
Collapse
|
55
|
Rhon Calderón EA, Galarza RA, Faletti AG. 3-Methylcholanthrene impacts on the female germ cells of rats without causing systemic toxicity. Toxicology 2020; 429:152328. [DOI: 10.1016/j.tox.2019.152328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/16/2019] [Accepted: 10/31/2019] [Indexed: 12/31/2022]
|
56
|
Kim JT, Kim SH, Min HK, Jeon SJ, Sung SA, Park WH, Lee HK, Choi HS, Pak YK, Lee SY. Effect of Dialysis on Aryl Hydrocarbon Receptor Transactivating Activity in Patients with Chronic Kidney Disease. Yonsei Med J 2020; 61:56-63. [PMID: 31887800 PMCID: PMC6938787 DOI: 10.3349/ymj.2020.61.1.56] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Elevated aryl hydrocarbon receptor (AhR) transactivating (AHRT) activity and uremia in chronic kidney disease (CKD) may interact with each other, further complicating the disease course. In this study, we prospectively estimated serum AHRT activity using a highly sensitive cell-based AhR-dependent luciferase activity assay in CKD patients and compared differences therein according to treatment modality. MATERIALS AND METHODS Patients undergoing peritoneal dialysis (PD) (n=22) and hemodialysis (HD) (n=38) and patients with pre-dialysis CKD stage IV or V (n=28) were included. AHRT activity and intracellular adenosine triphosphate (ATP) levels were measured. We performed a correlation analysis for AHRT activity, ATP levels, and various clinical parameters. RESULTS AHRT activity and intracellular ATP levels were inversely correlated and differed according to treatment modalities. AHRT activity was higher in non-dialysis CKD patients than in patients undergoing dialysis and was higher in patients undergoing HD, compared to PD. AHRT activity decreased after HD treatment in HD patients. ATP levels were higher in healthy controls than in patients with pre-dialysis CKD and PD and were further decreased in patients with HD. We noted significant correlations between multiple clinical parameters associated with cardiovascular risk factors and AHRT activity. CONCLUSION AHRT activity was elevated in CKD patients, while dialysis treatment reduced AHRT activity. Further studies are warranted to specify AHRT activity and to evaluate the precise roles thereof in patients with CKD.
Collapse
Affiliation(s)
- Jin Taek Kim
- Department of Internal Medicine, Nowon Eulji University Hospital, Seoul, Korea
| | - Sang Hyuk Kim
- Department of Internal Medicine, Nowon Eulji University Hospital, Seoul, Korea
| | - Hyang Ki Min
- Department of Internal Medicine, Nowon Eulji University Hospital, Seoul, Korea
| | - Sang Jin Jeon
- Department of Internal Medicine, Nowon Eulji University Hospital, Seoul, Korea
| | - Su Ah Sung
- Department of Internal Medicine, Nowon Eulji University Hospital, Seoul, Korea
| | - Wook Ha Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hong Kyu Lee
- Department of Internal Medicine, Nowon Eulji University Hospital, Seoul, Korea
| | - Hoon Sung Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Youngmi Kim Pak
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.
| | - So Young Lee
- Department of Internal Medicine, Nowon Eulji University Hospital, Seoul, Korea.
| |
Collapse
|
57
|
Matsuzaka Y, Uesawa Y. Prediction Model with High-Performance Constitutive Androstane Receptor (CAR) Using DeepSnap-Deep Learning Approach from the Tox21 10K Compound Library. Int J Mol Sci 2019; 20:ijms20194855. [PMID: 31574921 PMCID: PMC6801383 DOI: 10.3390/ijms20194855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022] Open
Abstract
The constitutive androstane receptor (CAR) plays pivotal roles in drug-induced liver injury through the transcriptional regulation of drug-metabolizing enzymes and transporters. Thus, identifying regulatory factors for CAR activation is important for understanding its mechanisms. Numerous studies conducted previously on CAR activation and its toxicity focused on in vivo or in vitro analyses, which are expensive, time consuming, and require many animals. We developed a computational model that predicts agonists for the CAR using the Toxicology in the 21st Century 10k library. Additionally, we evaluate the prediction performance of novel deep learning (DL)-based quantitative structure-activity relationship analysis called the DeepSnap-DL approach, which is a procedure of generating an omnidirectional snapshot portraying three-dimensional (3D) structures of chemical compounds. The CAR prediction model, which applies a 3D structure generator tool, called CORINA-generated and -optimized chemical structures, in the DeepSnap-DL demonstrated better performance than the existing methods using molecular descriptors. These results indicate that high performance in the prediction model using the DeepSnap-DL approach may be important to prepare suitable 3D chemical structures as input data and to enable the identification of modulators of the CAR.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.
| |
Collapse
|
58
|
Feltrin C, Oliveira Simões CM. Reviewing the mechanisms of natural product-drug interactions involving efflux transporters and metabolic enzymes. Chem Biol Interact 2019; 314:108825. [PMID: 31553897 DOI: 10.1016/j.cbi.2019.108825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
The World Health Organization (WHO) and other worldwide health agencies have recently taken initiatives to encourage the use of traditional medicine and/or complementary/alternative medicine in order to promote well-being and public health. In this way, one of the WHO's concerns is the safe use of these therapies. Phytotherapy is a strategy consisting of the use of medicinal plants (MP) and/or herbal medicinal products (HMP) for medicinal purposes. The use of phytotherapy concomitantly with drugs may cause interactions compromising the expected pharmacological action or generating toxic effects. These interactions are complex processes that may occur with multiple medications targeting different metabolic pathways, and involving different compounds present in MP and HMP. Thus, the aim of this review was to summarize the main MP- and HMP-drug interactions that involve specific transporters (P-glycoprotein and BCRP) and CYP450 enzymes (CYP3A4 and CYP2D6), which play relevant roles in the mechanisms of interactions. Firstly, multiple databases were used to search studies describing in vitro or in vivo MP and HMP-drug interactions and, after that, a systematic note-taking and appraisal of the literature was conducted. It was observed that several MP and HMP, metabolic pathways and transcription factors are involved in the transporters and enzymes expression or in the modulation of their activity having the potential to provide such interactions. Thus, the knowledge of MP- and HMP-drug interaction mechanisms could contribute to prevent harmful interactions and can ensure the safe use of these products to help the establishment of the therapeutic planning in order to certify the best treatment strategy to be used.
Collapse
Affiliation(s)
- Clarissa Feltrin
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
59
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
60
|
Kobayashi K, Kuze J, Abe S, Takehara S, Minegishi G, Igarashi K, Kitajima S, Kanno J, Yamamoto T, Oshimura M, Kazuki Y. CYP3A4 Induction in the Liver and Intestine of Pregnane X Receptor/CYP3A-Humanized Mice: Approaches by Mass Spectrometry Imaging and Portal Blood Analysis. Mol Pharmacol 2019; 96:600-608. [DOI: 10.1124/mol.119.117333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 11/22/2022] Open
|
61
|
Balaguer P, Delfosse V, Bourguet W. Mechanisms of endocrine disruption through nuclear receptors and related pathways. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
62
|
Mackowiak B, Li L, Lynch C, Ziman A, Heyward S, Xia M, Wang H. High-content analysis of constitutive androstane receptor (CAR) translocation identifies mosapride citrate as a CAR agonist that represses gluconeogenesis. Biochem Pharmacol 2019; 168:224-236. [PMID: 31306645 DOI: 10.1016/j.bcp.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
The constitutive androstane receptor (CAR) plays an important role in hepatic drug metabolism and detoxification but has recently been projected as a potential drug target for metabolic disorders due to its repression of lipogenesis and gluconeogenesis. Thus, identification of physiologically-relevant CAR modulators has garnered significant interest. Here, we adapted the previously characterized human CAR (hCAR) nuclear translocation assay in human primary hepatocytes (HPH) to a high-content format and screened an FDA-approved drug library containing 978 compounds. Comparison of hCAR nuclear translocation results with the Tox21 hCAR luciferase reporter assay database in 643 shared compounds revealed significant overlap between these two assays, with approximately half of hCAR agonists also mediating nuclear translocation. Further validation of these compounds in HPH and/or using published data from literature demonstrated that hCAR translocation exhibits a higher correlation with the induction of hCAR target genes, such as CYP2B6, than the luciferase assay. In addition, some CAR antagonists which repress CYP2B6 mRNA expression in HPH, such as sorafenib, rimonabant, and CINPA1, were found to translocate hCAR to the nucleus of HPH. Notably, both the translocation assay and the luciferase assay identified mosapride citrate (MOS), a gastroprokinetic agent that is known to reduce fasting blood glucose levels in humans, as a novel hCAR activator. Further studies with MOS in HPH uncovered that MOS can repress the expression of gluconeogenic genes and decrease glucose output from hepatocytes, providing a previously unidentified liver-specific mechanism by which MOS modulates blood glucose levels.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Andrew Ziman
- Nikon Instruments Inc., 1300 Walt Whitman Road, Melville, NY 11747, United States
| | - Scott Heyward
- Bioreclamation In Vitro Technologies, 1450 S Rolling Rd, Halethorpe, MD 21227, United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States.
| |
Collapse
|
63
|
Liang D, Li L, Lynch C, Diethelm-Varela B, Xia M, Xue F, Wang H. DL5050, a Selective Agonist for the Human Constitutive Androstane Receptor. ACS Med Chem Lett 2019; 10:1039-1044. [PMID: 31312405 DOI: 10.1021/acsmedchemlett.9b00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/12/2019] [Indexed: 11/30/2022] Open
Abstract
The constitutive androstane receptor (CAR) is a xenobiotic sensor governing the transcription of genes involved in drug disposition, energy homeostasis, and cell proliferation. However, currently available human CAR (hCAR) agonists are nonselective, which commonly activate hCAR along with other nuclear receptors, especially the closely related human pregnane X receptor (hPXR). Using a well-known hCAR agonist CITCO as a template, we report our efforts in the discovery of a potent and highly selective hCAR agonist. Two of the new compounds of the series, 18 and 19 (DL5050), demonstrated excellent potency and selectivity for hCAR over hPXR. DL5050 preferentially induced the expression of CYP2B6 (target of hCAR) over CYP3A4 (target of hPXR) on both the mRNA and protein levels. The selective hCAR agonist DL5050 represents a valuable tool molecule to further define the biological functions of hCAR, and may also be used as a new lead in the discovery of hCAR agonists for various therapeutic applications.
Collapse
Affiliation(s)
- Dongdong Liang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892-3375, United States
| | - Benjamin Diethelm-Varela
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892-3375, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
64
|
Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 2019; 12:851-861. [PMID: 30952999 DOI: 10.1038/s41385-019-0162-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023]
Abstract
Bile acids are cholesterol-derived surfactants that circulate actively between the liver and ileum and that are classically recognized for emulsifying dietary lipids to facilitate absorption. More recent studies, however, have revealed new functions of bile acids; as pleotropic signaling metabolites that regulate diverse metabolic and inflammatory pathways in multiple cell types and tissues through dynamic interactions with both germline-encoded host receptors and the microbiota. Accordingly, perturbed bile acid circulation and/or metabolism is now implicated in the pathogenesis of cholestatic liver diseases, metabolic syndrome, colon cancer, and inflammatory bowel diseases (IBDs). Here, we discuss the three-dimensional interplay between bile acids, the microbiota, and the mucosal immune system, focusing on the mechanisms that regulate intestinal homeostasis and inflammation. Although the functions of bile acids in mucosal immune regulation are only beginning to be appreciated, targeting bile acids and their cellular receptors has already proven an important area of new drug discovery.
Collapse
|
65
|
Yokobori K, Azuma I, Chiba K, Akita H, Furihata T, Kobayashi K. Indirect activation of constitutive androstane receptor in three-dimensionally cultured HepG2 cells. Biochem Pharmacol 2019; 168:26-37. [PMID: 31202736 DOI: 10.1016/j.bcp.2019.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
Constitutive androstane receptor (CAR), a member of the nuclear receptor superfamily, is retained as an inactive form phosphorylated at threonine in the cytoplasm of hepatocytes. Upon activation, CAR is dephosphorylated to move into the nucleus and induces the transcription of genes. Thus, nuclear translocation is a key step for CAR activation in hepatocytes. However, this nuclear translocation has not been demonstrated in conventional two-dimensionally-cultured immortalized cell lines such as HepG2, in which CAR spontaneously accumulates in the nucleus. In this study, we showed that treatment with the indirect CAR activator phenobarbital activated transcription of the CYP3A4 gene in three-dimensionally (3D)-cultured HepG2 cells. CAR was retained as its phosphorylated form in the cytoplasm and was translocated to the nucleus in 3D-cultured HepG2 cells in response to treatment with phenobarbital. Moreover, okadaic acid and epidermal growth factor, were found to repress phenobarbital-induced CAR nuclear translocation and subsequent activation of the CYP3A4 gene promoter. These results suggested that 3D-cultured HepG2 cells properly regulated CAR activation as has been observed in hepatocytes.
Collapse
Affiliation(s)
- Kosuke Yokobori
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ikuko Azuma
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kan Chiba
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomomi Furihata
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kaoru Kobayashi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
66
|
Liu X, Sakai H, Nishigori M, Suyama K, Nawaji T, Ikeda S, Nishigouchi M, Okada H, Matsushima A, Nose T, Shimohigashi M, Shimohigashi Y. Receptor-binding affinities of bisphenol A and its next-generation analogs for human nuclear receptors. Toxicol Appl Pharmacol 2019; 377:114610. [PMID: 31195007 DOI: 10.1016/j.taap.2019.114610] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
An endocrine-disrupting chemical Bisphenol A (BPA) binds specifically to a nuclear receptor (NR) named ERRγ. Although the importance of receptor-binding evaluation for human NRs is often stressed, the binding characteristics of so-called next-generation (NextGen) bisphenol compounds are still poorly understood. The ultimate objective of this investigation was to evaluate BPA and its NextGen analogs for their abilities to bind to 21 human NRs, the greatest members of NRs for which tritium-labeled specific ligands were available. After establishing the detailed assay conditions for each NR, the receptor binding affinities of total 11 bisphenols were evaluated in competitive binding assays. The results clearly revealed that BPA and the NextGen bisphenols of BPAF, BPAP, BPB, BPC, BPE, and BPZ were highly potent against one or more of NRs such as CAR, ERα, ERβ, ERRγ, and GR, with IC50 values of 3.3-73 nM. These bisphenols were suggested strongly to be disruptive to these NRs. BPM and BPP also appeared to be disruptive, but less potently. BPF exhibited only weak effects and only against estrogen-related NRs. Surprisingly, most doubtful bisphenol BPS was supposed not to be disruptive. The NRs to which BPA and NextGen bisphenols did not bind were RARα, RARβ, RARγ, and VDR. PPARγ, RORα, RORβ, RORγ, RXRα, RXRβ, and RXRγ, exhibited very weak interaction with these bisphenols. The ten remaining NRs, namely, ERRγ, ERβ, ERα, CAR, GR, PXR, PR, AR, LXRβ, and LXRα, showed distinctly strong binding to some bisphenols in this order, being likely to have consequential endocrine-disruption effects.
Collapse
Affiliation(s)
- Xiaohui Liu
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hiroki Sakai
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mitsuhiro Nishigori
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keitaro Suyama
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tasuku Nawaji
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shin Ikeda
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Makoto Nishigouchi
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Okada
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ayami Matsushima
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeru Nose
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Miki Shimohigashi
- Division of Biology, Department of Earth System of Science, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Risk Science Research Institute, Ikimatsudai 3-7-5, Nishi-ku, Fukuoka 819-0044, Japan
| | - Yasuyuki Shimohigashi
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Institute, Ikimatsudai 3-7-5, Nishi-ku, Fukuoka 819-0044, Japan.
| |
Collapse
|
67
|
Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2019; 7:50. [PMID: 30968019 PMCID: PMC6439483 DOI: 10.3389/fbioe.2019.00050] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
The triterpene squalene is a natural compound that has demonstrated an extraordinary diversity of uses in pharmaceutical, nutraceutical, and personal care industries. Emboldened by this range of uses, novel applications that can gain profit from the benefits of squalene as an additive or supplement are expanding, resulting in its increasing demand. Ever since its discovery, the primary source has been the deep-sea shark liver, although recent declines in their populations and justified animal conservation and protection regulations have encouraged researchers to identify a novel route for squalene biosynthesis. This renewed scientific interest has profited from immense developments in synthetic biology, which now allows fine-tuning of a wider range of plants, fungi, and microorganisms for improved squalene production. There are numerous naturally squalene producing species and strains; although they generally do not make commercially viable yields as primary shark liver sources can deliver. The recent advances made toward improving squalene output from natural and engineered species have inspired this review. Accordingly, it will cover in-depth knowledge offered by the studies of the natural sources, and various engineering-based strategies that have been used to drive the improvements in the pathways toward large-scale production. The wide uses of squalene are also discussed, including the notable developments in anti-cancer applications and in augmenting influenza vaccines for greater efficacy.
Collapse
Affiliation(s)
- Nisarg Gohil
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Gargi Bhattacharjee
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Khushal Khambhati
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Darren Braddick
- Department of R&D, Cementic S. A. S., Genopole, Paris, France
| | - Vijai Singh
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| |
Collapse
|
68
|
Lauretta R, Sansone A, Sansone M, Romanelli F, Appetecchia M. Endocrine Disrupting Chemicals: Effects on Endocrine Glands. Front Endocrinol (Lausanne) 2019; 10:178. [PMID: 30984107 PMCID: PMC6448049 DOI: 10.3389/fendo.2019.00178] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, endocrine disrupting chemicals have gained interest in human physiopathology and more and more studies aimed to explain how these chemicals compounds affect endocrine system. In human populations, the majority of the studies point toward an association between exposure to endocrine disrupting chemicals and the disorders affecting endocrine axis. A great number of endocrine disrupting chemicals seem to be able to interfere with the physiology of hypothalamus-pituitary-gonadal axis; however, every endocrine axis may be a target for each EDCs and their action is not limited to a single axis or organ. Several compounds may also have a negative impact on energy metabolic homeostasis altering adipose tissue and promoting obesity, metabolic syndrome, and diabetes. Different mechanism have been proposed to explain these associations but their complexity together with the degree of occupational or environmental exposure, the low standardization of the studies, and the presence of confounding factors have prevented to establish causal relationship between the endocrine disorders and exposure to specific toxicants so far. This manuscript aims to review the state of art of scientific literature regarding the effects of endocrine-disrupting chemicals (EDCs) on endocrine system.
Collapse
Affiliation(s)
- Rosa Lauretta
- Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sansone
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - Massimiliano Sansone
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - Francesco Romanelli
- Section of Medical Pathophysiology, Food Science and Endocrinology, Department of Experimental Medicine, Sapienza Università di Roma, Rome, Italy
| | - Marialuisa Appetecchia
- Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Marialuisa Appetecchia
| |
Collapse
|
69
|
Heusinkveld HJ, Wackers PF, Schoonen WG, van der Ven L, Pennings JL, Luijten M. Application of the comparison approach to open TG-GATEs: A useful toxicogenomics tool for detecting modes of action in chemical risk assessment. Food Chem Toxicol 2018; 121:115-123. [DOI: 10.1016/j.fct.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/20/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022]
|
70
|
Carazo A, Dusek J, Holas O, Skoda J, Hyrsova L, Smutny T, Soukup T, Dosedel M, Pávek P. Teriflunomide Is an Indirect Human Constitutive Androstane Receptor (CAR) Activator Interacting With Epidermal Growth Factor (EGF) Signaling. Front Pharmacol 2018; 9:993. [PMID: 30364229 PMCID: PMC6193428 DOI: 10.3389/fphar.2018.00993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/13/2018] [Indexed: 01/19/2023] Open
Abstract
The constitutive androstane receptor (CAR) is a nuclear receptor involved mainly in xenobiotic and endobiotic metabolism regulation. CAR is activated directly by its ligands via the ligand binding domain (LBD) or indirectly by inhibition of the epidermal growth factor (EGF) signaling. We found that leflunomide (LEF) and its main metabolite teriflunomide (TER), both used for autoimmune diseases treatment, induce the prototype CAR target gene CYP2B6 in primary human hepatocytes. As TER was discovered to be an EGF receptor antagonist, we sought to determine if TER is an indirect activator of CAR. In primary human hepatocytes and in differentiated HepaRG cells, we found that LEF and TER up-regulate CAR target genes CYP2B6 and CYP3A4 mRNAs and enzymatic activities. TER stimulated CAR+A mutant translocation into the nucleus but neither LEF nor TER activated the CAR LBD, CAR3 variant or pregnane X receptor (PXR) in gene reporter assays. Interestingly, TER significantly up-regulated CAR mRNA expression, a result which could be a consequence of both EGF receptor and ELK-1 transcription factor inhibition by TER or by TER-mediated activation of glucocorticoid receptor (GR), an upstream hormonal regulator of CAR. We can conclude that TER is a novel indirect CAR activator which through EGF inhibition and GR activation controls both detoxification and some intermediary metabolism genes.
Collapse
Affiliation(s)
- Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia.,Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacky University, Olomouc, Czechia
| | - Jan Dusek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Ondrej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Tomas Soukup
- Division of Rheumatology, 2nd Department of Internal Medicine - Gastroenterology, Faculty of Medicine, University Hospital in Hradec Kralove, Charles University, Prague, Czechia
| | - Martin Dosedel
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy, Charles University, Prague, Czechia
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czechia
| |
Collapse
|
71
|
Tebbens JD, Azar M, Friedmann E, Lanzendörfer M, Pávek P. Mathematical Models in the Description of Pregnane X Receptor (PXR)-Regulated Cytochrome P450 Enzyme Induction. Int J Mol Sci 2018; 19:ijms19061785. [PMID: 29914136 PMCID: PMC6032247 DOI: 10.3390/ijms19061785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
The pregnane X receptor (PXR) is a drug/xenobiotic-activated transcription factor of crucial importance for major cytochrome P450 xenobiotic-metabolizing enzymes (CYP) expression and regulation in the liver and the intestine. One of the major target genes regulated by PXR is the cytochrome P450 enzyme (CYP3A4), which is the most important human drug-metabolizing enzyme. In addition, PXR is supposed to be involved both in basal and/or inducible expression of many other CYPs, such as CYP2B6, CYP2C8, 2C9 and 2C19, CYP3A5, CYP3A7, and CYP2A6. Interestingly, the dynamics of PXR-mediated target genes regulation has not been systematically studied and we have only a few mechanistic mathematical and biologically based models describing gene expression dynamics after PXR activation in cellular models. Furthermore, few indirect mathematical PKPD models for prediction of CYP3A metabolic activity in vivo have been built based on compartmental models with respect to drug–drug interactions or hormonal crosstalk. Importantly, several negative feedback loops have been described in PXR regulation. Although current mathematical models propose these adaptive mechanisms, a comprehensive mathematical model based on sufficient experimental data is still missing. In the current review, we summarize and compare these models and address some issues that should be considered for the improvement of PXR-mediated gene regulation modelling as well as for our better understanding of the quantitative and spatial dynamics of CYPs expression.
Collapse
Affiliation(s)
- Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Malek Azar
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Elfriede Friedmann
- Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Mathematikon, University Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany.
| | - Martin Lanzendörfer
- Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic.
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
72
|
Choera T, Zelante T, Romani L, Keller NP. A Multifaceted Role of Tryptophan Metabolism and Indoleamine 2,3-Dioxygenase Activity in Aspergillus fumigatus-Host Interactions. Front Immunol 2018; 8:1996. [PMID: 29403477 PMCID: PMC5786828 DOI: 10.3389/fimmu.2017.01996] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022] Open
Abstract
Aspergillus fumigatus is the most prevalent filamentous fungal pathogen of humans, causing either severe allergic bronchopulmonary aspergillosis or often fatal invasive pulmonary aspergillosis (IPA) in individuals with hyper- or hypo-immune deficiencies, respectively. Disease is primarily initiated upon the inhalation of the ubiquitous airborne conidia—the initial inoculum produced by A. fumigatus—which are complete developmental units with an ability to exploit diverse environments, ranging from agricultural composts to animal lungs. Upon infection, conidia initially rely on their own metabolic processes for survival in the host’s lungs, a nutritionally limiting environment. One such nutritional limitation is the availability of aromatic amino acids (AAAs) as animals lack the enzymes to synthesize tryptophan (Trp) and phenylalanine and only produce tyrosine from dietary phenylalanine. However, A. fumigatus produces all three AAAs through the shikimate–chorismate pathway, where they play a critical role in fungal growth and development and in yielding many downstream metabolites. The downstream metabolites of Trp in A. fumigatus include the immunomodulatory kynurenine derived from indoleamine 2,3-dioxygenase (IDO) and toxins such as fumiquinazolines, gliotoxin, and fumitremorgins. Host IDO activity and/or host/microbe-derived kynurenines are increasingly correlated with many Aspergillus diseases including IPA and infections of chronic granulomatous disease patients. In this review, we will describe the potential metabolic cross talk between the host and the pathogen, specifically focusing on Trp metabolism, the implications for therapeutics, and the recent studies on the coevolution of host and microbe IDO activation in regulating inflammation, while controlling infection.
Collapse
Affiliation(s)
- Tsokyi Choera
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
73
|
Yamasaki Y, Kobayashi K, Inaba A, Uehara D, Tojima H, Kakizaki S, Chiba K. Indirect activation of pregnane X receptor in the induction of hepatic CYP3A11 by high-dose rifampicin in mice. Xenobiotica 2017; 48:1098-1105. [PMID: 29095659 DOI: 10.1080/00498254.2017.1400128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rifampicin (RIF), a typical ligand of human pregnane X receptor (PXR), powerfully induces the expression of cytochrome P450 3A4 (CYP3A4) in humans. Although it is thought that RIF is not a ligand of rodent PXR, treatment with high-dose RIF (e.g. more than 20 mg/kg) increases the expression of CYP3A in the mouse liver. In this study, we investigated whether the induction of CYP3A by high-dose RIF in the mouse liver is mediated via indirect activation of mouse PXR (mPXR). The results showed that high-dose RIF increased the expression of CYP3A11 and other PXR-target genes in the liver of wild-type mice but not PXR-knockout mice. However, the results of reporter gene and ligand-dependent assembly assays showed that RIF does not activate mPXR in a ligand-dependent manner. In addition, high-dose RIF stimulated nuclear accumulation of mPXR in the mouse liver, and geldanamycin and okadaic acid attenuated the induction of Cyp3a11 and other PXR-target genes in primary hepatocytes, suggesting that high-dose RIF triggers nuclear translocation of mPXR. In conclusion, the present study suggests that high-dose RIF stimulates nuclear translocation of mPXR in the liver of mice by indirect activation, resulting in the transactivation of Cyp3a11 and other PXR-target genes.
Collapse
Affiliation(s)
- Yuki Yamasaki
- a Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University , Chiba , Japan and
| | - Kaoru Kobayashi
- a Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University , Chiba , Japan and
| | - Asumi Inaba
- a Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University , Chiba , Japan and
| | - Daisuke Uehara
- b Division of Gastroenterology and Hepatology, Department of Internal Medicine, Graduate School of Medicine, Gunma University , Maebashi , Japan
| | - Hiroki Tojima
- b Division of Gastroenterology and Hepatology, Department of Internal Medicine, Graduate School of Medicine, Gunma University , Maebashi , Japan
| | - Satoru Kakizaki
- b Division of Gastroenterology and Hepatology, Department of Internal Medicine, Graduate School of Medicine, Gunma University , Maebashi , Japan
| | - Kan Chiba
- a Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University , Chiba , Japan and
| |
Collapse
|
74
|
Yokobori K, Kobayashi K, Azuma I, Akita H, Chiba K. Intracellular localization of pregnane X receptor in HepG2 cells cultured by the hanging drop method. Drug Metab Pharmacokinet 2017; 32:265-272. [DOI: 10.1016/j.dmpk.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/05/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022]
|
75
|
Hariparsad N, Ramsden D, Palamanda J, Dekeyser JG, Fahmi OA, Kenny JR, Einolf H, Mohutsky M, Pardon M, Siu YA, Chen L, Sinz M, Jones B, Walsky R, Dallas S, Balani SK, Zhang G, Buckley D, Tweedie D. Considerations from the IQ Induction Working Group in Response to Drug-Drug Interaction Guidance from Regulatory Agencies: Focus on Downregulation, CYP2C Induction, and CYP2B6 Positive Control. Drug Metab Dispos 2017. [PMID: 28646080 DOI: 10.1124/dmd.116.074567] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The European Medicines Agency (EMA), the Pharmaceutical and Medical Devices Agency (PMDA), and the Food and Drug Administration (FDA) have issued guidelines for the conduct of drug-drug interaction studies. To examine the applicability of these regulatory recommendations specifically for induction, a group of scientists, under the auspices of the Drug Metabolism Leadership Group of the Innovation and Quality (IQ) Consortium, formed the Induction Working Group (IWG). A team of 19 scientists, from 16 of the 39 pharmaceutical companies that are members of the IQ Consortium and two Contract Research Organizations reviewed the recommendations, focusing initially on the current EMA guidelines. Questions were collated from IQ member companies as to which aspects of the guidelines require further evaluation. The EMA was then approached to provide insights into their recommendations on the following: 1) evaluation of downregulation, 2) in vitro assessment of CYP2C induction, 3) the use of CITCO as the positive control for CYP2B6 induction by CAR, 4) data interpretation (a 2-fold increase in mRNA as evidence of induction), and 5) the duration of incubation of hepatocytes with test article. The IWG conducted an anonymous survey among IQ member companies to query current practices, focusing specifically on the aforementioned key points. Responses were received from 19 companies. All data and information were blinded before being shared with the IWG. The results of the survey are presented, together with consensus recommendations on downregulation, CYP2C induction, and CYP2B6 positive control. Results and recommendations related to data interpretation and induction time course will be reported in subsequent articles.
Collapse
Affiliation(s)
- Niresh Hariparsad
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Diane Ramsden
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Jairam Palamanda
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Joshua G Dekeyser
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Odette A Fahmi
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Jane R Kenny
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Heidi Einolf
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Michael Mohutsky
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Magalie Pardon
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Y Amy Siu
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Liangfu Chen
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Michael Sinz
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Barry Jones
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Robert Walsky
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Shannon Dallas
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Suresh K Balani
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - George Zhang
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - David Buckley
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| | - Donald Tweedie
- Vertex Pharmaceuticals, Boston, Massachusetts (N.H.); Genentech, South San Francisco, California (J.R.K.); Novartis Pharmaceuticals, Florham Park, New Jersey (H.E.); Eli Lilly and Company, Indianapolis, Indiana (M.M.); Boehringer Ingelheim, Ridgefield, Connecticut (D.R.); Merck and Co., Kenilworth, New Jersey (J.P.), Amgen Inc., Thousand Oaks, California (J.D.), Pfizer Global Research and Development, Groton, Connecticut (O.A.F.); Sanofi Pharmaceuticals, ChillyMazarin, France (M.P.); Eisai Pharmaceuticals, Andover, Massachusetts (A.Y.S.); Glaxo SmithKline, King of Prussia, Pennsylvania (L.C.); Bristol-Myers Squibb, Wallingford, Connecticut (M.S.); AstraZeneca, Mölndal, Sweden (B.J.); EMD Serono, Billerica, Massachusetts (R.W.);Janssen R&D, Spring House, Pennsylvania (S.D.); Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceuticals Co., Cambridge, Massachusetts (S.K.B.); Corning Life Sciences; Woburn, Massachusetts (G.Z.); XenoTech LLC, Lenexa, Kansas (D.B.); Merck and Co., West Point, Pennsylvania (D.T.)
| |
Collapse
|
76
|
Mackowiak B, Li L, Welch MA, Li D, Jones JW, Heyward S, Kane MA, Swaan PW, Wang H. Molecular Basis of Metabolism-Mediated Conversion of PK11195 from an Antagonist to an Agonist of the Constitutive Androstane Receptor. Mol Pharmacol 2017; 92:75-87. [PMID: 28442602 DOI: 10.1124/mol.117.108621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
The constitutive androstane receptor (CAR) plays an important role in xenobiotic metabolism, energy homeostasis, and cell proliferation. Antagonism of the CAR represents a key strategy for studying its function and may have potential clinical applications. However, specific human CAR (hCAR) antagonists are limited and conflicting data on the activity of these compounds have been reported. 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a typical peripheral benzodiazepine receptor ligand, has been established as a potent hCAR deactivator in immortalized cells; whether it inhibits hCAR activity under physiologically relevant conditions remains unclear. Here, we investigated the effects of PK11195 on hCAR in metabolically competent human primary hepatocytes (HPH) and HepaRG cells. We show that although PK11195 antagonizes hCAR in HepG2 cells, it induces the expression of CYP2B6 and CYP3A4, targets of hCAR and the pregnane X receptor (PXR), in HPH, HepaRG, and PXR-knockout HepaRG cells. Utilizing a HPH-HepG2 coculture model, we demonstrate that inclusion of HPH converts PK11195 from an antagonist to an agonist of hCAR, and such conversion was attenuated by potent CYP3A4 inhibitor ketoconazole. Metabolically, we show that the N-desmethyl metabolite is responsible for PK11195-mediated hCAR activation by facilitating hCAR interaction with coactivators and enhancing hCAR nuclear translocation in HPHs. Structure-activity analysis revealed that N-demethylation alters the interaction of PK11195 with the binding pocket of hCAR to favor activation. Together, these results indicate that removal of a methyl group switches PK11195 from a potent antagonist of hCAR to an agonist in HPH and highlights the importance of physiologically relevant metabolism when attempting to define the biologic action of small molecules.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Matthew A Welch
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Daochuan Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (B.M., L.L., M.A.W., D.L., J.W.J., M.A.K., P.W.S., H.W.); and Bioreclamation In Vitro Technologies, Halethorpe, Maryland (S.H.)
| |
Collapse
|
77
|
Hahn ME, Karchner SI, Merson RR. Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution. CURRENT OPINION IN TOXICOLOGY 2017; 2:58-71. [PMID: 28286876 DOI: 10.1016/j.cotox.2017.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Rebeka R Merson
- Biology Department, Rhode Island College, 600 Mt. Pleasant Avenue, 251 Fogarty Life Sciences, Providence, RI 02908
| |
Collapse
|
78
|
Abstract
Why the interest in dioxins, a group of structurally related chemicals which have a common mechanism of action, a common spectrum of biological responses and are environmentally and biologically persistent? A plethora of effects have been reported in people, wildlife, and domestic animals since chloracne was first described in 1899. Cattle, horses, sheep, and chickens have all been shown to be affected during poisoning episodes with polychlorinated byphenyls (PCBs). Fish, birds, and marine mammals have shown adverse outcomes, such as loss of reproduction and immune suppression, at environmental levels. And in the laboratory, species from all vertebrate classes have been used to study the biological effects from exposure to dioxins [1]. While chloracne is diagnostic of poisoning by dioxins, it is only associated with high levels of exposure. However, industrial accidents such as in Nitro, West Virginia, in 1949, Seveso, Italy in 1976, the polybrominated biphenyl (PBB) flame retardant poisoning in Michigan in 1973, and the Binghamton office building fire in 1981, all resulted in some chloracne. In addition, other human poisonings, such as that due to PCB/polychorinated dibenzofuran (PCDF) contaminated rice oil in Japan in 1968 ("Yusho") and Taiwan in 1979 ("Yucheng"), demonstrated a wide range of toxic effects, both on those who ingested the contaminated oil and on their children born afterwards. Intentional poisoning by 2,3,7,8-tetrachloridibenzo-p-dioxin (TCDD), the most toxic polychlorinated dibenzo-p-dioxin (PCDD) congener, occurred to five people in Vienna in 1999, and to the Ukrainian President in 2004 [2].
Collapse
Affiliation(s)
- Linda S Birnbaum
- Director, National Institute of Environmental Health Sciences, NIH and Director, National Toxicology Program, DHHS, Research Triangle Park, NC 27709
| |
Collapse
|
79
|
Bock KW. From dioxin toxicity to putative physiologic functions of the human Ah receptor in homeostasis of stem/progenitor cells. Biochem Pharmacol 2017; 123:1-7. [DOI: 10.1016/j.bcp.2016.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/23/2016] [Indexed: 01/16/2023]
|
80
|
Gajęcka M, Zielonka Ł, Gajęcki M. Activity of Zearalenone in the Porcine Intestinal Tract. Molecules 2016; 22:E18. [PMID: 28029134 PMCID: PMC6155780 DOI: 10.3390/molecules22010018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
This study demonstrates that low doses (somewhat above the No Observed Adverse Effect Level, NOAEL) of the mycoestrogen zearalenone (ZEN) and its metabolites display multispecificity towards various biological targets in gilts. The observed responses in gilts were surprising. The presence of ZEN and zearalenols (ZELs) did not evoke a response in the porcine gastrointestinal tract, which was attributed to dietary tolerance. Lymphocyte proliferation was intensified in jejunal mesenteric lymph nodes, and lymphocyte counts increased in the jejunal epithelium with time of exposure. In the distal digestive tract, fecal bacterial counts decreased, the activity of fecal bacterial enzymes and lactic acid bacteria increased, and cecal water was characterized by higher genotoxicity. The accompanying hyperestrogenism led to changes in mRNA activity of selected enzymes (cytochrome P450, hydroxysteroid dehydrogenases, nitric oxide synthases) and receptors (estrogen and progesterone receptors), and it stimulated post-translational modifications which play an important role in non-genomic mechanisms of signal transmission. Hyperestrogenism influences the regulation of the host's steroid hormones (estron, estradiol and progesteron), it affects the virulence of bacterial genes encoding bacterial hydroxysteroid dehydrogenases (HSDs), and it participates in detoxification processes by slowing down intestinal activity, provoking energy deficits and promoting antiporter activity at the level of enterocytes. In most cases, hyperestrogenism fulfils all of the above roles. The results of this study indicate that low doses of ZEN alleviate inflammatory processes in the digestive system, in particular in the proximal and distal intestinal tract, and increase body weight gains in gilts.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/01, 10-718 Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| | - Maciej Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland.
| |
Collapse
|
81
|
Xie W. Xenobiotic nuclear receptors, new tricks for an old dog. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1071. [DOI: 10.1016/j.bbagrm.2016.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|