51
|
den Engelsman J, van de Schootbrugge C, Yong J, Pruijn GJM, Boelens WC. Pseudophosphorylated αB-crystallin is a nuclear chaperone imported into the nucleus with help of the SMN complex. PLoS One 2013; 8:e73489. [PMID: 24023879 PMCID: PMC3762725 DOI: 10.1371/journal.pone.0073489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/22/2013] [Indexed: 11/25/2022] Open
Abstract
The human small heat shock protein αB-crystallin (HspB5) is a molecular chaperone which is mainly localized in the cytoplasm. A small fraction can also be found in nuclear speckles, of which the localization is mediated by successional phosphorylation at Ser-59 and Ser-45. αB-crystallin does not contain a canonical nuclear localization signal sequence and the mechanism by which αB-crystallin is imported into the nucleus is not known. Here we show that after heat shock pseudophosphorylated αB-crystallin mutant αB-STD, in which all three phosphorylatable serine residues (Ser-19, Ser-45 and Ser-59) were replaced by negatively charged aspartate residues, is released from the nuclear speckles. This allows αB-crystallin to chaperone proteins in the nucleoplasm, as shown by the ability of αB-STD to restore nuclear firefly luciferase activity after a heat shock. With the help of a yeast two-hybrid screen we found that αB-crystallin can interact with the C-terminal part of Gemin3 and confirmed this interaction by co-immunoprecipitation. Gemin3 is a component of the SMN complex, which is involved in the assembly and nuclear import of U-snRNPs. Knockdown of Gemin3 in an in situ nuclear import assay strongly reduced the accumulation of αB-STD in nuclear speckles. Furthermore, depletion of SMN inhibited nuclear import of fluorescently labeled recombinant αB-STD in an in vitro nuclear import assay, which could be restored by the addition of purified SMN complex. These results show that the SMN-complex facilitates the accumulation of hyperphosphorylated αB-crystallin in nuclear speckles, thereby creating a chaperone depot enabling a rapid chaperone function in the nucleus in response to stress.
Collapse
Affiliation(s)
- John den Engelsman
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Chantal van de Schootbrugge
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Wilbert C. Boelens
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
52
|
Song Y, Ahn J, Suh Y, Davis ME, Lee K. Identification of novel tissue-specific genes by analysis of microarray databases: a human and mouse model. PLoS One 2013; 8:e64483. [PMID: 23741331 PMCID: PMC3669334 DOI: 10.1371/journal.pone.0064483] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022] Open
Abstract
Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved.
Collapse
Affiliation(s)
- Yan Song
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Interdisciplinary PhD Program in Nutrition (OSUN), The Ohio State University, Columbus, Ohio, United States of America
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael E. Davis
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Interdisciplinary PhD Program in Nutrition (OSUN), The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
53
|
Arrigo AP, Gibert B. Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8. Int J Hyperthermia 2013; 29:409-22. [DOI: 10.3109/02656736.2013.792956] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
54
|
Affiliation(s)
- Monte S Willis
- McAllister Heart Institute, and Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, USA
| | | |
Collapse
|
55
|
Abstract
Force-generating contractile cells of the myocardium must achieve and maintain their primary function as an efficient mechanical pump over the life span of the organism. Because only half of the cardiomyocytes can be replaced during the entire human life span, the maintenance strategy elicited by cardiac cells relies on uninterrupted renewal of their components, including proteins whose specialized functions constitute this complex and sophisticated contractile apparatus. Thus cardiac proteins are continuously synthesized and degraded to ensure proteome homeostasis, also termed "proteostasis." Once synthesized, proteins undergo additional folding, posttranslational modifications, and trafficking and/or become involved in protein-protein or protein-DNA interactions to exert their functions. This includes key transient interactions of cardiac proteins with molecular chaperones, which assist with quality control at multiple levels to prevent misfolding or to facilitate degradation. Importantly, cardiac proteome maintenance depends on the cellular environment and, in particular, the reduction-oxidation (REDOX) state, which is significantly different among cardiac organelles (e.g., mitochondria and endoplasmic reticulum). Taking into account the high metabolic activity for oxygen consumption and ATP production by mitochondria, it is a challenge for cardiac cells to maintain the REDOX state while preventing either excessive oxidative or reductive stress. A perturbed REDOX environment can affect protein handling and conformation (e.g., disulfide bonds), disrupt key structure-function relationships, and trigger a pathogenic cascade of protein aggregation, decreased cell survival, and increased organ dysfunction. This review covers current knowledge regarding the general domain of REDOX state and protein folding, specifically in cardiomyocytes under normal-healthy conditions and during disease states associated with morbidity and mortality in humans.
Collapse
Affiliation(s)
- Elisabeth S Christians
- Laboratory of Cardiac Disease, Redox Signaling and Cell Regeneration, Division of Cardiology, University of Utah School of Medicine, Salt Lake City, USA
| | | |
Collapse
|
56
|
Heat shock-induced SRSF10 dephosphorylation displays thermotolerance mediated by Hsp27. Mol Cell Biol 2010; 31:458-65. [PMID: 21135127 DOI: 10.1128/mcb.01123-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene regulation in response to environmental stress is critical for the survival of all organisms. From Saccharomyces cerevisiae to humans, it has been observed that splicing of mRNA precursors is repressed upon heat shock. However, a mild heat pretreatment often prevents splicing inhibition in response to a subsequent and more severe heat shock, a phenomenon called splicing thermotolerance. We have shown previously that the splicing regulator SRSF10 (formerly SRp38) is specifically dephosphorylated by the phosphatase PP1 in response to heat shock and that dephosphorylated SRSF10 is responsible for splicing repression caused by heat shock. Here we report that a mild heat shock protects SRSF10 from dephosphorylation during a second and more severe heat shock. Furthermore, this "thermotolerance" of SRSF10 phosphorylation, like that of splicing, requires de novo protein synthesis, specifically the synthesis of heat shock proteins. Indeed, overexpression of one of these proteins, Hsp27, inhibits SRSF10 dephosphorylation in response to heat shock and does so by interaction with SRSF10. Our data thus provide evidence that splicing thermotolerance is acquired through maintenance of SRSF10 phosphorylation and that this is mediated at least in part by Hsp27.
Collapse
|
57
|
Genetic association study identifies HSPB7 as a risk gene for idiopathic dilated cardiomyopathy. PLoS Genet 2010; 6:e1001167. [PMID: 20975947 PMCID: PMC2958814 DOI: 10.1371/journal.pgen.1001167] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 09/18/2010] [Indexed: 11/19/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP) were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39%) and idiopathic DCM (p = 1.06 × 10⁻⁶, OR = 0.67 [95% CI 0.57-0.79] for the minor allele T). Three more SNPs showed p < 2.21 × 10⁻⁵. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n =564, n = 981 controls, p = 2.07 × 10⁻³, OR = 0.79 [95% CI 0.67-0.92]), France 1 (n = 433 cases, n = 395 controls, p =3.73 × 10⁻³, OR = 0.74 [95% CI 0.60-0.91]), and France 2 (n = 249 cases, n = 380 controls, p = 2.26 × 10⁻⁴, OR = 0.63 [95% CI 0.50-0.81]). The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28 × 10⁻¹³, OR= 0.72 [95% CI 0.65-0.78]). None of the other three SNPs showed significant results in the replication stage.This finding of the HSPB7 gene from a genetic search for idiopathic DCM using a large SNP panel underscores the influence of common polymorphisms on DCM susceptibility.
Collapse
|
58
|
Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, Carra S, Sibon OC, Kampinga HH. HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 2010; 19:4677-93. [DOI: 10.1093/hmg/ddq398] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
59
|
Sun X, Fontaine JM, Hoppe AD, Carra S, DeGuzman C, Martin JL, Simon S, Vicart P, Welsh MJ, Landry J, Benndorf R. Abnormal interaction of motor neuropathy-associated mutant HspB8 (Hsp22) forms with the RNA helicase Ddx20 (gemin3). Cell Stress Chaperones 2010; 15:567-82. [PMID: 20157854 PMCID: PMC3006614 DOI: 10.1007/s12192-010-0169-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 01/16/2023] Open
Abstract
A number of missense mutations in the two related small heat shock proteins HspB8 (Hsp22) and HspB1 (Hsp27) have been associated with the inherited motor neuron diseases (MND) distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. HspB8 and HspB1 interact with each other, suggesting that these two etiologic factors may act through a common biochemical mechanism. However, their role in neuron biology and in MND is not understood. In a yeast two-hybrid screen, we identified the DEAD box protein Ddx20 (gemin3, DP103) as interacting partner of HspB8. Using co-immunoprecipitation, chemical cross-linking, and in vivo quantitative fluorescence resonance energy transfer, we confirmed this interaction. We also show that the two disease-associated mutant HspB8 forms have abnormally increased binding to Ddx20. Ddx20 itself binds to the survival-of-motor-neurons protein (SMN protein), and mutations in the SMN1 gene cause spinal muscular atrophy, another MND and one of the most prevalent genetic causes of infant mortality. Thus, these protein interaction data have linked the three etiologic factors HspB8, HspB1, and SMN protein, and mutations in any of their genes cause the various forms of MND. Ddx20 and SMN protein are involved in spliceosome assembly and pre-mRNA processing. RNase treatment affected the interaction of the mutant HspB8 with Ddx20 suggesting RNA involvement in this interaction and a potential role of HspB8 in ribonucleoprotein processing.
Collapse
Affiliation(s)
- Xiankui Sun
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Jean-Marc Fontaine
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Adam D. Hoppe
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Serena Carra
- Le Centre de recherche en cancérologie, l’Université Laval, L’Hôtel-Dieu de Québec, Laval, Québec Canada G1R 2J6
- Section for Radiation and Stress Cell Biology, Department of Cell Biology, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Cheryl DeGuzman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Jody L. Martin
- Department of Medicine, Cardiovascular Institute, Loyola University Medical Center, Maywood, IL 60153 USA
| | - Stephanie Simon
- Laboratory BFA, University Paris Diderot/CNRS, 75013 Paris, France
| | - Patrick Vicart
- Laboratory BFA, University Paris Diderot/CNRS, 75013 Paris, France
| | - Michael J. Welsh
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Jacques Landry
- Le Centre de recherche en cancérologie, l’Université Laval, L’Hôtel-Dieu de Québec, Laval, Québec Canada G1R 2J6
| | - Rainer Benndorf
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
- Department of Pediatrics, Ohio State University, Columbus, OH 43205 USA
- The Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Research Building II, Room WA2109, 700 Children’s Drive, Columbus, OH 43205 USA
| |
Collapse
|
60
|
Zijlstra MP, Rujano MA, Van Waarde MA, Vis E, Brunt ER, Kampinga HH. Levels of DNAJB family members (HSP40) correlate with disease onset in patients with spinocerebellar ataxia type 3. Eur J Neurosci 2010; 32:760-70. [DOI: 10.1111/j.1460-9568.2010.07352.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|