51
|
Moreau CJ, Audic G, Lemel L, García-Fernández MD, Nieścierowicz K. Interactions of cholesterol molecules with GPCRs in different states: A comparative analysis of GPCRs' structures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184100. [PMID: 36521554 DOI: 10.1016/j.bbamem.2022.184100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Affiliation(s)
| | - Guillaume Audic
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Laura Lemel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
52
|
Caimi G, Presti RL, Mancuso S, Siragusa S, Carlisi M. Erythrocyte deformability profile evaluated by laser diffractometry in patients with multiple myeloma: Re-examination of our cases. Microvasc Res 2023; 146:104473. [PMID: 36587651 DOI: 10.1016/j.mvr.2022.104473] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Multiple myeloma is a complex pathology which represents about 10 % of all hematological neoplasms. It can often present changes in the hemorheological profile and, in relation to this last topic, our aim is to evaluate the hemorheological profile in a group of multiple myeloma patients, with reference to erythrocyte deformability. METHODS We have examined the profile of the erythrocyte deformability in multiple myeloma enrolling 29 patients; this profile, expressed as elongation index at several shear stress, has been obtained using the diffractometric method. RESULTS By comparing normal controls and MM patients, a significant decrease in erythrocyte deformability, especially at low shear stresses, but we did not observe any significant differences about this profile subdividing the whole group of MM patients according to the degree of bone marrow plasma cell infiltration, to the red blood cell distribution width and to the serum values of LDH. CONCLUSIONS In this paper we have taken in consideration all the hypothesis for a possible explanation of the behaviour of this a reduced erythrocyte deformability in multiple myeloma. Erythrocyte deformability interferes with the physiological release of oxygen to tissues, with several clinical implications.
Collapse
Affiliation(s)
- Gregorio Caimi
- Department of Health Promotion and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy.
| | - Rosalia Lo Presti
- Department of Psychology, Educational Science and Human Movement, Università degli Studi di Palermo, Palermo, Italy
| | - Salvatrice Mancuso
- Department of Health Promotion and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Sergio Siragusa
- Department of Health Promotion and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| | - Melania Carlisi
- Department of Health Promotion and Child Care, Internal Medicine and Medical Specialties, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
53
|
Structural Basis of the Interaction of the G Proteins, Gαi 1, Gβ 1γ 2 and Gαi 1β 1γ 2, with Membrane Microdomains and Their Relationship to Cell Localization and Activity. Biomedicines 2023; 11:biomedicines11020557. [PMID: 36831093 PMCID: PMC9953545 DOI: 10.3390/biomedicines11020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
GPCRs receive signals from diverse messengers and activate G proteins that regulate downstream signaling effectors. Efficient signaling is achieved through the organization of these proteins in membranes. Thus, protein-lipid interactions play a critical role in bringing G proteins together in specific membrane microdomains with signaling partners. Significantly, the molecular basis underlying the membrane distribution of each G protein isoform, fundamental to fully understanding subsequent cell signaling, remains largely unclear. We used model membranes with lipid composition resembling different membrane microdomains, and monomeric, dimeric and trimeric Gi proteins with or without single and multiple mutations to investigate the structural bases of G protein-membrane interactions. We demonstrated that cationic amino acids in the N-terminal region of the Gαi1 and C-terminal region of the Gγ2 subunit, as well as their myristoyl, palmitoyl and geranylgeranyl moieties, define the differential G protein form interactions with membranes containing different lipid classes (PC, PS, PE, SM, Cho) and the various microdomains they may form (Lo, Ld, PC bilayer, charged, etc.). These new findings in part explain the molecular basis underlying amphitropic protein translocation to membranes and localization to different membrane microdomains and the role of these interactions in cell signal propagation, pathophysiology and therapies targeted to lipid membranes.
Collapse
|
54
|
Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184093. [PMID: 36423676 DOI: 10.1016/j.bbamem.2022.184093] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can "detect" raft domains associated with molecules of interest in the PM.
Collapse
|
55
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
56
|
Enkavi G, Li J, Martinez-Seara H. Editorial: Biomolecular function and activity modulated by membranes. Front Mol Biosci 2023; 10:1133034. [PMID: 36762211 PMCID: PMC9904769 DOI: 10.3389/fmolb.2023.1133034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Affiliation(s)
- Giray Enkavi
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Uusimaa, Finland,*Correspondence: Giray Enkavi,
| | - Jing Li
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, United States
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
57
|
Huang LJ, Chen RH. Lipid saturation induces degradation of squalene epoxidase for sterol homeostasis and cell survival. Life Sci Alliance 2022; 6:6/1/e202201612. [PMID: 36368908 PMCID: PMC9652772 DOI: 10.26508/lsa.202201612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
A fluid membrane containing a mix of unsaturated and saturated lipids is essential for life. However, it is unclear how lipid saturation might affect lipid homeostasis, membrane-associated proteins, and membrane organelles. Here, we generate temperature-sensitive mutants of the sole fatty acid desaturase gene OLE1 in the budding yeast Saccharomyces cerevisiae Using these mutants, we show that lipid saturation triggers the endoplasmic reticulum-associated degradation (ERAD) of squalene epoxidase Erg1, a rate-limiting enzyme in sterol biosynthesis, via the E3 ligase Doa10-Ubc7 complex. We identify the P469L mutation that abolishes the lipid saturation-induced ERAD of Erg1. Overexpressed WT or stable Erg1 mutants all mislocalize into foci in the ole1 mutant, whereas the stable Erg1 causes aberrant ER and severely compromises the growth of ole1, which are recapitulated by doa10 deletion. The toxicity of the stable Erg1 and doa10 deletion is due to the accumulation of lanosterol and misfolded proteins in ole1 Our study identifies Erg1 as a novel lipid saturation-regulated ERAD target, manifesting a close link between lipid homeostasis and proteostasis that maintains sterol homeostasis under the lipid saturation condition for cell survival.
Collapse
Affiliation(s)
| | - Rey-Huei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
58
|
Matys J, Turska-Szewczuk A, Gieroba B, Kurzylewska M, Pękala-Safińska A, Sroka-Bartnicka A. Evaluation of Proteomic and Lipidomic Changes in Aeromonas-Infected Trout Kidney Tissue with the Use of FT-IR Spectroscopy and MALDI Mass Spectrometry Imaging. Int J Mol Sci 2022; 23:ijms232012551. [PMID: 36293421 PMCID: PMC9604335 DOI: 10.3390/ijms232012551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aeromonas species are opportunistic bacteria causing a vast spectrum of human diseases, including skin and soft tissue infections, meningitis, endocarditis, peritonitis, gastroenteritis, and finally hemorrhagic septicemia. The aim of our research was to indicate the molecular alterations in proteins and lipids profiles resulting from Aeromonas sobria and A. salmonicida subsp. salmonicida infection in trout kidney tissue samples. We successfully applied FT-IR (Fourier transform infrared) spectroscopy and MALDI-MSI (matrix-assisted laser desorption/ionization mass spectrometry imaging) to monitor changes in the structure and compositions of lipids, secondary conformation of proteins, and provide useful information concerning disease progression. Our findings indicate that the following spectral bands’ absorbance ratios (spectral biomarkers) can be used to discriminate healthy tissue from pathologically altered tissue, for example, lipids (CH2/CH3), amide I/amide II, amide I/CH2 and amide I/CH3. Spectral data obtained from 10 single measurements of each specimen indicate numerous abnormalities concerning proteins, lipids, and phospholipids induced by Aeromonas infection, suggesting significant disruption of the cell membranes. Moreover, the increase in the content of lysolipids such as lysophosphosphatidylcholine was observed. The results of this study suggest the application of both methods MALDI-MSI and FT-IR as accurate methods for profiling biomolecules and identifying biochemical changes in kidney tissue during the progression of Aeromonas infection.
Collapse
Affiliation(s)
- Joanna Matys
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (J.M.); (A.S.-B.)
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Barbara Gieroba
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Anna Sroka-Bartnicka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (J.M.); (A.S.-B.)
| |
Collapse
|
59
|
Casanellas I, Samitier J, Lagunas A. Recent advances in engineering nanotopographic substrates for cell studies. Front Bioeng Biotechnol 2022; 10:1002967. [PMID: 36147534 PMCID: PMC9486185 DOI: 10.3389/fbioe.2022.1002967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cells sense their environment through the cell membrane receptors. Interaction with extracellular ligands induces receptor clustering at the nanoscale, assembly of the signaling complexes in the cytosol and activation of downstream signaling pathways, regulating cell response. Nanoclusters of receptors can be further organized hierarchically in the cell membrane at the meso- and micro-levels to exert different biological functions. To study and guide cell response, cell culture substrates have been engineered with features that can interact with the cells at different scales, eliciting controlled cell responses. In particular, nanoscale features of 1–100 nm in size allow direct interaction between the material and single cell receptors and their nanoclusters. Since the first “contact guidance” experiments on parallel microstructures, many other studies followed with increasing feature resolution and biological complexity. Here we present an overview of the advances in the field summarizing the biological scenario, substrate fabrication techniques and applications, highlighting the most recent developments.
Collapse
Affiliation(s)
- Ignasi Casanellas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona (UB), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona (UB), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Anna Lagunas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
- *Correspondence: Anna Lagunas,
| |
Collapse
|
60
|
Structural Entities Associated with Different Lipid Phases of Plant Thylakoid Membranes—Selective Susceptibilities to Different Lipases and Proteases. Cells 2022; 11:cells11172681. [PMID: 36078087 PMCID: PMC9454902 DOI: 10.3390/cells11172681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
It is well established that plant thylakoid membranes (TMs), in addition to a bilayer, contain two isotropic lipid phases and an inverted hexagonal (HII) phase. To elucidate the origin of non-bilayer lipid phases, we recorded the 31P-NMR spectra of isolated spinach plastoglobuli and TMs and tested their susceptibilities to lipases and proteases; the structural and functional characteristics of TMs were monitored using biophysical techniques and CN-PAGE. Phospholipase-A1 gradually destroyed all 31P-NMR-detectable lipid phases of isolated TMs, but the weak signal of isolated plastoglobuli was not affected. Parallel with the destabilization of their lamellar phase, TMs lost their impermeability; other effects, mainly on Photosystem-II, lagged behind the destruction of the original phases. Wheat-germ lipase selectively eliminated the isotropic phases but exerted little or no effect on the structural and functional parameters of TMs—indicating that the isotropic phases are located outside the protein-rich regions and might be involved in membrane fusion. Trypsin and Proteinase K selectively suppressed the HII phase—suggesting that a large fraction of TM lipids encapsulate stroma-side proteins or polypeptides. We conclude that—in line with the Dynamic Exchange Model—the non-bilayer lipid phases of TMs are found in subdomains separated from but interconnected with the bilayer accommodating the main components of the photosynthetic machinery.
Collapse
|
61
|
Zhu S, Liu Q, Xiang X, Cui K, Zhao F, Mai K, Ai Q. Docosahexaenoic Acid Ameliorates the Toll-Like Receptor 22-Triggered Inflammation in Fish by Disrupting Lipid Raft Formation. J Nutr 2022; 152:1991-2002. [PMID: 35679100 DOI: 10.1093/jn/nxac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although dietary DHA alleviates Toll-like receptor (TLR)-associated chronic inflammation in fish, the underlying mechanism is not well understood. OBJECTIVES This study aimed to explore the role of Tlr22 in the innate immunity of large yellow croaker and investigate the anti-inflammatory effects of DHA on Tlr22-triggered inflammation. METHODS Head kidney-derived macrophages of croaker and HEK293T cells were or were not pretreated with 100 μM DHA for 10 h prior to polyinosinic-polycytidylic acid (poly I:C) stimulation. We executed qRT-PCR, immunoblotting, and lipidomic analysis to examine the impact of DHA on Tlr22-triggered inflammation and membrane lipid composition. In vivo, croakers (12.03 ± 0.05 g) were fed diets containing 0.2% [control (Ctrl)], 0.8%, and 1.6% DHA for 8 wk before injection with poly I:C. Inflammatory genes expression and rafts-related lipids and protein expression were measured in the head kidney. Data were analyzed by ANOVA or Student t test. RESULTS The activation of Tlr22 by poly I:C induced inflammation, and DHA diminished Tlr22-targeted inflammatory gene expression by 56-73% (P ≤ 0.05). DHA reduced membrane sphingomyelin (SM) and SFA-containing phosphatidylcholine (SFA-PC) contents, as well as lipid raft marker caveolin 1 amounts. Furthermore, lipid raft disruption suppressed Tlr22-induced Nf-κb and interferon h activation and p65 nuclear translocation. In vivo, expression of Tlr22 target inflammatory genes was 32-64% lower in the 1.6% DHA group than in the Ctrl group upon poly I:C injection (P ≤ 0.05). Also, the 1.6% DHA group showed a reduction in membrane SM and SFA-PC contents, accompanied by a decrease in caveolin 1 amounts, compared with the Ctrl group. CONCLUSIONS The activation of Tlr22 signaling depends on lipid rafts, and DHA ameliorates the Tlr22-triggered inflammation in both head kidney and head kidney-derived macrophages of croaker partially by altering membrane SMs and SFA-PCs that are required for lipid raft organization.
Collapse
Affiliation(s)
- Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China.,Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, Shandong, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
62
|
Disalvo EA, Rosa AS, Cejas JP, Frias MDLA. Water as a Link between Membrane and Colloidal Theories for Cells. Molecules 2022; 27:4994. [PMID: 35956945 PMCID: PMC9370763 DOI: 10.3390/molecules27154994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
This review is an attempt to incorporate water as a structural and thermodynamic component of biomembranes. With this purpose, the consideration of the membrane interphase as a bidimensional hydrated polar head group solution, coupled to the hydrocarbon region allows for the reconciliation of two theories on cells in dispute today: one considering the membrane as an essential part in terms of compartmentalization, and another in which lipid membranes are not necessary and cells can be treated as a colloidal system. The criterium followed is to describe the membrane state as an open, non-autonomous and responsive system using the approach of Thermodynamic of Irreversible Processes. The concept of an open/non-autonomous membrane system allows for the visualization of the interrelationship between metabolic events and membrane polymorphic changes. Therefore, the Association Induction Hypothesis (AIH) and lipid properties interplay should consider hydration in terms of free energy modulated by water activity and surface (lateral) pressure. Water in restricted regions at the lipid interphase has thermodynamic properties that explain the role of H-bonding networks in the propagation of events between membrane and cytoplasm that appears to be relevant in the context of crowded systems.
Collapse
Affiliation(s)
- E. Anibal Disalvo
- Applied Biophysics and Food Research Center (Centro de Investigaciones en Biofisica Aplicada y Alimentos, CIBAAL, Laboratory of Biointerphases and Biomimetic Systems, National University of Santiago del Estero and CONICET), RN 9-Km 1125, Santiago del Estero 4206, Argentina
| | | | | | | |
Collapse
|
63
|
Sarkar P, Chattopadhyay A. Statin-induced Increase in Actin Polymerization Modulates GPCR Dynamics and Compartmentalization. Biophys J 2022:S0006-3495(22)00708-1. [DOI: 10.1016/j.bpj.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/16/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
|
64
|
Thermodynamics and In-Plane Viscoelasticity of Anionic Phospholipid Membranes Modulated by an Ionic Liquid. Pharm Res 2022; 39:2447-2458. [PMID: 35902532 DOI: 10.1007/s11095-022-03348-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
This article presents the effects of an imidazolium-based ionic liquid (IL) on the thermodynamics and in-plane viscoelastic properties of model membranes of anionic phospholipids. The negative Zeta potential of multilamellar vesicles of 14 carbon lipid 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) is observed to reduce due to the presence of few mole % of an IL 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The effect was found to be stronger on enhancing the chain length of the lipid. The surface pressure-area isotherms of lipid monolayer formed at air-water interface are modified by the IL reducing the effective area per molecule. Further, the equilibrium elasticity of the film is altered depending upon the thermodynamic phase of the lipids. While the presence of the IL in the DMPG lipid makes it ordered in the gel phase by reducing the entropy, the effect is opposite in the fluid phase. The in-plane viscoelastic parameters of the lipid film is quantified by dilation rheology using the oscillatory barriers of a Langmuir trough. Even though the low chain lipid DMPG does not show any effect of IL on its storage and loss moduli, the longer chain lipids exhibit a prominent effect in the liquid extended (LE) phase. Further, the dynamic response of the lipid film is found to be distinctly different in the liquid condensed (LC) phase from that of the LE phase.
Collapse
|
65
|
Fifty Years of the Fluid–Mosaic Model of Biomembrane Structure and Organization and Its Importance in Biomedicine with Particular Emphasis on Membrane Lipid Replacement. Biomedicines 2022; 10:biomedicines10071711. [PMID: 35885016 PMCID: PMC9313417 DOI: 10.3390/biomedicines10071711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/29/2022] Open
Abstract
The Fluid–Mosaic Model has been the accepted general or basic model for biomembrane structure and organization for the last 50 years. In order to establish a basic model for biomembranes, some general principles had to be established, such as thermodynamic assumptions, various molecular interactions, component dynamics, macromolecular organization and other features. Previous researchers placed most membrane proteins on the exterior and interior surfaces of lipid bilayers to form trimolecular structures or as lipoprotein units arranged as modular sheets. Such membrane models were structurally and thermodynamically unsound and did not allow independent lipid and protein lateral movements. The Fluid–Mosaic Membrane Model was the only model that accounted for these and other characteristics, such as membrane asymmetry, variable lateral movements of membrane components, cis- and transmembrane linkages and dynamic associations of membrane components into multimolecular complexes. The original version of the Fluid–Mosaic Membrane Model was never proposed as the ultimate molecular description of all biomembranes, but it did provide a basic framework for nanometer-scale biomembrane organization and dynamics. Because this model was based on available 1960s-era data, it could not explain all of the properties of various biomembranes discovered in subsequent years. However, the fundamental organizational and dynamic aspects of this model remain relevant to this day. After the first generation of this model was published, additional data on various structures associated with membranes were included, resulting in the addition of membrane-associated cytoskeletal, extracellular matrix and other structures, specialized lipid–lipid and lipid–protein domains, and other configurations that can affect membrane dynamics. The presence of such specialized membrane domains has significantly reduced the extent of the fluid lipid membrane matrix as first proposed, and biomembranes are now considered to be less fluid and more mosaic with some fluid areas, rather than a fluid matrix with predominantly mobile components. However, the fluid–lipid matrix regions remain very important in biomembranes, especially those involved in the binding and release of membrane lipid vesicles and the uptake of various nutrients. Membrane phospholipids can associate spontaneously to form lipid structures and vesicles that can fuse with various cellular membranes to transport lipids and other nutrients into cells and organelles and expel damaged lipids and toxic hydrophobic molecules from cells and tissues. This process and the clinical use of membrane phospholipid supplements has important implications for chronic illnesses and the support of healthy mitochondria, plasma membranes and other cellular membrane structures.
Collapse
|
66
|
Zeltser G, Sukhanov IM, Nevorotin AJ. MMM - The molecular model of memory. J Theor Biol 2022; 549:111219. [PMID: 35810778 DOI: 10.1016/j.jtbi.2022.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022]
Abstract
Identifying mechanisms underlying neurons ability to process information including acquisition, storage, and retrieval plays an important role in the understanding of the different types of memory, pathogenesis of many neurological diseases affecting memory and therapeutic target discovery. However, the traditional understanding of the mechanisms of memory associated with the electrical signals having a unique combination of frequency and amplitude does not answer the question how the memories can survive for life-long periods of time, while exposed to synaptic noise. Recent evidence suggests that, apart from neuronal circuits, a diversity of the molecular memory (MM) carriers, are essential for memory performance. The molecular model of memory (MMM) is proposed, according to which each item of incoming information (the elementary memory item - eMI) is encoded by both circuitries, with the unique for a given MI electrical parameters, and also the MM carriers, unique by its molecular composition. While operating as the carriers of incoming information, the MMs, are functioning within the neuron plasma membrane. Inactive (latent) initially, during acquisition each of the eMIs is activated to become a virtual copy of some real fact or events bygone. This activation is accompanied by the considerable remodeling of the MM molecule associated with the resonance effect.
Collapse
Affiliation(s)
| | - Ilya M Sukhanov
- Lab. Behavioral Pharmacology, Dept. Psychopharmacology, Valdman Institute of Pharmacology, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| | - Alexey J Nevorotin
- Laboratory of Electron Microscopy, I.P. Pavlov Medical University, Leo Tolstoi Street 6/8, St. Petersburg 197022, The Russian Federation
| |
Collapse
|
67
|
Effects of Cholesterol on Lipid Vesicle Fusion Mediated by Infectious Salmon Anaemia Virus Fusion Peptides. Colloids Surf B Biointerfaces 2022; 217:112684. [DOI: 10.1016/j.colsurfb.2022.112684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
|
68
|
Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field. Cells 2022; 11:cells11111838. [PMID: 35681533 PMCID: PMC9180583 DOI: 10.3390/cells11111838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
The role of Heat Shock Proteins (HSPs) is a “double-edged sword” with regards to tumors. The location and interactions of HSPs determine their pro- or antitumor activity. The present review includes an overview of the relevant functions of HSPs, which could improve their antitumor activity. Promoting the antitumor processes could assist in the local and systemic management of cancer. We explore the possibility of achieving this by manipulating the electromagnetic interactions within the tumor microenvironment. An appropriate electric field may select and affect the cancer cells using the electric heterogeneity of the tumor tissue. This review describes the method proposed to effect such changes: amplitude-modulated radiofrequency (amRF) applied with a 13.56 MHz carrier frequency. We summarize the preclinical investigations of the amRF on the HSPs in malignant cells. The preclinical studies show the promotion of the expression of HSP70 on the plasma membrane, participating in the immunogenic cell death (ICD) pathway. The sequence of guided molecular changes triggers innate and adaptive immune reactions. The amRF promotes the secretion of HSP70 also in the extracellular matrix. The extracellular HSP70 accompanied by free HMGB1 and membrane-expressed calreticulin (CRT) form damage-associated molecular patterns encouraging the dendritic cells’ maturing for antigen presentation. The process promotes killer T-cells. Clinical results demonstrate the potential of this immune process to trigger a systemic effect. We conclude that the properly applied amRF promotes antitumor HSP activity, and in situ, it could support the tumor-specific immune effects produced locally but acting systemically for disseminated cells and metastatic lesions.
Collapse
|
69
|
Rani S, Kumar P, Dahiya P, Maheshwari R, Dang AS, Suneja P. Endophytism: A Multidimensional Approach to Plant-Prokaryotic Microbe Interaction. Front Microbiol 2022; 13:861235. [PMID: 35633681 PMCID: PMC9135327 DOI: 10.3389/fmicb.2022.861235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Plant growth and development are positively regulated by the endophytic microbiome via both direct and indirect perspectives. Endophytes use phytohormone production to promote plant health along with other added benefits such as nutrient acquisition, nitrogen fixation, and survival under abiotic and biotic stress conditions. The ability of endophytes to penetrate the plant tissues, reside and interact with the host in multiple ways makes them unique. The common assumption that these endophytes interact with plants in a similar manner as the rhizospheric bacteria is a deterring factor to go deeper into their study, and more focus was on symbiotic associations and plant–pathogen reactions. The current focus has shifted on the complexity of relationships between host plants and their endophytic counterparts. It would be gripping to inspect how endophytes influence host gene expression and can be utilized to climb the ladder of “Sustainable agriculture.” Advancements in various molecular techniques have provided an impetus to elucidate the complexity of endophytic microbiome. The present review is focused on canvassing different aspects concerned with the multidimensional interaction of endophytes with plants along with their application.
Collapse
Affiliation(s)
- Simran Rani
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajat Maheshwari
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
70
|
Lakey JH, Paracini N, Clifton LA. Exploiting neutron scattering contrast variation in biological membrane studies. BIOPHYSICS REVIEWS 2022; 3:021307. [PMID: 38505417 PMCID: PMC10903484 DOI: 10.1063/5.0091372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 03/21/2024]
Abstract
Biological membranes composed of lipids and proteins are central for the function of all cells and individual components, such as proteins, that are readily studied by a range of structural approaches, including x-ray crystallography and cryo-electron microscopy. However, the study of complex molecular mixtures within the biological membrane structure and dynamics requires techniques that can study nanometer thick molecular bilayers in an aqueous environment at ambient temperature and pressure. Neutron methods, including scattering and spectroscopic approaches, are useful since they can measure structure and dynamics while also being able to penetrate sample holders and cuvettes. The structural approaches, such as small angle neutron scattering and neutron reflectometry, detect scattering caused by the difference in neutron contrast (scattering length) between different molecular components such as lipids or proteins. Usually, the bigger the contrast, the clearer the structural data, and this review uses examples from our research to illustrate how contrast can be increased to allow the structures of individual membrane components to be resolved. Most often this relies upon the use of deuterium in place of hydrogen, but we also discuss the use of magnetic contrast and other elements with useful scattering length values.
Collapse
Affiliation(s)
- Jeremy H. Lakey
- Institute for Cell and Molecular Bioscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicolò Paracini
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons väg 35, 21432 Malmö, Sweden
| | - Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
71
|
Klaiss-Luna MC, Manrique-Moreno M. Infrared Spectroscopic Study of Multi-Component Lipid Systems: A Closer Approximation to Biological Membrane Fluidity. MEMBRANES 2022; 12:534. [PMID: 35629860 PMCID: PMC9147058 DOI: 10.3390/membranes12050534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
Abstract
Membranes are essential to cellular organisms, and play several roles in cellular protection as well as in the control and transport of nutrients. One of the most critical membrane properties is fluidity, which has been extensively studied, using mainly single component systems. In this study, we used Fourier transform infrared spectroscopy to evaluate the thermal behavior of multi-component supported lipid bilayers that mimic the membrane composition of tumoral and non-tumoral cell membranes, as well as microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. The results showed that, for tumoral and non-tumoral membrane models, the presence of cholesterol induced a loss of cooperativity of the transition. However, in the absence of cholesterol, the transitions of the multi-component lipid systems had sigmoidal curves where the gel and fluid phases are evident and where main transition temperatures were possible to determine. Additionally, the possibility of designing multi-component lipid systems showed the potential to obtain several microorganism models, including changes in the cardiolipin content associated with the resistance mechanism in Staphylococcus aureus. Finally, the potential use of multi-component lipid systems in the determination of the conformational change of the antimicrobial peptide LL-37 was studied. The results showed that LL-37 underwent a conformational change when interacting with Staphylococcus aureus models, instead of with the erythrocyte membrane model. The results showed the versatile applications of multi-component lipid systems studied by Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
72
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
73
|
Cellular sentience as the primary source of biological order and evolution. Biosystems 2022; 218:104694. [PMID: 35595194 DOI: 10.1016/j.biosystems.2022.104694] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022]
Abstract
All life is cellular, starting some 4 billion years ago with the emergence of the first cells. In order to survive their early evolution in the face of an extremely challenging environment, the very first cells invented cellular sentience and cognition, allowing them to make relevant decisions to survive through creative adaptations in a continuously running evolutionary narrative. We propose that the success of cellular life has crucially depended on a biological version of Maxwell's demons which permits the extraction of relevant sensory information and energy from the cellular environment, allowing cells to sustain anti-entropic actions. These sensor-effector actions allowed for the creative construction of biological order in the form of diverse organic macromolecules, including crucial polymers such as DNA, RNA, and cytoskeleton. Ordered biopolymers store analogue (structures as templates) and digital (nucleotide sequences of DNA and RNA) information that functioned as a form memory to support the development of organisms and their evolution. Crucially, all cells are formed by the division of previous cells, and their plasma membranes are physically and informationally continuous across evolution since the beginning of cellular life. It is argued that life is supported through life-specific principles which support cellular sentience, distinguishing life from non-life. Biological order, together with cellular cognition and sentience, allow the creative evolution of all living organisms as the authentic authors of evolutionary novelty.
Collapse
|
74
|
Schoenmakers SMC, Spiering AJH, Herziger S, Böttcher C, Haag R, Palmans ARA, Meijer EW. Structure and Dynamics of Supramolecular Polymers: Wait and See. ACS Macro Lett 2022; 11:711-715. [PMID: 35570802 PMCID: PMC9118549 DOI: 10.1021/acsmacrolett.2c00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The introduction of stereogenic centers in supramolecular building blocks is used to unveil subtle changes in supramolecular structure and dynamics over time. Three stereogenic centers based on deuterium atoms were introduced in the side chains of a benzene-1,3,5-tricarboxamide (BTA) resulting in a supramolecular polymer in water that at first glance has a structure and dynamics identical to its achiral counterpart. Using three different techniques, the properties of the double helical polymers are compared after 1 day and 4 weeks. An increase in helical preference is observed over time as well as a decrease in the helical pitch and monomer exchange dynamics. It is proposed that the polymer of the chiral monomer needs time to arrive at its maximal preference in helical bias. These results indicate that the order and tight packing increase over time, while the dynamics of this supramolecular polymer decrease over time, an effect that is typically overlooked but unveiled by the isotopic chirality.
Collapse
Affiliation(s)
- Sandra M. C. Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - A. J. H. Spiering
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Svenja Herziger
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christoph Böttcher
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
75
|
An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development. MEMBRANES 2022; 12:membranes12050522. [PMID: 35629848 PMCID: PMC9146655 DOI: 10.3390/membranes12050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
The lens of the eye loses elasticity with age, while α-crystallin association with the lens membrane increases with age. It is unclear whether there is any correlation between α-crystallin association with the lens membrane and loss in lens elasticity. This research investigated α-crystallin membrane association using atomic force microscopy (AFM) for the first time to study topographical images and mechanical properties (breakthrough force and membrane area compressibility modulus (KA), as measures of elasticity) of the membrane. α-Crystallin extracted from the bovine lens cortex was incubated with a supported lipid membrane (SLM) prepared on a flat mica surface. The AFM images showed the time-dependent interaction of α-crystallin with the SLM. Force spectroscopy revealed the presence of breakthrough events in the force curves obtained in the membrane regions where no α-crystallin was associated, which suggests that the membrane’s elasticity was maintained. The force curves in the α-crystallin submerged region and the close vicinity of the α-crystallin associated region in the membrane showed no breakthrough event within the defined peak force threshold, indicating loss of membrane elasticity. Our results showed that the association of α-crystallin with the membrane deteriorates membrane elasticity, providing new insights into understanding the molecular basis of lens hardening and presbyopia.
Collapse
|
76
|
Chiou PC, Hsu WW, Chang Y, Chen YF. Molecular packing of lipid membranes and action mechanisms of membrane-active peptides. Colloids Surf B Biointerfaces 2022; 213:112384. [PMID: 35151994 DOI: 10.1016/j.colsurfb.2022.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
Biomembranes are involved in diverse cellular activities. How membranes and proteins interact in the activities might hinge on the former's physical characteristics, which in turn are influenced by packing of lipid molecules. Yet, the validity of this understanding and its mechanism are unclear. By varying chain saturation of membranes, we explored correlations between lipid packing and peptide-mediated membrane disruption for the antimicrobial peptide, melittin, and amyloidogenic peptide, β-amyloid (1-42). Remarkably, reducing molecular packing flexibility enhanced the membrane disruption, possibly due to a shift from membrane perforation to micellization. A theoretical analysis suggested the energetic basis of this shift. This mechanistically shows that a peptide's mechanism might be dictated not only by its intrinsic properties but also by physical characteristics of membranes.
Collapse
Affiliation(s)
- Pin-Chiuan Chiou
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Wen-Wei Hsu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan
| | - Yi-Fan Chen
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
77
|
Ranjit DK, Moye ZD, Rocha FG, Ottenberg G, Nichols FC, Kim HM, Walker AR, Gibson FC, Davey ME. Characterization of a Bacterial Kinase That Phosphorylates Dihydrosphingosine to Form dhS1P. Microbiol Spectr 2022; 10:e0000222. [PMID: 35286133 PMCID: PMC9045371 DOI: 10.1128/spectrum.00002-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Like other members of the phylum Bacteroidetes, the oral anaerobe Porphyromonas gingivalis synthesizes a variety of sphingolipids, similar to its human host. Studies have shown that synthesis of these lipids (dihydroceramides [DHCs]) is involved in oxidative stress resistance, the survival of P. gingivalis during stationary phase, and immune modulation. Here, we constructed a deletion mutant of P. gingivalis strain W83 with a deletion of the gene encoding DhSphK1, a protein that shows high similarity to a eukaryotic sphingosine kinase, an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate. Our data show that deletion of the dhSphK1 gene results in a shift in the sphingolipid composition of P. gingivalis cells; specifically, the mutant synthesizes higher levels of phosphoglycerol DHCs (PG-DHCs) than the parent strain W83. Although PG1348 shows high similarity to the eukaryotic sphingosine kinase, we discovered that the PG1348 enzyme is unique, since it preferentially phosphorylates dihydrosphingosine, not sphingosine. Besides changes in lipid composition, the W83 ΔPG1348 mutant displayed a defect in cell division, the biogenesis of outer membrane vesicles (OMVs), and the amount of K antigen capsule. Taken together, we have identified the first bacterial dihydrosphingosine kinase whose activity regulates the lipid profile of P. gingivalis and underlies a regulatory mechanism of immune modulation. IMPORTANCE Sphingoid base phosphates, such as sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), act as ligands for S1P receptors, and this interaction is known to play a central role in mediating angiogenesis, vascular stability and permeability, and immune cell migration to sites of inflammation. Studies suggest that a shift in ratio to higher levels of dhS1P in relation to S1P alters downstream signaling cascades due to differential binding and activation of the various S1P receptor isoforms. Specifically, higher levels of dhS1P are thought to be anti-inflammatory. Here, we report on the characterization of a novel kinase in Porphyromonas gingivalis that phosphorylates dihydrosphingosine to form dhS1P.
Collapse
Affiliation(s)
- Dev K. Ranjit
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Zachary D. Moye
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Fernanda G. Rocha
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Gregory Ottenberg
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Frank C. Nichols
- Division of Periodontology, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Hey-Min Kim
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Frank C. Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Mary E. Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
78
|
Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Prog Lipid Res 2022; 86:101163. [DOI: 10.1016/j.plipres.2022.101163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
|
79
|
Lata K, Singh M, Chatterjee S, Chattopadhyay K. Membrane Dynamics and Remodelling in Response to the Action of the Membrane-Damaging Pore-Forming Toxins. J Membr Biol 2022; 255:161-173. [PMID: 35305136 DOI: 10.1007/s00232-022-00227-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming protein toxins (PFTs) represent a diverse class of membrane-damaging proteins that are produced by a wide variety of organisms. PFT-mediated membrane perforation is largely governed by the chemical composition and the physical properties of the plasma membranes. The interaction between the PFTs with the target membranes is critical for the initiation of the pore-formation process, and can lead to discrete membrane reorganization events that further aids in the process of pore-formation. Punching holes on the plasma membranes by the PFTs interferes with the cellular homeostasis by disrupting the ion-balance inside the cells that in turn can turn on multiple signalling cascades required to restore membrane integrity and cellular homeostasis. In this review, we discuss the physicochemical attributes of the plasma membranes associated with the pore-formation processes by the PFTs, and the subsequent membrane remodelling events that may start off the membrane-repair mechanisms.
Collapse
Affiliation(s)
- Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab, 140306, India.
| |
Collapse
|
80
|
Jakop U, Müller K, Müller P, Neuhauser S, Callealta Rodríguez I, Grunewald S, Schiller J, Engel KM. Seminal lipid profiling and antioxidant capacity: A species comparison. PLoS One 2022; 17:e0264675. [PMID: 35259184 PMCID: PMC8903242 DOI: 10.1371/journal.pone.0264675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
On their way to the oocyte, sperm cells are subjected to oxidative stress, which may trigger the oxidation of phospholipids (PL). Applying MALDI-TOF MS, HPTLC and ESI-IT MS, we comparatively analyzed the PL compositions of semen and blood of species differing in their reproductive systems and types of nutrition (bull, boar, stallion, lion and man) with regard to the sensitivity to oxidation as well as the accumulation of harmful lyso-PL (LPL), transient products of lipid oxidation. In addition, the protective capacity of seminal fluid (SF) was also examined. The PL composition of erythrocytes and blood plasma is similar across the species, while pronounced differences exist for sperm and SF. Since the blood function is largely conserved across mammalian species, but the reproductive systems may vary in many aspects, the obtained results suggest that the PL composition is not determined by the type of nutrition, but by the relatedness of species and by functional requirements of cell membranes such as fluidity. Sperm motion and fertilization of oocytes require a rather flexible membrane, which is accomplished by significant moieties of unsaturated fatty acyl residues in sperm lipids of most species, but implies a higher risk of oxidation. Due to a high content of plasmalogens (alkenyl ether lipids), bull sperm are most susceptible to oxidation. Our data indicate that bull sperm possess the most effective protective power in SF. Obviously, a co-evolution of PL composition and protective mechanisms has occurred in semen and is related to the reproductive characteristics. Although the protective capacity in human SF seems well developed, we recorded the most pronounced individual contaminations with LPL in human semen. Probably, massive oxidative challenges related to lifestyle factors interfere with natural conditions.
Collapse
Affiliation(s)
- Ulrike Jakop
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Institute for Reproduction of Farm Animals Schönow e. V., Bernau, Germany
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Peter Müller
- Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | - Sonja Grunewald
- Department of Dermatology, Training Center of the European Academy of Andrology, University of Leipzig, Leipzig, Germany
| | - Jurgen Schiller
- Department of Dermatology, Training Center of the European Academy of Andrology, University of Leipzig, Leipzig, Germany
| | - Kathrin M. Engel
- Department of Dermatology, Training Center of the European Academy of Andrology, University of Leipzig, Leipzig, Germany
- Faculty of Medicine, Institute for Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
81
|
Gohrbandt M, Lipski A, Grimshaw JW, Buttress JA, Baig Z, Herkenhoff B, Walter S, Kurre R, Deckers‐Hebestreit G, Strahl H. Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria. EMBO J 2022; 41:e109800. [PMID: 35037270 PMCID: PMC8886542 DOI: 10.15252/embj.2021109800] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022] Open
Abstract
All living organisms adapt their membrane lipid composition in response to changes in their environment or diet. These conserved membrane-adaptive processes have been studied extensively. However, key concepts of membrane biology linked to regulation of lipid composition including homeoviscous adaptation maintaining stable levels of membrane fluidity, and gel-fluid phase separation resulting in domain formation, heavily rely upon in vitro studies with model membranes or lipid extracts. Using the bacterial model organisms Escherichia coli and Bacillus subtilis, we now show that inadequate in vivo membrane fluidity interferes with essential complex cellular processes including cytokinesis, envelope expansion, chromosome replication/segregation and maintenance of membrane potential. Furthermore, we demonstrate that very low membrane fluidity is indeed capable of triggering large-scale lipid phase separation and protein segregation in intact, protein-crowded membranes of living cells; a process that coincides with the minimal level of fluidity capable of supporting growth. Importantly, the in vivo lipid phase separation is not associated with a breakdown of the membrane diffusion barrier function, thus explaining why the phase separation process induced by low fluidity is biologically reversible.
Collapse
Affiliation(s)
- Marvin Gohrbandt
- Mikrobiologie, Fachbereich Biologie/ChemieUniversität OsnabrückOsnabrückGermany
| | - André Lipski
- Lebensmittelmikrobiologie und ‐hygieneInstitut für Ernährungs‐ und LebensmittelwissenschaftenRheinische Friedrich‐Wilhelms‐Universität BonnBonnGermany
| | - James W Grimshaw
- Centre for Bacterial Cell BiologyBiosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Jessica A Buttress
- Centre for Bacterial Cell BiologyBiosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Zunera Baig
- Centre for Bacterial Cell BiologyBiosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Brigitte Herkenhoff
- Mikrobiologie, Fachbereich Biologie/ChemieUniversität OsnabrückOsnabrückGermany
| | - Stefan Walter
- Mikrobiologie, Fachbereich Biologie/ChemieUniversität OsnabrückOsnabrückGermany
| | - Rainer Kurre
- Center of Cellular NanoanalyticsIntegrated Bioimaging FacilityUniversität OsnabrückOsnabrückGermany
| | | | - Henrik Strahl
- Centre for Bacterial Cell BiologyBiosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
82
|
Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers (Basel) 2022; 14:cancers14040901. [PMID: 35205649 PMCID: PMC8870118 DOI: 10.3390/cancers14040901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This review shows the advantages of heterogeneous heating of selected malignant cells in harmonic synergy with radiotherapy. The main clinical achievement of this complementary therapy is its extreme safety and minimal adverse effects. Combining the two methods opens a bright perspective, transforming the local radiotherapy to the antitumoral impact on the whole body, destroying the distant metastases by “teaching” the immune system about the overall danger of malignancy. Abstract (1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue’s natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly “nonthermally” excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39–41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.
Collapse
|
83
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
84
|
Platelet Membrane: An Outstanding Factor in Cancer Metastasis. MEMBRANES 2022; 12:membranes12020182. [PMID: 35207103 PMCID: PMC8875259 DOI: 10.3390/membranes12020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022]
Abstract
In addition to being biological barriers where the internalization or release of biomolecules is decided, cell membranes are contact structures between the interior and exterior of the cell. Here, the processes of cell signaling mediated by receptors, ions, hormones, cytokines, enzymes, growth factors, extracellular matrix (ECM), and vesicles begin. They triggering several responses from the cell membrane that include rearranging its components according to the immediate needs of the cell, for example, in the membrane of platelets, the formation of filopodia and lamellipodia as a tissue repair response. In cancer, the cancer cells must adapt to the new tumor microenvironment (TME) and acquire capacities in the cell membrane to transform their shape, such as in the case of epithelial−mesenchymal transition (EMT) in the metastatic process. The cancer cells must also attract allies in this challenging process, such as platelets, fibroblasts associated with cancer (CAF), stromal cells, adipocytes, and the extracellular matrix itself, which limits tumor growth. The platelets are enucleated cells with fairly interesting growth factors, proangiogenic factors, cytokines, mRNA, and proteins, which support the development of a tumor microenvironment and support the metastatic process. This review will discuss the different actions that platelet membranes and cancer cell membranes carry out during their relationship in the tumor microenvironment and metastasis.
Collapse
|
85
|
Vanacker N, Blouin R, Ster C, Lacasse P. Effect of different fatty acids on the proliferation and cytokine production of dairy cow peripheral blood mononuclear cells. J Dairy Sci 2022; 105:3508-3517. [PMID: 35094866 DOI: 10.3168/jds.2021-21296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023]
Abstract
During the transition period, dairy cows often experience negative energy balance, which induces metabolic and immunological disturbances. Our previous work has shown a relationship between the inhibition of immune functions and increased blood nonesterified fatty acid (NEFA) levels. In this study, we evaluated the effect of 11 fatty acids (palmitoleic, myristic, palmitic, stearic, oleic, linoleic, docosahexaenoic, conjugated linoleic, lauric, eicosapentaenoic, and linolenic acids) as well as a mix that represented the NEFA profile observed during the transition period at different concentrations (0, 50, 100, and 250 µM) on proliferation and cytokines secretion of lymphocytes. To assess lymphoproliferation, peripheral blood mononuclear cell (PBMC) from 5 healthy cows (166-189 d in milk) were isolated, stimulated with the mitogenic lectin concanavalin A (ConA), incubated for 72 h with or without fatty acids, and subjected to flow cytometry analysis. Our results showed that all fatty acids, except lauric acid, significantly reduced proliferation of PBMC in a dose-dependent manner. The most detrimental effect was observed with conjugated linoleic and stearic acids, where proliferation of PBMC was already inhibited at the lowest dose (50 µM). For cytokine secretion, we found that levels of IL-4 in culture supernatant of ConA-stimulated PBMC were reduced after a 24-h exposure to the lowest dose (50 µM) of oleic and palmitoleic acids. A dose of 100 µM of eicosapentaenoic acid, NEFA mixture, and myristic acid was necessary to observe a reduction in IL-4 levels. The PBMC also showed a decrease in the secretion of IFN-γ in response to lauric, linolenic, palmitoleic, and stearic acids at 50 µM and myristic acid at 100 µM. Overall, polyunsaturated fatty acids were more potent inhibitors of cytokine secretions than saturated fatty acids. In addition, we detected an inverse relationship between the melting points of fatty acids and their ability to inhibit IL-4 and IFN-γ secretions, as evidenced by greater inhibition with low-melting point fatty acids. Overall, our study confirmed that NEFA have a negative effect on some lymphocyte functions, and that their inhibitory effect on cytokine secretions increases with the degree of unsaturation.
Collapse
Affiliation(s)
- Noémie Vanacker
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada J1M 0C8; Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Richard Blouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1
| | - Céline Ster
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada J1M 0C8
| | - Pierre Lacasse
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada J1M 0C8.
| |
Collapse
|
86
|
Nowak RB, Alimohamadi H, Pestonjamasp K, Rangamani P, Fowler VM. Nanoscale Dynamics of Actin Filaments in the Red Blood Cell Membrane Skeleton. Mol Biol Cell 2022; 33:ar28. [PMID: 35020457 PMCID: PMC9250383 DOI: 10.1091/mbc.e21-03-0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Red blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes (∼37 nm length, 15–18 subunits) interconnected by long spectrin strands at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modeling of forces controlling RBC shape, membrane curvature, and deformation, yet the nanoscale organization and dynamics of the F-actin nodes in situ are not well understood. We examined F-actin distribution and dynamics in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities. Total internal reflection fluorescence and Zeiss Airyscan confocal microscopy demonstrate that F-actin is concentrated in multiple brightly stained F-actin foci ∼200–300 nm apart interspersed with dimmer F-actin staining regions. Single molecule stochastic optical reconstruction microscopy imaging of Alexa 647-phalloidin-labeled F-actin and computational analysis also indicates an irregular, nonrandom distribution of F-actin nodes. Treatment of RBCs with latrunculin A and cytochalasin D indicates that F-actin foci distribution depends on actin polymerization, while live cell imaging reveals dynamic local motions of F-actin foci, with lateral movements, appearance and disappearance. Regulation of F-actin node distribution and dynamics via actin assembly/disassembly pathways and/or via local extension and retraction of spectrin strands may provide a new mechanism to control spectrin-F-actin network connectivity, RBC shape, and membrane deformability.
Collapse
Affiliation(s)
- Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Biological Sciences, University of Delaware, Newark, DE 19716
| |
Collapse
|
87
|
Regulation and functions of membrane lipids: Insights from Caenorhabditis elegans. BBA ADVANCES 2022; 2:100043. [PMID: 37082601 PMCID: PMC10074978 DOI: 10.1016/j.bbadva.2022.100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023] Open
Abstract
The Caenorhabditis elegans plasma membrane is composed of glycerophospholipids and sphingolipids with a small cholesterol. The C. elegans obtain the majority of the membrane lipids by modifying fatty acids present in the bacterial diet. The metabolic pathways of membrane lipid biosynthesis are well conserved across the animal kingdom. In C. elegans CDP-DAG and Kennedy pathway produce glycerophospholipids. Meanwhile, the sphingolipids are synthesized through a different pathway. They have evolved remarkably diverse mechanisms to maintain membrane lipid homeostasis. For instance, the lipid bilayer stress operates to accomplish homeostasis during any perturbance in the lipid composition. Meanwhile, the PAQR-2/IGLR-2 complex works with FLD-1 to balance unsaturated to saturated fatty acids to maintain membrane fluidity. The loss of membrane lipid homeostasis is observed in many human genetic and metabolic disorders. Since C. elegans conserved such genes and pathways, it can be used as a model organism.
Collapse
|
88
|
Wang L, Wang L, Wang X, Lu B, Zhang J. Preparation of blueberry anthocyanin liposomes and changes of vesicle properties, physicochemical properties, in vitro release, and antioxidant activity before and after chitosan modification. Food Sci Nutr 2022; 10:75-87. [PMID: 35035911 PMCID: PMC8751427 DOI: 10.1002/fsn3.2649] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
The preparation of blueberry anthocyanin liposomes (BAL) was optimized by response surface methodology. Then, chitosan was used to modify BAL and the environmental stability, in vitro release, and antioxidant activity studies of anthocyanin liposome (An-Lip), and chitosan-modified anthocyanin liposome (CS-An-Lip) was studied. The results showed that the particle size, zeta potential, and entrapment efficiency of BAL were 210.7 ± 1.8 nm, - 20.0 ± 1.0 mV, and 82.13%, respectively. After chitosan modification, the encapsulation efficiency and zeta potential of anthocyanin liposomes were improved. The results of environmental stability analysis showed that under certain conditions, the addition of chitosan could stabilize the color characteristics of anthocyanins and the loading amount of anthocyanins (LC%). In vitro release and simulated gastrointestinal digestion experiments showed that the addition of chitosan not only prolonged the sustained-release time of anthocyanins, but also prolonged the residence time of anthocyanins in vivo, giving full play to the drug effect. In addition, the antioxidant activity test results showed that CS-An-Lip increased the antioxidant activity of anthocyanins.
Collapse
Affiliation(s)
- Lei Wang
- College of Traditional Chinese MedicineJilin Agricultural UniversityChangchunChina
| | - Lulu Wang
- College of MedicalChangchun University of Science and TechnologyChangchunChina
| | - Xi Wang
- College of Traditional Chinese MedicineJilin Agricultural UniversityChangchunChina
| | - Baojun Lu
- Hangzhou Mushannong Industrial Investment Co., LtdHangzhouChina
| | - Jing Zhang
- College of Traditional Chinese MedicineJilin Agricultural UniversityChangchunChina
| |
Collapse
|
89
|
Banerjee S, Lyubchenko YL. Topographically smooth and stable supported lipid bilayer for high-resolution AFM studies. Methods 2022; 197:13-19. [PMID: 33609699 PMCID: PMC8371085 DOI: 10.1016/j.ymeth.2021.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/03/2023] Open
Abstract
The cellular membrane has been identified to play a critical role in various biological processes including the assembly of biological systems. Membranes are complex, primarily two-dimensional assemblies with varied lipid compositions depending on the particular region of the cell. Supported lipid bilayers are considered as appropriate models for physio-chemical studies of membranes including numerous single molecule techniques. Atomic force microscopy (AFM) as a topographic technique is a fully appropriate single molecule technique capable of direct observation of molecular processes on membranes. However, reliable experimental AFM studies require the preparation of the bilayer with a sub-nanometer smooth morphology, which remains stable over long-time observation. Here we present the methodology, which allows one to prepare a smooth, stable, structurally homogeneous lipid bilayer without the presence of any trapped vesicles. We described the application of such lipid bilayers to probe time-dependent early stages of aggregation of monomeric amyloid proteins. Importantly, the proposed methodology can be extended to bilayers with various compositions, by incorporating different lipids for on-membrane aggregation study including cholesterol. Furthermore, this methodology development allowed us to monitor the aggregation of amyloid protein at its physiologically relevant low protein concentration. The flexibility of altering the membrane composition allows to identify the specific role of a particular lipid towards the aggregation kinetics, revealing the plausible mechanism of disease development.
Collapse
|
90
|
Hall D, Foster AS. Practical considerations for feature assignment in high-speed AFM of live cell membranes. Biophys Physicobiol 2022; 19:1-21. [PMID: 35797405 PMCID: PMC9173863 DOI: 10.2142/biophysico.bppb-v19.0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University
| | | |
Collapse
|
91
|
Zaborowska M, Dziubak D, Fontaine P, Matyszewska D. Influence of lipophilicity of anthracyclines on the interactions with cholesterol in the model cell membranes - Langmuir monolayer and SEIRAS studies. Colloids Surf B Biointerfaces 2021; 211:112297. [PMID: 34953365 DOI: 10.1016/j.colsurfb.2021.112297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
The interactions of anthracyclines with biological membranes strongly depend on the drug lipophilicity, which might also determine the specific affinity to cholesterol molecules. Therefore, in this work we show the studies concerning the effect of two selected anthracyclines, daunorubicin (DNR) and idarubicin (IDA) on simple models of healthy (DMPC:Chol 7:3) and cancer cells membranes with increased level of cholesterol (DMPC:Chol 3:7) as well as pure cholesterol monolayers prepared at the air-water interface and supported on gold surface. It has been shown that more lipophilic IDA is able to penetrate cholesterol monolayers more effectively than DNR due to the formation of IDA-cholesterol arrangements at the interface, as proved by the thermodynamic analysis of compression-expansion cycles. The increased interactions of IDA were also confirmed by the time measurements of pre-compressed monolayers exposed to drug solutions as well as grazing incidence X-ray diffraction studies demonstrating differences in the 2D organization of cholesterol monolayers. Langmuir studies of mixed DMPC:Chol membranes revealed the reorganization of molecules in the cancer cell models at the air-water interface at higher surface pressures due to the removal of DNR, while increased affinity of IDA towards cholesterol allowed this drug to penetrate the layer more efficiently without its removal. The SEIRAS spectra obtained for supported DMPC:Chol bilayers proved that IDA locates both in the ester group and in the acyl chain region of the bilayer, while DNR does not penetrate the membranes as deeply as IDA. The increased penetration of the mixed phospholipid layers by idarubicin might be attributed to the higher lipophilicity caused by the lack of methoxy group and resulting in a specific affinity towards cholesterol.
Collapse
Affiliation(s)
| | - Damian Dziubak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| | - Philippe Fontaine
- Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| |
Collapse
|
92
|
Wu D, Saleem M, He T, He G. The Mechanism of Metal Homeostasis in Plants: A New View on the Synergistic Regulation Pathway of Membrane Proteins, Lipids and Metal Ions. MEMBRANES 2021; 11:membranes11120984. [PMID: 34940485 PMCID: PMC8706360 DOI: 10.3390/membranes11120984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022]
Abstract
Heavy metal stress (HMS) is one of the most destructive abiotic stresses which seriously affects the growth and development of plants. Recent studies have shown significant progress in understanding the molecular mechanisms underlying plant tolerance to HMS. In general, three core signals are involved in plants' responses to HMS; these are mitogen-activated protein kinase (MAPK), calcium, and hormonal (abscisic acid) signals. In addition to these signal components, other regulatory factors, such as microRNAs and membrane proteins, also play an important role in regulating HMS responses in plants. Membrane proteins interact with the highly complex and heterogeneous lipids in the plant cell environment. The function of membrane proteins is affected by the interactions between lipids and lipid-membrane proteins. Our review findings also indicate the possibility of membrane protein-lipid-metal ion interactions in regulating metal homeostasis in plant cells. In this review, we investigated the role of membrane proteins with specific substrate recognition in regulating cell metal homeostasis. The understanding of the possible interaction networks and upstream and downstream pathways is developed. In addition, possible interactions between membrane proteins, metal ions, and lipids are discussed to provide new ideas for studying metal homeostasis in plant cells.
Collapse
Affiliation(s)
- Danxia Wu
- College of Agricultural, Guizhou University, Guiyang 550025, China;
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Tengbing He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Institute of New Rural Development, West Campus, Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (G.H.)
| | - Guandi He
- College of Agricultural, Guizhou University, Guiyang 550025, China;
- Correspondence: (T.H.); (G.H.)
| |
Collapse
|
93
|
Chan SSY, Lee D, Meivita MP, Li L, Tan YS, Bajalovic N, Loke DK. Ultrasensitive two-dimensional material-based MCF-7 cancer cell sensor driven by perturbation processes. NANOSCALE ADVANCES 2021; 3:6974-6983. [PMID: 36132361 PMCID: PMC9419592 DOI: 10.1039/d1na00614b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 06/15/2023]
Abstract
Changes in lipid composition and structure during cell development can be markers for cell apoptosis or various diseases such as cancer. Although traditional fluorescence techniques utilising molecular probes have been studied, these methods are limited in studying these micro-changes as they require complex probe preparation and cannot be reused, making cell monitoring and detection challenging. Here, we developed a direct current (DC) resistance sensor based on two-dimensional (2D) molybdenum disulfide (MoS2) nanosheets to enable cancer cell-specific detection dependent on micro-changes in the cancer cell membrane. Atomistic molecular dynamics (MD) simulations were used to study the interaction between 2D MoS2 and cancer lipid bilayer systems, and revealed that previously unconsidered perturbations in the lipid bilayer can cause an increase in resistance. Under an applied DC sweep, we observed an increase in resistance when cancer cells were incubated with the nanosheets. Furthermore, a correlation was observed between the resistance and breast cancer epithelial cell (MCF-7) population, illustrating a cell population-dependent sensitivity of our method. Our method has a detection limit of ∼3 × 103 cells, below a baseline of ∼1 × 104 cells for the current state-of-the-art electrical-based biosensors using an adherent monolayer with homogenous cells. This combination of a unique 2D material and electrical resistance framework represents a promising approach for the early detection of cancerous cells and to reduce the risk of post-surgery cancer recurrence.
Collapse
Affiliation(s)
- Sophia S Y Chan
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design Singapore 487372 Singapore
| | - Denise Lee
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design Singapore 487372 Singapore
| | - Maria Prisca Meivita
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design Singapore 487372 Singapore
| | - Lunna Li
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design Singapore 487372 Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR) Singapore 138671 Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design Singapore 487372 Singapore
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design Singapore 487372 Singapore
- Office of Innovation, Changi General Hospital Singapore 529889 Singapore
| |
Collapse
|
94
|
Abstract
The cell membrane serves as a barrier that restricts the rate of exchange of diffusible molecules. Tension in the membrane regulates many crucial cell functions involving shape changes and motility, cell signaling, endocytosis, and mechanosensation. Tension reflects the forces contributed by the lipid bilayer, the cytoskeleton, and the extracellular matrix. With a fluid-like bilayer model, membrane tension is presumed uniform and hence propagated instantaneously. In this review, we discuss techniques to measure the mean membrane tension and how to resolve the stresses in different components and consider the role of bilayer heterogeneity.
Collapse
Affiliation(s)
- Pei-Chuan Chao
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
95
|
Perez-Salas U, Garg S, Gerelli Y, Porcar L. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. CURRENT TOPICS IN MEMBRANES 2021; 88:359-412. [PMID: 34862031 DOI: 10.1016/bs.ctm.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States.
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Universita` Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
96
|
Martinière A, Zelazny E. Membrane nanodomains and transport functions in plant. PLANT PHYSIOLOGY 2021; 187:1839-1855. [PMID: 35235669 PMCID: PMC8644385 DOI: 10.1093/plphys/kiab312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Far from a homogeneous environment, biological membranes are highly structured with lipids and proteins segregating in domains of different sizes and dwell times. In addition, membranes are highly dynamics especially in response to environmental stimuli. Understanding the impact of the nanoscale organization of membranes on cellular functions is an outstanding question. Plant channels and transporters are tightly regulated to ensure proper cell nutrition and signaling. Increasing evidence indicates that channel and transporter nano-organization within membranes plays an important role in these regulation mechanisms. Here, we review recent advances in the field of ion, water, but also hormone transport in plants, focusing on protein organization within plasma membrane nanodomains and its cellular and physiological impacts.
Collapse
Affiliation(s)
| | - Enric Zelazny
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
97
|
Guan P, Shi W, Riemann M, Nick P. Dissecting the membrane-microtubule sensor in grapevine defence. HORTICULTURE RESEARCH 2021; 8:260. [PMID: 34848701 PMCID: PMC8632924 DOI: 10.1038/s41438-021-00703-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 09/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Specific populations of plant microtubules cooperate with the plasma membrane to sense and process abiotic stress signals, such as cold stress. The current study derived from the question, to what extent this perception system is active in biotic stress signalling. The experimental system consisted of grapevine cell lines, where microtubules or actin filaments are visualised by GFP, such that their response became visible in vivo. We used the bacterial elicitors harpin (inducing cell-death related defence), or flg22 (inducing basal immunity) in combination with modulators of membrane fluidity, or microtubules. We show that DMSO, a membrane rigidifier, can cause microtubule bundling and trigger defence responses, including activation of phytoalexin transcripts. However, DMSO inhibited the gene expression in response to harpin, while promoting the gene expression in response to flg22. Treatment with DMSO also rendered microtubules more persistent to harpin. Paradoxically, Benzylalcohol (BA), a membrane fluidiser, acted in the same way as DMSO. Neither GdCl3, nor diphenylene iodonium were able to block the inhibitory effect of membrane rigidification on harpin-induced gene expression. Treatment with taxol stabilised microtubule against harpin but amplified the response of PAL transcripts. Therefore, the data support implications of a model that deploys specific responses to pathogen-derived signals.
Collapse
Affiliation(s)
- Pingyin Guan
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| | - Wenjing Shi
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
98
|
Nicolson GL, Ferreira de Mattos G, Ash M, Settineri R, Escribá PV. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. MEMBRANES 2021; 11:944. [PMID: 34940446 PMCID: PMC8707623 DOI: 10.3390/membranes11120944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Michael Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK;
| | | | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
99
|
Nicolson GL, Ferreira de Mattos G. A Brief Introduction to Some Aspects of the Fluid-Mosaic Model of Cell Membrane Structure and Its Importance in Membrane Lipid Replacement. MEMBRANES 2021; 11:947. [PMID: 34940448 PMCID: PMC8708848 DOI: 10.3390/membranes11120947] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022]
Abstract
Early cell membrane models placed most proteins external to lipid bilayers in trimolecular structures or as modular lipoprotein units. These thermodynamically untenable structures did not allow lipid lateral movements independent of membrane proteins. The Fluid-Mosaic Membrane Model accounted for these and other properties, such as membrane asymmetry, variable lateral mobilities of membrane components and their associations with dynamic complexes. Integral membrane proteins can transform into globular structures that are intercalated to various degrees into a heterogeneous lipid bilayer matrix. This simplified version of cell membrane structure was never proposed as the ultimate biomembrane description, but it provided a basic nanometer scale framework for membrane organization. Subsequently, the structures associated with membranes were considered, including peripheral membrane proteins, and cytoskeletal and extracellular matrix components that restricted lateral mobility. In addition, lipid-lipid and lipid-protein membrane domains, essential for cellular signaling, were proposed and eventually discovered. The presence of specialized membrane domains significantly reduced the extent of the fluid lipid matrix, so membranes have become more mosaic with some fluid areas over time. However, the fluid regions of membranes are very important in lipid transport and exchange. Various lipid globules, droplets, vesicles and other membranes can fuse to incorporate new lipids or expel damaged lipids from membranes, or they can be internalized in endosomes that eventually fuse with other internal vesicles and membranes. They can also be externalized in a reverse process and released as extracellular vesicles and exosomes. In this Special Issue, the use of membrane phospholipids to modify cellular membranes in order to modulate clinically relevant host properties is considered.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| |
Collapse
|
100
|
Tang S, Davoudi Z, Wang G, Xu Z, Rehman T, Prominski A, Tian B, Bratlie KM, Peng H, Wang Q. Soft materials as biological and artificial membranes. Chem Soc Rev 2021; 50:12679-12701. [PMID: 34636824 DOI: 10.1039/d1cs00029b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past few decades have seen emerging growth in the field of soft materials for synthetic biology. This review focuses on soft materials involved in biological and artificial membranes. The biological membranes discussed here are mainly those involved in the structure and function of cells and organelles. As building blocks in medicine, non-native membranes including nanocarriers (NCs), especially liposomes and DQAsomes, and polymeric membranes for scaffolds are constructed from amphiphilic combinations of lipids, proteins, and carbohydrates. Artificial membranes can be prepared using synthetic, soft materials and molecules and then incorporated into structures through self-organization to form micelles or niosomes. The modification of artificial membranes can be realized using traditional chemical methods such as click reactions to target the delivery of NCs and control the release of therapeutics. The biomembrane, a lamellar structure inlaid with ion channels, receptors, lipid rafts, enzymes, and other functional units, separates cells and organelles from the environment. An active domain inserted into the membrane and organelles for energy conversion and cellular communication can target disease by changing the membrane's composition, structure, and fluidity and affecting the on/off status of the membrane gates. The biological membrane targets analyzing pathological mechanisms and curing complex diseases, which inspires us to create NCs with artificial membranes.
Collapse
Affiliation(s)
- Shukun Tang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Zahra Davoudi
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA.
| | - Guangtian Wang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Zihao Xu
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Tanzeel Rehman
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Aleksander Prominski
- The James Franck Institute, Department of Chemistry, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Bozhi Tian
- The James Franck Institute, Department of Chemistry, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kaitlin M Bratlie
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA. .,Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing, 163319, China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, 1014 Sweeney Hall, Ames, IA 50011, USA.
| |
Collapse
|