51
|
Klenner C, Yuan J, Dalbey RE, Kuhn A. The Pf3 coat protein contacts TM1 and TM3 of YidC during membrane biogenesis. FEBS Lett 2008; 582:3967-72. [DOI: 10.1016/j.febslet.2008.10.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 11/15/2022]
|
52
|
Rodrigues ML, Nimrichter L, Oliveira DL, Nosanchuk JD, Casadevall A. Vesicular Trans-Cell Wall Transport in Fungi: A Mechanism for the Delivery of Virulence-Associated Macromolecules? Lipid Insights 2008; 2:27-40. [PMID: 20617119 DOI: 10.4137/lpi.s1000] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fungal cells are encaged in rigid, complex cell walls. Until recently, there was remarkably little information regarding the trans-fungal cell wall transfer of intracellular macromolecules to the extracellular space. Recently, several studies have begun to elucidate the mechanisms that fungal cells utilize to secrete a wide variety of macromolecules through the cell wall. The combined use of transmission electron microscopy, serology, biochemistry, proteomics and lipidomics have revealed that the fungal pathogens Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida parapsilosis and Sporothrix schenckii, as well as the model yeast Saccharomyces cerevisiae, each produces extracellular vesicles that carry lipids, proteins, polysaccharides and pigment-like structures of unquestionable biological significance. Compositional analysis of the C. neoformans and H. capsulatum extracellular vesicles suggests that they may function as 'virulence bags', with the potential to modulate the host-pathogen interaction in favor of the fungus. The cellular origin of the extracellular vesicles remains unknown, but morphological and biochemical features indicate that they are similar to the well-described mammalian exosomes.
Collapse
|
53
|
Gordon E, Horsefield R, Swarts HGP, de Pont JJHHM, Neutze R, Snijder A. Effective high-throughput overproduction of membrane proteins in Escherichia coli. Protein Expr Purif 2008; 62:1-8. [PMID: 18692139 DOI: 10.1016/j.pep.2008.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 07/01/2008] [Accepted: 07/11/2008] [Indexed: 11/16/2022]
Abstract
Structural biology is increasingly reliant on elevated throughput methods for protein production. In particular, development of efficient methods of heterologous production of membrane proteins is essential. Here, we describe the heterologous overproduction of 24 membrane proteins from the human pathogen Legionella pneumophila in Escherichia coli. Protein production was performed in 0.5 ml cultures in standard 24-well plates, allowing increased throughput with minimal effort. The effect of the location of a histidine purification tag was analyzed, and the effect of decreasing the length of the N- and C-terminal extensions introduced by the Gateway cloning strategy is presented. We observed that the location and length of the purification tag significantly affected protein production levels. In addition, an auto-induction protocol for membrane protein expression was designed to enhance the overproduction efficiency such that, regardless of the construct used, much higher expression was achieved when compared with standard induction approaches such as isopropyl-beta-d-thiogalactopyranoside (IPTG). All 24 targets were produced at levels exceeding 2mg/l, with 18 targets producing at levels of 5mg/l or higher. In summary, we have designed a fast and efficient process for the production of medically relevant membrane proteins with a minimum number of screening parameters.
Collapse
Affiliation(s)
- Euan Gordon
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Box 462, 40530 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
54
|
Knowles TJ, Jeeves M, Bobat S, Dancea F, McClelland D, Palmer T, Overduin M, Henderson IR. Fold and function of polypeptide transport-associated domains responsible for delivering unfolded proteins to membranes. Mol Microbiol 2008; 68:1216-27. [DOI: 10.1111/j.1365-2958.2008.06225.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
55
|
Feldman AR, Shapova YA, Wu SS, Oliver DC, Heller M, McIntosh LP, Scott JK, Paetzel M. Phage Display and Crystallographic Analysis Reveals Potential Substrate/Binding Site Interactions in the Protein Secretion Chaperone CsaA from Agrobacterium tumefaciens. J Mol Biol 2008; 379:457-70. [DOI: 10.1016/j.jmb.2008.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/15/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
|
56
|
ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. J Bacteriol 2008; 190:4880-7. [PMID: 18487341 DOI: 10.1128/jb.00412-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sec-dependent translocation pathway that involves the essential SecA protein and the membrane-bound SecYEG translocon is used to export many proteins across the cytoplasmic membrane. Recently, several pathogenic bacteria, including Mycobacterium tuberculosis, were shown to possess two SecA homologs, SecA1 and SecA2. SecA1 is essential for general protein export. SecA2 is specific for a subset of exported proteins and is important for M. tuberculosis virulence. The enzymatic activities of two SecA proteins from the same microorganism have not been defined for any bacteria. Here, M. tuberculosis SecA1 and SecA2 are shown to bind ATP with high affinity, though the affinity of SecA1 for ATP is weaker than that of SecA2 or Escherichia coli SecA. Amino acid substitution of arginine or alanine for the conserved lysine in the Walker A motif of SecA2 eliminated ATP binding. We used the SecA2(K115R) variant to show that ATP binding was necessary for the SecA2 function of promoting intracellular growth of M. tuberculosis in macrophages. These results are the first to show the importance of ATPase activity in the function of accessory SecA2 proteins.
Collapse
|
57
|
Gerken U, Erhardt D, Bär G, Ghosh R, Kuhn A. Initial Binding Process of the Membrane Insertase YidC with Its Substrate Pf3 Coat Protein Is Reversible. Biochemistry 2008; 47:6052-8. [DOI: 10.1021/bi800116t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Uwe Gerken
- Institute of Microbiology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany, and Department of Bioenergetics, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Dagmar Erhardt
- Institute of Microbiology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany, and Department of Bioenergetics, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Gerda Bär
- Institute of Microbiology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany, and Department of Bioenergetics, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Robin Ghosh
- Institute of Microbiology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany, and Department of Bioenergetics, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany, and Department of Bioenergetics, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| |
Collapse
|
58
|
Wagner S, Pop OI, Pop O, Haan GJ, Baars L, Koningstein G, Klepsch MM, Genevaux P, Luirink J, de Gier JW. Biogenesis of MalF and the MalFGK(2) maltose transport complex in Escherichia coli requires YidC. J Biol Chem 2008; 283:17881-90. [PMID: 18456666 DOI: 10.1074/jbc.m801481200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polytopic inner membrane protein MalF is a constituent of the MalFGK(2) maltose transport complex in Escherichia coli. We have studied the biogenesis of MalF using a combination of in vivo and in vitro approaches. MalF is targeted via the SRP pathway to the Sec/YidC insertion site. Despite close proximity of nascent MalF to YidC during insertion, YidC is not required for the insertion of MalF into the membrane. However, YidC is required for the stability of MalF and the formation of the MalFGK(2) maltose transport complex. Our data indicate that YidC supports the folding of MalF into a stable conformation before it is incorporated into the maltose transport complex.
Collapse
Affiliation(s)
- Samuel Wagner
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Nat Rev Microbiol 2008; 6:234-44. [PMID: 18246081 DOI: 10.1038/nrmicro3595] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This Review describes the pathways that are used to insert newly synthesized proteins into the cytoplasmic membranes of bacteria, and provides insight into the function of two of the evolutionarily conserved translocases that catalyse this process. These highly sophisticated translocases are responsible for decoding the topogenic sequences within membrane proteins that direct membrane protein insertion and orientation. The role of the Sec and YidC translocases in the folding of bacterial membrane proteins is also highlighted.
Collapse
|
60
|
Ravaud S, Stjepanovic G, Wild K, Sinning I. The crystal structure of the periplasmic domain of the Escherichia coli membrane protein insertase YidC contains a substrate binding cleft. J Biol Chem 2008; 283:9350-8. [PMID: 18234665 DOI: 10.1074/jbc.m710493200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria the biogenesis of inner membrane proteins requires targeting and insertion factors such as the signal recognition particle and the Sec translocon. YidC is an essential membrane protein involved in the insertion of inner membrane proteins together with the Sec translocon, but also as a separate entity. YidC of Escherichia coli is a member of the conserved YidC (in bacteria)/Oxa1 (in mitochondria)/Alb3 (in chloroplasts) protein family and contains six transmembrane segments and a large periplasmic domain (P1). We determined the crystal structure of the periplasmic domain of YidC from E. coli (P1D) at 1.8 A resolution. The structure of P1D shows the conserved beta-supersandwich fold of carbohydrate-binding proteins and an alpha-helical linker region at the C terminus that packs against the beta-supersandwich by a highly conserved interface. P1D exhibits an elongated cleft of similar architecture as found in the structural homologs. However, the electrostatic properties and molecular details of the cleft make it unlikely to interact with carbohydrate substrates. The cleft in P1D is occupied by a polyethylene glycol molecule suggesting an elongated peptide or acyl chain as a natural ligand. The region of P1D previously reported to interact with SecF maps to a surface area in the vicinity of the cleft. The conserved C-terminal region of the P1 domain was reported to be essential for the membrane insertase function of YidC. The analysis of this region suggests a role in membrane interaction and/or in the regulation of YidC interaction with binding partners.
Collapse
Affiliation(s)
- Stephanie Ravaud
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg, Germany
| | | | | | | |
Collapse
|
61
|
Celebi N, Dalbey RE, Yuan J. Mechanism and hydrophobic forces driving membrane protein insertion of subunit II of cytochrome bo 3 oxidase. J Mol Biol 2007; 375:1282-92. [PMID: 18155041 DOI: 10.1016/j.jmb.2007.11.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 11/15/2007] [Indexed: 11/16/2022]
Abstract
Subunit II (CyoA) of cytochrome bo(3) oxidase, which spans the inner membrane twice in bacteria, has several unusual features in membrane biogenesis. It is synthesized with an amino-terminal cleavable signal peptide. In addition, distinct pathways are used to insert the two ends of the protein. The amino-terminal domain is inserted by the YidC pathway whereas the large carboxyl-terminal domain is translocated by the SecYEG pathway. Insertion of the protein is also proton motive force (pmf)-independent. Here we examined the topogenic sequence requirements and mechanism of insertion of CyoA in bacteria. We find that both the signal peptide and the first membrane-spanning region are required for insertion of the amino-terminal periplasmic loop. The pmf-independence of insertion of the first periplasmic loop is due to the loop's neutral net charge. We observe also that the introduction of negatively charged residues into the periplasmic loop makes insertion pmf dependent, whereas the addition of positively charged residues prevents insertion unless the pmf is abolished. Insertion of the carboxyl-terminal domain in the full-length CyoA occurs by a sequential mechanism even when the CyoA amino and carboxyl-terminal domains are swapped with other domains. However, when a long spacer peptide is added to increase the distance between the amino-terminal and carboxyl-terminal domains, insertion no longer occurs by a sequential mechanism.
Collapse
Affiliation(s)
- Nil Celebi
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
62
|
Junne T, Schwede T, Goder V, Spiess M. Mutations in the Sec61p Channel Affecting Signal Sequence Recognition and Membrane Protein Topology. J Biol Chem 2007; 282:33201-9. [PMID: 17893139 DOI: 10.1074/jbc.m707219200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The orientation of most single-spanning membrane proteins obeys the "positive-inside rule", i.e. the flanking region of the transmembrane segment that is more positively charged remains in the cytosol. These membrane proteins are integrated by the Sec61/SecY translocon, but how their orientation is achieved is unknown. We have screened for mutations in yeast Sec61p that alter the orientation of single-spanning membrane proteins. We identified a class of mutants that are less efficient in retaining the positively charged flanking region in the cytosol. Surprisingly, these mutations are located at many different sites in the Sec61/SecY molecule, and they do not only involve charged amino acid residues. All these mutants have a prl phenotype that so far have only been seen in bacteria; they allow proteins with defective signal sequences to be translocated, likely because the Sec61p channel opens more easily. A similar correlation between topology defects and prl phenotype was also seen with previously identified yeast Sec61 mutants. Our results suggest a model in which the regulated opening of the translocon is required for the faithful orientation of membrane proteins.
Collapse
Affiliation(s)
- Tina Junne
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, Switzerland
| | | | | | | |
Collapse
|
63
|
Isolation of cold-sensitive yidC mutants provides insights into the substrate profile of the YidC insertase and the importance of transmembrane 3 in YidC function. J Bacteriol 2007; 189:8961-72. [PMID: 17933892 DOI: 10.1128/jb.01365-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YidC, a 60-kDa integral membrane protein, plays an important role in membrane protein insertion in bacteria. YidC can function together with the SecYEG machinery or operate independently as a membrane protein insertase. In this paper, we describe two new yidC mutants that lead to a cold-sensitive phenotype in bacterial cell growth. Both alleles impart a cold-sensitive phenotype and result from point mutations localized to the third transmembrane (TM3) segment of YidC, indicating that this region is crucial for YidC function. We found that the yidC(C423R) mutant confers a weak phenotype on membrane protein insertion while a yidC(P431L) mutant leads to a stronger phenotype. In both cases, the affected substrates include the Pf3 coat protein and ATP synthase F(1)F(o) subunit c (F(o)C), while CyoA (the quinol binding subunit of the cytochrome bo3 quinol oxidase complex) and wild-type procoat are slightly affected or not affected in either cold-sensitive mutant. To determine if the different substrates require various levels of YidC activity for membrane insertion, we performed studies where YidC was depleted using an arabinose-dependent expression system. We found that -3M-PC-Lep (a construct with three negatively charged residues inserted into the middle of the procoat-Lep [PC-Lep] protein) and Pf3 P2 (a construct with the Lep P2 domain added at the C terminus of Pf3 coat) required the highest amount of YidC and that CyoA-N-P2 (a construct with the amino-terminal part of CyoA fused to the Lep P2 soluble domain) and PC-Lep required the least, while F(o)C required moderate YidC levels. Although the cold-sensitive mutations can preferentially affect one substrate over another, our results indicate that different substrates require different levels of YidC activity for membrane insertion. Finally, we obtained several intragenic suppressors that overcame the cold sensitivity of the C423R mutation. One pair of mutations suggests an interaction between TM2 and TM3 of YidC. The studies reveal the critical regions of the YidC protein and provide insight into the substrate profile of the YidC insertase.
Collapse
|
64
|
Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, Kahne D. Structure and Function of an Essential Component of the Outer Membrane Protein Assembly Machine. Science 2007; 317:961-4. [PMID: 17702946 DOI: 10.1126/science.1143993] [Citation(s) in RCA: 293] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Integral beta-barrel proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. The machine that assembles these proteins contains an integral membrane protein, called YaeT in Escherichia coli, which has one or more polypeptide transport-associated (POTRA) domains. The crystal structure of a periplasmic fragment of YaeT reveals the POTRA domain fold and suggests a model for how POTRA domains can bind different peptide sequences, as required for a machine that handles numerous beta-barrel protein precursors. Analysis of POTRA domain deletions shows which are essential and provides a view of the spatial organization of this assembly machine.
Collapse
Affiliation(s)
- Seokhee Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
Understanding the transport of hydrophilic proteins across biological membranes continues to be an important undertaking. The general secretory (Sec) pathway in Escherichia coli transports the majority of E. coli proteins from their point of synthesis in the cytoplasm to their sites of final localization, associating sequentially with a number of protein components of the transport machinery. The targeting signals for these substrates must be discriminated from those of proteins transported via other pathways. While targeting signals for each route have common overall characteristics, individual signal peptides vary greatly in their amino acid sequences. How do these diverse signals interact specifically with the proteins that comprise the appropriate transport machinery and, at the same time, avoid targeting to an alternate route? The recent publication of the crystal structures of components of the Sec transport machinery now allows a more thorough consideration of the interactions of signal sequences with these components.
Collapse
Affiliation(s)
| | - Debra A. Kendall
- To whom correspondence should be addressed. Mailing address: Department of Molecular and Cell Biology, 91 North Eagleville Road, The University of Connecticut, Storrs, CT 06269-3125. Phone: (860) 486-1891. Fax: (860) 486-4331. E-mail:
| |
Collapse
|
66
|
Saparov SM, Erlandson K, Cannon K, Schaletzky J, Schulman S, Rapoport TA, Pohl P. Determining the conductance of the SecY protein translocation channel for small molecules. Mol Cell 2007; 26:501-9. [PMID: 17531809 DOI: 10.1016/j.molcel.2007.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/30/2007] [Accepted: 03/27/2007] [Indexed: 11/20/2022]
Abstract
The channel formed by the SecY complex must maintain the membrane barrier for ions and other small molecules during the translocation of membrane or secretory proteins. We have tested the permeability of the channel by using planar bilayers containing reconstituted purified E. coli SecY complex. Wild-type SecY complex did not show any conductance for ions or water. Deletion of the "plug," a short helix normally located in the center of the SecY complex, or modification of a cysteine introduced into the plug resulted in transient channel openings; a similar effect was seen with a mutation in the pore ring, a constriction in the center of the channel. Permanent channel opening occurred when the plug was moved out of the way by disulfide-bridge formation. These data show that the resting channel on its own forms a barrier for small molecules, with both the pore ring and the plug required for the seal; channel opening requires movement of the plug.
Collapse
Affiliation(s)
- Sapar M Saparov
- Institut fuer Biophysik, Johannes Kepler Universitaet Linz, Linz, Austria
| | | | | | | | | | | | | |
Collapse
|
67
|
Lin BR, Gierasch LM, Jiang C, Tai PC. Electrophysiological studies in Xenopus oocytes for the opening of Escherichia coli SecA-dependent protein-conducting channels. J Membr Biol 2007; 214:103-13. [PMID: 17530158 PMCID: PMC2896742 DOI: 10.1007/s00232-006-0079-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/16/2006] [Indexed: 11/25/2022]
Abstract
Protein translocation in Escherichia coli requires protein-conducting channels in cytoplasmic membranes to allow precursor peptides to pass through with adenosine triphosphate (ATP) hydrolysis. Here, we report a novel, sensitive method that detects the opening of the SecA-dependent protein-conducting channels at the nanogram level. E. coli inverted membrane vesicles were injected into Xenopus oocytes, and ionic currents were recorded using the two-electrode voltage clamp. Currents were observed only in the presence of E. coli SecA in conjunction with E. coli membranes. Observed currents showed outward rectification in the presence of KCl as permeable ions and were significantly enhanced by coinjection with the precursor protein proOmpA or active LamB signal peptide. Channel activity was blockable with sodium azide or adenylyl 5'-(beta,gamma-methylene)-diphosphonate, a nonhydrolyzable ATP analogue, both of which are known to inhibit SecA protein activity. Endogenous oocyte precursor proteins also stimulated ion current activity and can be inhibited by puromycin. In the presence of puromycin, exogenous proOmpA or LamB signal peptides continued to enhance ionic currents. Thus, the requirement of signal peptides and ATP hydrolysis for the SecA-dependent currents resembles biochemical protein translocation assay with E. coli membrane vesicles, indicating that the Xenopus oocyte system provides a sensitive assay to study the role of Sec and precursor proteins in the formation of protein-conducting channels using electrophysiological methods.
Collapse
Affiliation(s)
- Bor-Ruei Lin
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | - Lila M. Gierasch
- Departments of Biochemistry and Molecular Biology and of Chemistry, University of Massachusetts, 710 N. Pleasant Street, Amherst, MA 01003, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | - Phang C. Tai
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| |
Collapse
|
68
|
Karamanou S, Gouridis G, Papanikou E, Sianidis G, Gelis I, Keramisanou D, Vrontou E, Kalodimos CG, Economou A. Preprotein-controlled catalysis in the helicase motor of SecA. EMBO J 2007; 26:2904-14. [PMID: 17525736 PMCID: PMC1894763 DOI: 10.1038/sj.emboj.7601721] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 04/17/2007] [Indexed: 11/08/2022] Open
Abstract
The cornerstone of the functionality of almost all motor proteins is the regulation of their activity by binding interactions with their respective substrates. In most cases, the underlying mechanism of this regulation remains unknown. Here, we reveal a novel mechanism used by secretory preproteins to control the catalytic cycle of the helicase 'DEAD' motor of SecA, the preprotein translocase ATPase. The central feature of this mechanism is a highly conserved salt-bridge, Gate1, that controls the opening/closure of the nucleotide cleft. Gate1 regulates the propagation of binding signal generated at the Preprotein Binding Domain to the nucleotide cleft, thus allowing the physical coupling of preprotein binding and release to the ATPase cycle. This relay mechanism is at play only after SecA has been previously 'primed' by binding to SecYEG, the transmembrane protein-conducting channel. The Gate1-controlled relay mechanism is essential for protein translocase catalysis and may be common in helicase motors.
Collapse
Affiliation(s)
- Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Crete, Greece
| | - Giorgos Gouridis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Crete, Greece
- Department of Biology, University of Crete, Crete, Greece
| | - Efrosyni Papanikou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Crete, Greece
| | - Giorgos Sianidis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Crete, Greece
| | - Ioannis Gelis
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | | | - Eleftheria Vrontou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Crete, Greece
- Department of Biology, University of Crete, Crete, Greece
| | | | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Crete, Greece
- Department of Biology, University of Crete, Crete, Greece
- Institute of Molecular Biology and Biotechnology, University of Crete, PO Box 1385, 71110 Iraklio, Crete, Greece. Tel.: +30 2810 391166/391167; Fax: +30 2810 391166; E-mail:
| |
Collapse
|
69
|
Alami M, Dalal K, Lelj-Garolla B, Sligar SG, Duong F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 2007; 26:1995-2004. [PMID: 17396152 PMCID: PMC1852787 DOI: 10.1038/sj.emboj.7601661] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 03/02/2007] [Indexed: 11/08/2022] Open
Abstract
The translocon is a membrane-embedded protein assembly that catalyzes protein movement across membranes. The core translocon, the SecYEG complex, forms oligomers, but the protein-conducting channel is at the center of the monomer. Defining the properties of the SecYEG protomer is thus crucial to understand the underlying function of oligomerization. We report here the reconstitution of a single SecYEG complex into nano-scale lipid bilayers, termed Nanodiscs. These water-soluble particles allow one to probe the interactions of the SecYEG complex with its cytosolic partner, the SecA dimer, in a membrane-like environment. The results show that the SecYEG complex triggers dissociation of the SecA dimer, associates only with the SecA monomer and suffices to (pre)-activate the SecA ATPase. Acidic lipids surrounding the SecYEG complex also contribute to the binding affinity and activation of SecA, whereas mutations in the largest cytosolic loop of the SecY subunit, known to abolish the translocation reaction, disrupt both the binding and activation of SecA. Altogether, the results define the fundamental contribution of the SecYEG protomer in the translocation subreactions and illustrate the power of nanoscale lipid bilayers in analyzing the dynamics occurring at the membrane.
Collapse
Affiliation(s)
- Meriem Alami
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Kush Dalal
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Barbara Lelj-Garolla
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Franck Duong
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3. Tel.: +1 604 822 5975; Fax: +1 604 822 5227; E-mail:
| |
Collapse
|
70
|
Ullers RS, Ang D, Schwager F, Georgopoulos C, Genevaux P. Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli. Proc Natl Acad Sci U S A 2007; 104:3101-6. [PMID: 17360615 PMCID: PMC1805596 DOI: 10.1073/pnas.0608232104] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytoplasmic, integral membrane, or exported proteins. In Escherichia coli, the chaperones SecB, Trigger Factor (TF), and DnaK are key players in this process. Here, we report that, as with dnaK or dnaJ mutants, a secB null strain exhibits a strong cold-sensitive (Cs) phenotype. Through suppressor analyses, we found that inactivating mutations in the tig gene encoding TF fully relieve both the Cs phenotype and protein aggregation observed in the absence of SecB. This antagonistic effect of TF depends on its ribosome-binding and chaperone activities but unrelated to its peptidyl-prolyl cis/trans isomerase (PPIase) activity. Furthermore, in contrast to the previously known synergistic action of TF and DnaK/DnaJ above 30 degrees C, a tig null mutation partially suppresses the Cs phenotype exhibited by a compromised DnaK/DnaJ chaperone machine. The antagonistic role of TF is further exemplified by the fact that the secB dnaJ double mutant is viable only in the absence of TF. Finally, we show that, in the absence of TF, more SecA and ribosomes are associated with the inner membrane, suggesting that the presence of TF directly or indirectly interferes with the process of cotranslational protein targeting to the Sec translocon.
Collapse
Affiliation(s)
- Ronald S. Ullers
- *Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, 1 Rue Michel-Servet, CH-1211 Geneva, Switzerland; and
| | - Debbie Ang
- *Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, 1 Rue Michel-Servet, CH-1211 Geneva, Switzerland; and
| | - Françoise Schwager
- *Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, 1 Rue Michel-Servet, CH-1211 Geneva, Switzerland; and
| | - Costa Georgopoulos
- *Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, 1 Rue Michel-Servet, CH-1211 Geneva, Switzerland; and
- To whom correspondence may be addressed. E-mail: or
| | - Pierre Genevaux
- *Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, 1 Rue Michel-Servet, CH-1211 Geneva, Switzerland; and
- Laboratoire de Microbiologie et Génétique Moléculaires, Institut de Biologie Cellulaire et de Génétique, Centre National de la Recherche Scientifique, Université Paul-Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
71
|
Cline K, Theg SM. The Sec and Tat Protein Translocation Pathways in Chloroplasts. MOLECULAR MACHINES INVOLVED IN PROTEIN TRANSPORT ACROSS CELLULAR MEMBRANES 2007. [DOI: 10.1016/s1874-6047(07)25018-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
72
|
Jilaveanu LB, Oliver DB. In vivo membrane topology of Escherichia coli SecA ATPase reveals extensive periplasmic exposure of multiple functionally important domains clustering on one face of SecA. J Biol Chem 2006; 282:4661-4668. [PMID: 17166834 DOI: 10.1074/jbc.m610828200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sec-dependent protein translocation pathway promotes the transport of proteins into or across the bacterial plasma membrane. SecA ATPase has been shown to be a nanomotor that associates with its protein cargo as well as the SecYEG channel complex and to undergo ATP-driven cycles of membrane insertion and retraction that promote stepwise protein translocation. Previous studies have shown that both the 65-kDa N-domain and 30-kDa C-domain of SecA appear to undergo such membrane cycling. In the present study we performed in vivo sulfhydryl labeling of an extensive collection of monocysteine secA mutants under topologically specific conditions to identify regions of SecA that are accessible to the trans side of the membrane in its membrane-integrated state. Our results show that distinct regions of five of six SecA domains were labeled under these conditions, and such labeling clusters to a single face of the SecA structure. Our results demarcate an extensive face of SecA that interacts with SecYEG and is in fluid contact with the protein-conducting channel. The observed domain-specific labeling patterns should also provide important constraints on model building efforts in this dynamic system.
Collapse
Affiliation(s)
- Lucia B Jilaveanu
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Donald B Oliver
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459.
| |
Collapse
|
73
|
Maillard AP, Lalani S, Silva F, Belin D, Duong F. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J Biol Chem 2006; 282:1281-7. [PMID: 17092931 DOI: 10.1074/jbc.m610060200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the SecY plug is displaced from the center of the SecYEG channel during polypeptide translocation. The structural and functional consequences of the deletion of the plug are now examined. Both in vivo and in vitro observations indicate that the plug domain is not essential to the function of the translocon. In fact, deletion of the plug confers to the cell and to the membranes a Prl-like phenotype: reduced proton-motive force dependence of translocation, increased membrane insertion of SecA, diminished requirement for functional leader peptide, and weakened SecYEG subunit association. Although the plug domain does not seem essential, locking the plug in the center of the channel inactivates the translocon. Thus, the SecY plug is important to regulate the activity of the channel and to confer specificity to the translocation reaction. We propose that the plug contributes to the gating mechanism of the channel by maintaining the structure of the SecYEG complex in a compact closed state.
Collapse
Affiliation(s)
- Antoine P Maillard
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | | | | | | | | |
Collapse
|
74
|
Charlson ES, Werner JN, Misra R. Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J Bacteriol 2006; 188:7186-94. [PMID: 17015657 PMCID: PMC1636225 DOI: 10.1128/jb.00571-06] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YfgL together with NlpB, YfiO, and YaeT form a protein complex to facilitate the insertion of proteins into the outer membrane of Escherichia coli. Without YfgL, the levels of OmpA, OmpF, and LamB are significantly reduced, while OmpC levels are slightly reduced. In contrast, the level of TolC significantly increases in a yfgL mutant. When cells are depleted of YaeT or YfiO, levels of all outer membrane proteins examined, including OmpC and TolC, are severely reduced. Thus, while the assembly pathways of various nonlipoprotein outer membrane proteins may vary through the step involving YfgL, all assembly pathways in Escherichia coli converge at the step involving the YaeT/YfiO complex. The negative effect of yfgL mutation on outer membrane proteins may in part be due to elevated sigma E activity, which has been shown to downregulate the synthesis of various outer membrane proteins while upregulating the synthesis of periplasmic chaperones, foldases, and lipopolysaccharide. The data presented here suggest that the yfgL effect on outer membrane proteins also stems from a defective assembly apparatus, leading to aberrant outer membrane protein assembly, except for TolC, which assembles independent of YfgL. Consistent with this view, the simultaneous absence of YfgL and the major periplasmic protease DegP confers a synthetic lethal phenotype, presumably due to the toxic accumulation of unfolded outer membrane proteins. The results support the hypothesis that TolC and major outer membrane proteins compete for the YaeT/YfiO complex, since mutations that adversely affect synthesis or assembly of major outer membrane proteins lead to elevated TolC levels.
Collapse
Affiliation(s)
- Emily S Charlson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | |
Collapse
|
75
|
Mori H, Ito K. The Long α-Helix of SecA Is Important for the ATPase Coupling of Translocation. J Biol Chem 2006; 281:36249-56. [PMID: 17005557 DOI: 10.1074/jbc.m606906200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA contains two ATPase folds (NBF1 and NBF2) and other interaction/regulatory domains, all of which are connected by a long helical scaffold domain (HSD) running along the molecule. Here we identified a functionally important and spatially adjacent pair of SecA residues, Arg-642 on HSD and Glu-400 on NBF1. A charge-reversing substitution at either position as well as disulfide tethering of these positions inactivated the translocation activity. Interestingly, however, the translocation-inactive SecA variants fully retained the ability to up-regulate the ATPase in response to a preprotein and the SecYEG translocon. The translocation defect was suppressible by second site alterations at the hinge-forming boundary of NBF2 and HSD. Based on these results, we propose that the motor function of SecA is realized by ligand-activated ATPase engine and its HSD-mediated conversion into the mechanical work of preprotein translocation.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
76
|
Ureta AR, Endres RG, Wingreen NS, Silhavy TJ. Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment. J Bacteriol 2006; 189:446-54. [PMID: 17071751 PMCID: PMC1797403 DOI: 10.1128/jb.01103-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane beta-barrel proteins in gram-negative bacteria, such as Escherichia coli, must be translocated from their site of synthesis in the cytoplasm to the periplasm and finally delivered to the outer membrane. At least a dozen proteins located in the cytoplasm, the periplasm, and both the inner and outer membranes are required to catalyze this complex assembly process. At normal growth temperatures and conditions the transport and assembly processes are so fast that assembly intermediates cannot be detected. Using cells grown at a low temperature to slow the assembly process and pulse-chase analysis with immunodetection methods, we followed newly synthesized LamB molecules during their transit through the cell envelope. The quality and reproducibility of the data allowed us to calculate rate constants for three different subassembly reactions. This kinetic analysis revealed that secB and secD mutants exhibit nearly identical defects in precursor translocation from the cytoplasm. However, subsequent subassembly reaction rates provided no clear evidence for an additional role for SecD in LamB assembly. Moreover, we found that surA mutants are qualitatively indistinguishable from yfgL mutants, suggesting that the products of both of these genes share a common function in the assembly process, most likely the delivery of LamB to the YaeT assembly complex in the outer membrane.
Collapse
Affiliation(s)
- Alejandro R Ureta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
77
|
Desvaux M, Hébraud M. The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 2006; 30:774-805. [PMID: 16911044 DOI: 10.1111/j.1574-6976.2006.00035.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes, the etiologic agent of listeriosis, remains a serious public health concern with its frequent occurrence in food coupled with a high mortality rate. The capacity of a bacterium to secrete proteins to or beyond the bacterial cell surface is of crucial importance in the understanding of biofilm formation and bacterial pathogenesis to further develop defensive strategies. Recent findings in protein secretion in Listeria together with the availability of complete genome sequences of several pathogenic L. monocytogenes strains, as well as nonpathogenic Listeria innocua Clip11262, prompted us to summarize the listerial protein secretion systems. Protein secretion would rely essentially on the Sec (Secretion) pathway. The twin-arginine translocation pathway seems encoded in all but one sequenced Listeria. In addition, a functional flagella export apparatus, a fimbrilin-protein exporter, some holins and a WXG100 secretion system are encoded in listerial genomes. This critical review brings new insights into the physiology and virulence of Listeria species.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Institut National de la Recherche Agronomique (INRA), Centre de Recherche Clermont-Ferrand-Theix-Lyon, UR 454 Microbiologie, Equipe Qualité et Sécurité des Aliments (QuaSA), Saint-Genès Champanelle, France.
| | | |
Collapse
|
78
|
Mori H, Ito K. Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-cross-linking. Proc Natl Acad Sci U S A 2006; 103:16159-64. [PMID: 17060619 PMCID: PMC1621050 DOI: 10.1073/pnas.0606390103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the SecA ATPase drives protein translocation across the bacterial cytoplasmic membrane by interacting with the SecYEG translocon, molecular details of SecA-SecY interaction remain poorly understood. Here, we studied SecY-SecA interaction by using an in vivo site-directed cross-linking technique developed by Schultz and coworkers [Chin, J. W., Martin, A. B., King, D. S., Wang, L., Schultz, P. G. (2002) Proc. Natl. Acad. Sci. USA 99:11020-11024 and Chin, J. W., Schultz, P. G. (2002) ChemBioChem 3:1135-1137]. Benzoyl-phenylalanine introduced into specific SecY positions at the second, fourth, fifth, and sixth cytoplasmic domains allowed UV cross-linking with SecA. Cross-linked products exhibited two distinct electrophoretic mobilities. SecA cross-linking at the most C-terminal cytoplasmic region (C6) was specifically enhanced in the presence of NaN(3), which arrests the ATPase cycle, and this enhancement was canceled by cis placement of some secY mutations that affect SecY-SecA cooperation. In vitro experiments showed directly that SecA approaches C6 when it is engaging in ATP-dependent preprotein translocation. On the basis of these findings, we propose that the C6 tail of SecY interacts with the working form of SecA, whereas C4-C5 loops may offer constitutive SecA-binding sites.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Koreaki Ito
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
79
|
Sibbald MJJB, Ziebandt AK, Engelmann S, Hecker M, de Jong A, Harmsen HJM, Raangs GC, Stokroos I, Arends JP, Dubois JYF, van Dijl JM. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol Mol Biol Rev 2006; 70:755-88. [PMID: 16959968 PMCID: PMC1594592 DOI: 10.1128/mmbr.00008-06] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gram-positive bacterium Staphylococcus aureus is a frequent component of the human microbial flora that can turn into a dangerous pathogen. As such, this organism is capable of infecting almost every tissue and organ system in the human body. It does so by actively exporting a variety of virulence factors to the cell surface and extracellular milieu. Upon reaching their respective destinations, these virulence factors have pivotal roles in the colonization and subversion of the human host. It is therefore of major importance to obtain a clear understanding of the protein transport pathways that are active in S. aureus. The present review aims to provide a state-of-the-art roadmap of staphylococcal secretomes, which include both protein transport pathways and the extracytoplasmic proteins of these organisms. Specifically, an overview is presented of the exported virulence factors, pathways for protein transport, signals for cellular protein retention or secretion, and the exoproteomes of different S. aureus isolates. The focus is on S. aureus, but comparisons with Staphylococcus epidermidis and other gram-positive bacteria, such as Bacillus subtilis, are included where appropriate. Importantly, the results of genomic and proteomic studies on S. aureus secretomes are integrated through a comparative "secretomics" approach, resulting in the first definition of the core and variant secretomes of this bacterium. While the core secretome seems to be largely employed for general housekeeping functions which are necessary to thrive in particular niches provided by the human host, the variant secretome seems to contain the "gadgets" that S. aureus needs to conquer these well-protected niches.
Collapse
Affiliation(s)
- M J J B Sibbald
- Department of Medical Microbiology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Vassylyev DG, Mori H, Vassylyeva MN, Tsukazaki T, Kimura Y, Tahirov TH, Ito K. Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer. J Mol Biol 2006; 364:248-58. [PMID: 17059823 DOI: 10.1016/j.jmb.2006.09.061] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 09/19/2006] [Accepted: 09/24/2006] [Indexed: 11/16/2022]
Abstract
The mechanism of pre-protein export through the bacterial cytoplasmic membrane, in which the SecA ATPase plays a crucial role as an "energy supplier", is poorly understood. In particular, biochemical and structural studies provide contradictory data as to the oligomeric state of SecA when it is integrated into the active trans-membrane translocase. Here, we report the 2.8 A resolution crystal structure of the Thermus thermophilus SecA protein (TtSecA). Whereas the structure of the TtSecA monomer closely resembles that from other bacteria, the oligomeric state of TtSecA is strikingly distinct. In contrast to the antiparallel (head-to-tail) dimerization reported previously for the other bacterial systems, TtSecA forms parallel (head-to-head) dimers that are reminiscent of open scissors. The dimer interface is abundant in bulky Arg and Lys side-chains from both subunits, which stack on one another to form an unusual "basic zipper" that is highly conserved, as revealed by homology modeling and sequence analysis. The basic zipper is sealed on both ends by two pairs of the salt bridges formed between the basic side-chains from the zipper and two invariant acidic residues. The organization of the dimers, in which the two pre-protein binding domains are located proximal to each other at the tip of the "scissors", might allow a concerted mode of substrate recognition while the opening/closing of the scissors might facilitate translocation.
Collapse
Affiliation(s)
- Dmitry G Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 434 Kaul Genetics Building, 720 20(th) Street South, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
81
|
Wu T, McCandlish AC, Gronenberg LS, Chng SS, Silhavy TJ, Kahne D. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 2006; 103:11754-9. [PMID: 16861298 PMCID: PMC1544242 DOI: 10.1073/pnas.0604744103] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer membrane of most Gram-negative bacteria is made up of LPS, and in nearly all bacteria that contain LPS it is essential for the life of the organism. The lipid portion of this molecule, lipid A, also known as endotoxin, is a potent activator of the innate immune response. More than 50 genes are required to synthesize LPS and assemble it at the cell surface. Enormous progress has been made in elucidating the structure and biosynthesis of LPS, but until recently the cellular components required for its transport from its site of synthesis in the inner membrane to its final cellular location at the cell surface remained elusive. Here we describe the identification of a protein complex that functions to assemble LPS at the surface of the cell. This complex contains two proteins: Imp, already identified as an essential outer-membrane protein implicated in LPS assembly; and another protein, RlpB, heretofore identified only as a rare lipoprotein. We show that RlpB is also essential for cell viability and that the Imp/RlpB complex is responsible for LPS reaching the outer surface of the outer membrane.
Collapse
Affiliation(s)
- Tao Wu
- *Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | | | - Luisa S. Gronenberg
- *Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Shu-Sin Chng
- *Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Daniel Kahne
- *Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
82
|
Albers SV, Szabó Z, Driessen AJM. Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nat Rev Microbiol 2006; 4:537-47. [PMID: 16755286 DOI: 10.1038/nrmicro1440] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Archaea are similar to other prokaryotes in most aspects of cell structure but are unique with respect to the lipid composition of the cytoplasmic membrane and the structure of the cell surface. Membranes of archaea are composed of glycerol-ether lipids instead of glycerol-ester lipids and are based on isoprenoid side chains, whereas the cell walls are formed by surface-layer proteins. The unique cell surface of archaea requires distinct solutions to the problem of how proteins cross this barrier to be either secreted into the medium or assembled as appendages at the cell surface.
Collapse
Affiliation(s)
- Sonja-Verena Albers
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Materials Science Centre Plus, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
83
|
Tsukazaki T, Mori H, Fukai S, Numata T, Perederina A, Adachi H, Matsumura H, Takano K, Murakami S, Inoue T, Mori Y, Sasaki T, Vassylyev DG, Nureki O, Ito K. Purification, crystallization and preliminary X-ray diffraction of SecDF, a translocon-associated membrane protein, from Thermus thermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:376-80. [PMID: 16582489 PMCID: PMC2222563 DOI: 10.1107/s1744309106007779] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 03/03/2006] [Indexed: 11/11/2022]
Abstract
Thermus thermophilus has a multi-path membrane protein, TSecDF, as a single-chain homologue of Escherichia coli SecD and SecF, which form a translocon-associated complex required for efficient preprotein translocation and membrane-protein integration. Here, the cloning, expression in E. coli, purification and crystallization of TSecDF are reported. Overproduced TSecDF was solubilized with dodecylmaltoside, chromatographically purified and crystallized by vapour diffusion in the presence of polyethylene glycol. The crystals yielded a maximum resolution of 4.2 angstroms upon X-ray irradiation, revealing that they belonged to space group P4(3)2(1)2. Attempts were made to improve the diffraction quality of the crystals by combinations of micro-stirring, laser-light irradiation and dehydration, which led to the eventual collection of complete data sets at 3.74 angstroms resolution and preliminary success in the single-wavelength anomalous dispersion analysis. These results provide information that is essential for the determination of the three-dimensional structure of this important membrane component of the protein-translocation machinery.
Collapse
Affiliation(s)
- Tomoya Tsukazaki
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Shuya Fukai
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Tomoyuki Numata
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
| | - Anna Perederina
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama 35294, USA
| | - Hiroaki Adachi
- SOSHO Inc., 7-7-15-208 Asagi, Saito, Ibaraki, Osaka 567-0085, Japan
- Department of Electrical, Electronic and Information Engineering, Osaka University, Osaka 565-0871, Japan
- CREST, JST, Saitama 332-0012, Japan
| | - Hiroyoshi Matsumura
- SOSHO Inc., 7-7-15-208 Asagi, Saito, Ibaraki, Osaka 567-0085, Japan
- CREST, JST, Saitama 332-0012, Japan
- Department of Materials Chemistry, Osaka University, Osaka 565-0871, Japan
| | - Kazufumi Takano
- SOSHO Inc., 7-7-15-208 Asagi, Saito, Ibaraki, Osaka 567-0085, Japan
- CREST, JST, Saitama 332-0012, Japan
- Department of Material and Life Science, Osaka University, Osaka 565-0871, Japan
| | - Satoshi Murakami
- SOSHO Inc., 7-7-15-208 Asagi, Saito, Ibaraki, Osaka 567-0085, Japan
- CREST, JST, Saitama 332-0012, Japan
- PRESTO, JST, Saitama 332-0012, Japan
- Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Tsuyoshi Inoue
- SOSHO Inc., 7-7-15-208 Asagi, Saito, Ibaraki, Osaka 567-0085, Japan
- CREST, JST, Saitama 332-0012, Japan
- Department of Materials Chemistry, Osaka University, Osaka 565-0871, Japan
| | - Yusuke Mori
- SOSHO Inc., 7-7-15-208 Asagi, Saito, Ibaraki, Osaka 567-0085, Japan
- Department of Electrical, Electronic and Information Engineering, Osaka University, Osaka 565-0871, Japan
- CREST, JST, Saitama 332-0012, Japan
| | - Takatomo Sasaki
- SOSHO Inc., 7-7-15-208 Asagi, Saito, Ibaraki, Osaka 567-0085, Japan
- Department of Electrical, Electronic and Information Engineering, Osaka University, Osaka 565-0871, Japan
- CREST, JST, Saitama 332-0012, Japan
| | - Dmitry G. Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama 35294, USA
| | - Osamu Nureki
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa 226-8501, Japan
- PRESTO, JST, Saitama 332-0012, Japan
- Correspondence e-mail: ,
| | - Koreaki Ito
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
- CREST, JST, Saitama 332-0012, Japan
- Correspondence e-mail: ,
| |
Collapse
|
84
|
Jilaveanu LB, Oliver D. SecA dimer cross-linked at its subunit interface is functional for protein translocation. J Bacteriol 2006; 188:335-8. [PMID: 16352850 PMCID: PMC1317605 DOI: 10.1128/jb.188.1.335-338.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecA facilitates protein transport across the eubacterial plasma membrane by its association with cargo proteins and the SecYEG translocon, followed by ATP-driven conformational changes that promote protein translocation in a stepwise manner. Whether SecA functions as a monomer or a dimer during this process has been the subject of considerable controversy. Here we utilize cysteine-directed mutagenesis along with the crystal structure of the SecA dimer to create a cross-linked dimer at its subunit interface, which was normally active for in vitro protein translocation.
Collapse
Affiliation(s)
- Lucia B Jilaveanu
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | |
Collapse
|
85
|
van Bloois E, Haan GJ, de Gier JW, Oudega B, Luirink J. Distinct requirements for translocation of the N-tail and C-tail of the Escherichia coli inner membrane protein CyoA. J Biol Chem 2006; 281:10002-9. [PMID: 16481320 DOI: 10.1074/jbc.m511357200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inner membrane proteins (IMPs) of Escherichia coli use different pathways for membrane targeting and integration. YidC plays an essential but poorly defined role in the integration and folding of IMPs both in conjunction with the Sec translocon and as a Sec-independent insertase. Depletion of YidC only marginally affects the insertion of Sec-dependent IMPs, whereas it blocks the insertion of a subset of Sec-independent IMPs. Substrates of this latter "YidC-only" pathway include the relatively small IMPs M13 procoat, Pf3 coat protein, and subunit c of the F(1)F(0) ATPase. Recently, it has been shown that the steady state level of the larger and more complex CyoA subunit of the cytochrome o oxidase is also severely affected upon depletion of YidC. In the present study we have analyzed the biogenesis of the integral lipoprotein CyoA. Collectively, our data suggest that the first transmembrane segment of CyoA rather than the signal sequence recruits the signal recognition particle for membrane targeting. Membrane integration and assembly appear to occur in two distinct sequential steps. YidC is sufficient to catalyze insertion of the N-terminal domain consisting of the signal sequence, transmembrane segment 1, and the small periplasmic domain in between. Translocation of the large C-terminal periplasmic domain requires the Sec translocon and SecA, suggesting that for this particular IMP the Sec translocon might operate downstream of YidC.
Collapse
Affiliation(s)
- Edwin van Bloois
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
86
|
Abstract
The translocon is a protein-conducting channel conserved over all domains of life that serves to translocate proteins across or into membranes. Although this channel has been well studied for many years, the recent discovery of a high-resolution crystal structure opens up new avenues of exploration. Taking advantage of this, we performed molecular dynamics simulations of the translocon in a fully solvated lipid bilayer, examining the translocation abilities of monomeric SecYEbeta by forcing two helices comprised of different amino acid sequences to cross the channel. The simulations revealed that the so-called plug of SecYEbeta swings open during translocation, closing thereafter. Likewise, it was established that the so-called pore ring region of SecYEbeta forms an elastic, yet tight, seal around the translocating oligopeptides. The closed state of the channel was found to block permeation of all ions and water molecules; in the open state, ions were blocked. Our results suggest that the SecYEbeta monomer is capable of forming an active channel.
Collapse
Affiliation(s)
- James Gumbart
- Department of Physics, University of Illinois at Urbana-Champaign and Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, USA
| | | |
Collapse
|
87
|
Abstract
The conserved protein-conducting channel, referred to as the Sec61 channel in eukaryotes or the SecY channel in eubacteria and archaea, translocates proteins across cellular membranes and integrates proteins containing hydrophobic transmembrane segments into lipid bilayers. Structural studies illustrate how the protein-conducting channel accomplishes these tasks. Three different mechanisms, each requiring a different set of channel binding partners, are employed to move polypeptide substrates: The ribosome feeds the polypeptide chain directly into the channel, a ratcheting mechanism is used by the eukaryotic endoplasmic reticulum chaperone BiP, and a pushing mechanism is utilized by the bacterial ATPase SecA. We review these translocation mechanisms, relating biochemical and genetic observations to the structures of the protein-conducting channel and its binding partners.
Collapse
Affiliation(s)
- Andrew R Osborne
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
88
|
Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag LL, von Heijne G, Daley DO. Protein Complexes of the Escherichia coli Cell Envelope. J Biol Chem 2005; 280:34409-19. [PMID: 16079137 DOI: 10.1074/jbc.m506479200] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein complexes are an intrinsic aspect of life in the membrane. Knowing which proteins are assembled in these complexes is therefore essential to understanding protein function(s). Unfortunately, recent high throughput protein interaction studies have failed to deliver any significant information on proteins embedded in the membrane, and many membrane protein complexes remain ill defined. In this study, we have optimized the blue native-PAGE technique for the study of membrane protein complexes in the inner and outer membranes of Escherichia coli. In combination with second dimension SDS-PAGE and mass spectrometry, we have been able to identify 43 distinct protein complexes. In addition to a number of well characterized complexes, we have identified known and orphan proteins in novel oligomeric states. For two orphan proteins, YhcB and YjdB, our findings enable a tentative functional assignment. We propose that YhcB is a hitherto unidentified additional subunit of the cytochrome bd oxidase and that YjdB, which co-localizes with the ZipA protein, is involved in cell division. Our reference two-dimensional blue native-SDS-polyacrylamide gels will facilitate future studies of the assembly and composition of E. coli membrane protein complexes during different growth conditions and in different mutant backgrounds.
Collapse
Affiliation(s)
- Filippa Stenberg
- Department of Biochemistry and Stockholm University, Stockholm SE-106 91, Sweden
| | | | | | | | | | | | | |
Collapse
|
89
|
Tam PCK, Maillard AP, Chan KKY, Duong F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J 2005; 24:3380-8. [PMID: 16148946 PMCID: PMC1276166 DOI: 10.1038/sj.emboj.7600804] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 08/11/2005] [Indexed: 11/09/2022] Open
Abstract
Protein translocation occurs across the energy-conserving bacterial membrane at the SecYEG channel. The crystal structure of the channel has revealed a possible mechanism for gating and opening. This study evaluates the plug hypothesis using cysteine crosslink experiments in combination with various allelic forms of the Sec complex. The results demonstrate that the SecY plug domain moves away from the center of the channel toward SecE during polypeptide translocation, and further show that the translocation-enhancing prlA3 mutation and SecG subunit change the properties of channel gating. Locking the plug in the open state preactivates the Sec complex, and a super-active translocase can be created when combined with the prlA4 mutation located in the pore of the channel. Dimerization of the Sec complex, which is essential for translocase activity, relocates the plug toward the open position. We propose that oligomerization may result in SecYEG cooperative interactions important to prime the translocon function.
Collapse
Affiliation(s)
- Patrick C K Tam
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Antoine P Maillard
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kenneth K Y Chan
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Franck Duong
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3. Tel.: +1 604 822 5975; Fax: +1 604 822 5227; E-mail:
| |
Collapse
|
90
|
Chou YT, Gierasch LM. The Conformation of a Signal Peptide Bound by Escherichia coli Preprotein Translocase SecA. J Biol Chem 2005; 280:32753-60. [PMID: 16046390 DOI: 10.1074/jbc.m507532200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the structural nature of signal sequence recognition by the preprotein translocase SecA, we have characterized the interactions of a signal peptide corresponding to a LamB signal sequence (modified to enhance aqueous solubility) with SecA by NMR methods. One-dimensional NMR studies showed that the signal peptide binds SecA with a moderately fast exchange rate (Kd approximately 10(-5) m). The line-broadening effects observed from one-dimensional and two-dimensional NMR spectra indicated that the binding mode does not equally immobilize all segments of this peptide. The positively charged arginine residues of the n-region and the hydrophobic residues of the h-region had less mobility than the polar residues of the c-region in the SecA-bound state, suggesting that this peptide has both electrostatic and hydrophobic interactions with the binding pocket of SecA. Transferred nuclear Overhauser experiments revealed that the h-region and part of the c-region of the signal peptide form an alpha-helical conformation upon binding to SecA. One side of the hydrophobic core of the helical h-region appeared to be more strongly bound in the binding pocket, whereas the extreme C terminus of the peptide was not intimately involved. These results argue that the positive charges at the n-region and the hydrophobic helical h-region are the selective features for recognition of signal sequences by SecA and that the signal peptide-binding site on SecA is not fully buried within its structure.
Collapse
Affiliation(s)
- Yi-Te Chou
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-04510, USA
| | | |
Collapse
|
91
|
Karamyshev AL, Johnson AE. Selective SecA association with signal sequences in ribosome-bound nascent chains: a potential role for SecA in ribosome targeting to the bacterial membrane. J Biol Chem 2005; 280:37930-40. [PMID: 16120599 DOI: 10.1074/jbc.m509100200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of SecA in selecting bacterial proteins for export was examined using a heterologous system that lacks endogenous SecA and other bacterial proteins. This approach allowed us to assess the interaction of SecA with ribosome-bound photoreactive nascent chains in the absence of trigger factor, SecB, Ffh (the bacterial protein component of the signal recognition particle), and the SecYEG translocon in the bacterial plasma membrane. In the absence of membranes, SecA photocross-linked efficiently to nascent translocation substrate OmpA in ribosome-nascent chain (RNC) complexes in an interaction that was independent of both ATP and SecB. However, no photocross-linking to a nascent membrane protein that is normally targeted by a signal recognition particle was observed. Modification of the signal sequence revealed that its affinity for SecA and Ffh varied inversely. Gel filtration showed that SecA binds tightly to both translating and non-translating ribosomes. When purified SecA.RNC complexes containing nascent OmpA were exposed to inner membrane vesicles lacking functional SecA, the nascent chains were successfully targeted to SecYEG translocons. However, purified RNCs lacking SecA were unable to target to the same membranes. Taken together, these data strongly suggest that cytosolic SecA participates in the selection of proteins for export by co-translationally binding to the signal sequences of non-membrane proteins and directing those nascent chains to the translocon.
Collapse
Affiliation(s)
- Andrey L Karamyshev
- Department of Medical Biochemistry and Genetics, Texas A & M University System Health Science Center, College Station, 77843-1114, USA
| | | |
Collapse
|
92
|
de Keyzer J, van der Sluis EO, Spelbrink REJ, Nijstad N, de Kruijff B, Nouwen N, van der Does C, Driessen AJM. Covalently dimerized SecA is functional in protein translocation. J Biol Chem 2005; 280:35255-60. [PMID: 16115882 DOI: 10.1074/jbc.m506157200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATPase SecA provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. SecA exists as a dimer in solution, but the exact oligomeric state of SecA during membrane binding and preprotein translocation is a topic of debate. To study the requirements of oligomeric changes in SecA during protein translocation, a non-dissociable SecA dimer was formed by oxidation of the carboxyl-terminal cysteines. The cross-linked SecA dimer interacts with the SecYEG complex with a similar stoichiometry as non-cross-linked SecA. Cross-linking reversibly disrupts the SecB binding site on SecA. However, in the absence of SecB, the activity of the disulfide-bonded SecA dimer is indistinguishable from wild-type SecA. Moreover, SecYEG binding stabilizes a cold sodium dodecylsulfate-resistant dimeric state of SecA. The results demonstrate that dissociation of the SecA dimer is not an essential feature of the protein translocation reaction.
Collapse
Affiliation(s)
- Jeanine de Keyzer
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Materials and Science Centre Plus, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
93
|
|
94
|
Shimohata N, Akiyama Y, Ito K. Peculiar properties of DsbA in its export across the Escherichia coli cytoplasmic membrane. J Bacteriol 2005; 187:3997-4004. [PMID: 15937162 PMCID: PMC1151732 DOI: 10.1128/jb.187.12.3997-4004.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Export of DsbA, a protein disulfide bond-introducing enzyme, across the Escherichia coli cytoplasmic membrane was studied with special reference to the effects of various mutations affecting translocation factors. It was noted that both the internalized precursor retaining the signal peptide and the periplasmic mature product fold rapidly into a protease-resistant structure and they exhibited anomalies in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in that the former migrated faster than the latter. The precursor, once accumulated, was not exported posttranslationally. DsbA export depended on the SecY translocon, the SecA ATPase, and Ffh (signal recognition particle), but not on SecB. SecY mutations, such as secY39 and secY205, that severely impair translocation of a number of secretory substrates by interfering with SecA actions only insignificantly impaired the DsbA export. In contrast, secY125, affecting a periplasmic domain and impairing a late step of translocation, exerted strong export inhibition of both classes of proteins. These results suggest that DsbA uses not only the signal recognition particle targeting pathway but also a special route of translocation through the translocon, which is hence suggested to actively discriminate pre-proteins.
Collapse
|
95
|
Jilaveanu LB, Zito CR, Oliver D. Dimeric SecA is essential for protein translocation. Proc Natl Acad Sci U S A 2005; 102:7511-6. [PMID: 15897468 PMCID: PMC1140455 DOI: 10.1073/pnas.0502774102] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SecA facilitates bacterial protein translocation by its association with presecretory or membrane proteins and the SecYEG translocon channel. Once assembled, SecA ATPase undergoes cycles of membrane insertion and retraction at SecYEG that drive protein translocation in a stepwise fashion. SecA exists in equilibrium between a monomer and dimer, and association with its translocation ligands shifts this equilibrium dramatically. Here, we examined the proposal that protein translocation can occur by means of a SecA monomer. We produced a mutant SecA protein lacking residues 2-11, which was found to exist mostly as a monomer, and it was unable to complement a conditional-lethal secA mutant, was inactive for in vitro protein translocation, and was poorly active for translocation ATPase activity. Furthermore, we developed a technique termed membrane trapping, where wild-type SecA subunits became trapped within the membrane by overproduction of membrane-stuck mutant SecA proteins, and, in one case, a membrane-associated SecA heterodimer was demonstrated. Finally, we examined both endogenous and reconstituted membrane-bound SecA and found a significant level of SecA dimer in both cases, as assessed by chemical crosslinking. Collectively, our results strongly suggest that membrane-bound SecA dimer is critical for the protein translocation cycle, although these results cannot exclude participation of SecA monomer at some stage in the translocation process. Our findings have important implications regarding SecA motor function and translocon assembly and activation.
Collapse
Affiliation(s)
- Lucia B Jilaveanu
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | | |
Collapse
|
96
|
Nakatogawa H, Murakami A, Mori H, Ito K. SecM facilitates translocase function of SecA by localizing its biosynthesis. Genes Dev 2005; 19:436-44. [PMID: 15713839 PMCID: PMC548944 DOI: 10.1101/gad.1259505] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
"Arrest sequence" of Escherichia coli SecM interacts with the ribosomal exit tunnel and arrests its own translation elongation, which is released by cotranslational export of the nascent SecM chain. This property of SecM is essential for the basal and regulated expression of SecA. Here we report that SecM has an additional role of facilitating SecA activities. Systematic determinations of the SecA-abundance-protein export relationships of cells with different SecA contents revealed that SecA was less functional when SecM was absent from the upstream region of the secM-secA message, when SecM had the arrest-defective mutation, and also when SecM lacked the signal sequence. These results suggest that cotranslational targeting of nascent SecM to the translocon plays previously unrecognized roles of facilitating the formation of functional SecA molecules. Biosynthesis in the vicinity of the membrane and the Sec translocon will be beneficial for this multiconformation ATPase to adopt ready-to-function conformations.
Collapse
Affiliation(s)
- Hitoshi Nakatogawa
- Institute for Virus Research and CREST, Japan Science and Technology Corporation, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
97
|
Papanikou E, Karamanou S, Baud C, Sianidis G, Frank M, Economou A. Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase. EMBO Rep 2004; 5:807-11. [PMID: 15272299 PMCID: PMC1299117 DOI: 10.1038/sj.embor.7400206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 06/22/2004] [Accepted: 06/22/2004] [Indexed: 11/09/2022] Open
Abstract
The SecA ATPase is a protein translocase motor and a superfamily 2 (SF2) RNA helicase. The ATPase catalytic core ('DEAD motor') contains the seven conserved SF2 motifs. Here, we demonstrate that Motif III is essential for SecA-mediated protein translocation and viability. SecA Motif III mutants can bind ligands (nucleotide, the SecYEG translocase 'channel', signal and mature preprotein domains), can catalyse basal and SecYEG-stimulated ATP hydrolysis and can be activated for catalysis. However, Motif III mutation specifically blocks the preprotein-stimulated 'translocation ATPase' at a step of the reaction pathway that lies downstream of ligand binding. A functional Motif III is required for optimal ligand-driven conformational changes and kinetic parameters that underlie optimal preprotein-modulated nucleotide cycling at the SecA DEAD motor. We propose that helicase Motif III couples preprotein binding to the SecA translocation ATPase and that catalytic activation of SF2 enzymes through Motif-III-mediated action is essential for both polypeptide and nucleic-acid substrates.
Collapse
Affiliation(s)
- Efrosyni Papanikou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Catherine Baud
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Giorgos Sianidis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Miriam Frank
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece
| |
Collapse
|