51
|
Lei K, Xia Y, Wang XC, Ahn EH, Jin L, Ye K. C/EBPβ mediates NQO1 and GSTP1 anti-oxidative reductases expression in glioblastoma, promoting brain tumor proliferation. Redox Biol 2020; 34:101578. [PMID: 32526700 PMCID: PMC7287278 DOI: 10.1016/j.redox.2020.101578] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common and most aggressive brain tumor, associated with high levels of reactive oxidative species (ROS) due to metabolic and signaling aberrations. High ROS levels are detrimental to cells, but it remains incompletely understood how cancer cells cope with the adverse effects. Here we show that C/EBPβ, a ROS responsive transcription factor, regulates the transcription of NQO1 and GSTP1, two antioxidative reductases, which neutralize ROS in the GBM and mediates their proliferation. C/EBPβ is upregulated in EGFR overexpressed GBM cells, inversely correlated with the survival rates of brain tumor patients. Interestingly, C/EBPβ binds the promoters of NQO1 and GSTP1 and escalates their expression. Overexpression of C/EBPβ selectively decreases the ROS in EGFR-overexpressed U87MG cells and promotes cell proliferation via upregulating NQO1 and GSTP1; whereas knocking down C/EBPβ elevates the ROS and reduces proliferation by repressing the reductases. Accordingly, C/EBPβ mediates the brain tumor growth in vivo, coupling with NQO1 and GSTP1 expression and ROS levels. Hence, C/EBPβ regulates the expression of antioxidative reductases and balances the ROS, promoting brain tumor proliferation.
Collapse
Affiliation(s)
- Kecheng Lei
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
52
|
Yu J, Zhong B, Jin L, Hou Y, Ai N, Ge W, Li L, Liu S, Lu JJ, Chen X. 2-Methoxy-6-acetyl-7-methyljuglone (MAM) induced programmed necrosis in glioblastoma by targeting NAD(P)H: Quinone oxidoreductase 1 (NQO1). Free Radic Biol Med 2020; 152:336-347. [PMID: 32234332 DOI: 10.1016/j.freeradbiomed.2020.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GBM) are the most malignant brain tumors in humans and have a very poor prognosis. Temozolomide (TMZ), the only chemotherapeutic drug for GBM treatment, induced apoptosis but frequently developed resistance. Non-apoptotic cell death offers an alternative strategy to fight cancers. Our previous studies showed that 2-methoxy-6-acetyl-7-methyljuglone (MAM), a natural product, induced necroptosis in lung and colon cancer cells. The current study is designed to investigate its therapeutic potentials for GBM with in vitro and in vivo models. The protein expression of NAD(P)H: quinone oxidoreductase 1 (NQO1) in human GBM specimens were detected by immunohistochemistry. Effect of MAM on NQO1 was measured by recombinant protein and cellular thermal shift assay. The roles of NQO1 activation, superoxide (O2-) generation, calcium (Ca2+) accumulation, and c-Jun N-terminal kinase (JNK1/2) activation in MAM-induced cell death in U87 and U251 glioma cells were investigated. The effect of MAM on tumor growth was tested with a U251 tumor xenograft zebrafish model. Results showed that the NQO1 expression is positively correlated with the degree of malignancy in GBM tissues. MAM could directly bind and activate NQO1. Furthermore, MAM treatment induced rapid O2- generation, cytosolic Ca2+ accumulation, and sustained JNK1/2 activation. In addition, MAM significantly suppressed tumor growth in the zebrafish model. In conclusion, MAM induced GBM cell death by triggering an O2-/Ca2+/JNK1/2 dependent programmed necrosis. NQO1 might be the potential target for MAM and mediated its anticancer effect. This non-apoptotic necrosis might have therapeutic potentials for GBM treatment.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Long Jin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, China; Department of Pathology, Fujian Provincial Hospital, No.134 Dong Street, Fuzhou, 350001, China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Luoxiang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Shuqin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
53
|
Nagaraju GP, Farran B, Farren M, Chalikonda G, Wu C, Lesinski GB, El-Rayes BF. Napabucasin (BBI 608), a potent chemoradiosensitizer in rectal cancer. Cancer 2020; 126:3360-3371. [PMID: 32383803 DOI: 10.1002/cncr.32954] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The induction of reactive oxygen species (ROS) represents a viable strategy for enhancing the activity of radiotherapy. The authors hypothesized that napabucasin would increase ROS via its ability to inhibit NAD(P)H:quinone oxidoreductase 1 and potentiate the response to chemoradiotherapy in rectal cancer via distinct mechanisms. METHOD Proliferation studies, colony formation assays, and ROS levels were measured in HCT116 and HT29 cell lines treated with napabucasin, chemoradiation, or their combination. DNA damage (pγH2AX), activation of STAT, and downstream angiogenesis were evaluated in both untreated and treated cell lines. Finally, the effects of napabucasin, chemoradiotherapy, and their combination were assessed in vivo with subcutaneous mouse xenograft models. RESULTS Napabucasin significantly potentiated the growth inhibition of chemoradiation in both cell lines. Napabucasin increased ROS generation. Inhibition of ROS by N-acetylcysteine decreased the growth inhibitory effect of napabucasin alone and in combination with chemoradiotherapy. Napabucasin significantly increased pγH2AX in comparison with chemoradiotherapy alone. Napabucasin reduced the levels of pSTAT3 and VEGF and inhibited angiogenesis through an ROS-mediated effect. Napabucasin significantly potentiated the inhibition of growth and blood vessel formation by chemoradiotherapy in mouse xenografts. CONCLUSION Napabucasin is a radiosensitizer with a novel mechanism of action: increasing ROS production and inhibiting angiogenesis. Clinical trials testing the addition of napabucasin to chemoradiotherapy in rectal cancer are needed.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Matthew Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Gayathri Chalikonda
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christina Wu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
54
|
Liu L, Kelly MG, Yang XR, Fernandez TG, Wierzbicki EL, Skrobach A, Doré S. Nrf2 Deficiency Exacerbates Cognitive Impairment and Reactive Microgliosis in a Lipopolysaccharide-Induced Neuroinflammatory Mouse Model. Cell Mol Neurobiol 2020; 40:1185-1197. [PMID: 32170572 DOI: 10.1007/s10571-020-00807-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
The transcription factor Nrf2 is a central regulator of anti-inflammatory and antioxidant mechanisms that contribute to the development and progression of various neurological disorders. Although the direct and indirect Nrf2 regulatory roles on inflammation have been reviewed in recent years, the in vivo evidence of Nrf2 function on lipopolysaccharide (LPS)-induced cognitive decline and characteristic alterations of reactive microglia and astrocytes remains incomplete. During the 3-5 days after LPS or saline injection, 5-6-month-old wildtype (WT) and Nrf2-/- C57BL/6 mice were subjected to the novel object recognition task. Immunohistochemistry staining was employed for analyses of brain cells. The Nrf2-/- mice displayed exacerbated LPS-induced cognition impairment (28.1 ± 9.6% in the discrimination index of the novel object recognition task), enhanced hippocampal reactive microgliosis and astrogliosis, and an increased expression level of the water channel transmembrane protein aquaporin 4 when compared with WT controls. In addition, similar overt effects of Nrf2 deficiency on LPS-induced characteristic alterations of brain cells were observed in the cortex and striatum regions of mice. In summary, this transgenic loss-of-function study provides direct in vivo evidence that highlights the functional importance of Nrf2 activation in regulating LPS-induced cognitive alteration, glial responses, and aquaporin 4 expression. This finding provides a better understanding of the complex nature of Nrf2 signaling and neuroprotection.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Marie G Kelly
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Xiao Rui Yang
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Tyler G Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Erika L Wierzbicki
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Anna Skrobach
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA. .,Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
55
|
Go J, Ryu YK, Park HY, Choi DH, Choi YK, Hwang DY, Lee CH, Kim KS. NQO1 regulates pharmaco-behavioral effects of d-amphetamine in striatal dopaminergic system in mice. Neuropharmacology 2020; 170:108039. [PMID: 32165217 DOI: 10.1016/j.neuropharm.2020.108039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 11/18/2022]
Abstract
The NAD(P)H:quinone oxidoreductase 1 (NQO1) gene encodes a cytosolic flavoenzyme that catalyzes the two-electron reduction of quinones to hydroquinones. A polymorphic form of NQO1 is associated with mood disorders such as schizophrenia. However, the role of NQO1 in dopaminergic system has not yet been elucidated. To determine the role of NQO1 in the dopaminergic system, we investigated pharmaco-behavioral effects of d-amphetamine using NQO1-deficienct mice. According to our comparative study involving NQO1+/+ and NQO1-/- mice, NQO1 deficiency increased d-amphetamine-induced psychomotor activity and psychological dependency compared to wild-type mice. Basal and d-amphetamine-induced dopamine levels were also enhanced by NQO1 deficiency. In NQO1-/- mice, neural activation induced by d-amphetamine was higher in dorsolateral striatum, but not in dorsomedial and ventral striata. Although protein level of CaMKIIα, which is a key player in amphetamine-induced dopamine efflux, was decreased in striata of NQO1-/- mice, phosphorylation of CaMKIIα was markedly enhanced in NQO1-/- mice compared to wild-type mice. Interestingly, experiments with pharmacological antagonist showed that D2 antagonist-induced suppression of locomotion required activation of NQO1. Moreover, the rewarding effect in response to D1 agonist was increased by NQO1 deficiency. These results suggest that striatal NQO1 is of considerable interest to understand the mechanism of dopaminergic regulation of psychiatric disorders.
Collapse
Affiliation(s)
- Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; College of Biosciences & Biotechnology, Chung-Nam National University, Daejeon, 34134, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
56
|
Kawashima Y, Watanabe E, Umeyama T, Nakajima D, Hattori M, Honda K, Ohara O. Optimization of Data-Independent Acquisition Mass Spectrometry for Deep and Highly Sensitive Proteomic Analysis. Int J Mol Sci 2019; 20:ijms20235932. [PMID: 31779068 PMCID: PMC6928715 DOI: 10.3390/ijms20235932] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Data-independent acquisition (DIA)-mass spectrometry (MS)-based proteomic analysis overtop the existing data-dependent acquisition (DDA)-MS-based proteomic analysis to enable deep proteome coverage and precise relative quantitative analysis in single-shot liquid chromatography (LC)-MS/MS. However, DIA-MS-based proteomic analysis has not yet been optimized in terms of system robustness and throughput, particularly for its practical applications. We established a single-shot LC-MS/MS system with an MS measurement time of 90 min for a highly sensitive and deep proteomic analysis by optimizing the conditions of DIA and nanoLC. We identified 7020 and 4068 proteins from 200 ng and 10 ng, respectively, of tryptic floating human embryonic kidney cells 293 (HEK293F) cell digest by performing the constructed LC-MS method with a protein sequence database search. The numbers of identified proteins from 200 ng and 10 ng of tryptic HEK293F increased to 8509 and 5706, respectively, by searching the chromatogram library created by gas-phase fractionated DIA. Moreover, DIA protein quantification was highly reproducible, with median coefficients of variation of 4.3% in eight replicate analyses. We could demonstrate the power of this system by applying the proteomic analysis to detect subtle changes in protein profiles between cerebrums in germ-free and specific pathogen-free mice, which successfully showed that >40 proteins were differentially produced between the cerebrums in the presence or absence of bacteria.
Collapse
Affiliation(s)
- Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan; (Y.K.); (D.N.)
| | - Eiichiro Watanabe
- Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (E.W.); (K.H.)
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Taichi Umeyama
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (T.U.); (M.H.)
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan; (Y.K.); (D.N.)
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (T.U.); (M.H.)
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Kenya Honda
- Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan; (E.W.); (K.H.)
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan; (Y.K.); (D.N.)
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
- Correspondence: ; Tel.: +81-438-52-391; Fax: +81-438-52-3914
| |
Collapse
|
57
|
Vankova P, Salido E, Timson DJ, Man P, Pey AL. A Dynamic Core in Human NQO1 Controls the Functional and Stability Effects of Ligand Binding and Their Communication across the Enzyme Dimer. Biomolecules 2019; 9:biom9110728. [PMID: 31726777 PMCID: PMC6921033 DOI: 10.3390/biom9110728] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023] Open
Abstract
Human NAD(P)H:quinone oxidoreductase 1 (NQO1) is a multi-functional protein whose alteration is associated with cancer, Parkinson's and Alzheimer´s diseases. NQO1 displays a remarkable functional chemistry, capable of binding different functional ligands that modulate its activity, stability and interaction with proteins and nucleic acids. Our understanding of this functional chemistry is limited by the difficulty of obtaining structural and dynamic information on many of these states. Herein, we have used hydrogen/deuterium exchange monitored by mass spectrometry (HDXMS) to investigate the structural dynamics of NQO1 in three ligation states: without ligands (NQO1apo), with FAD (NQO1holo) and with FAD and the inhibitor dicoumarol (NQO1dic). We show that NQO1apo has a minimally stable folded core holding the protein dimer, with FAD and dicoumarol binding sites populating binding non-competent conformations. Binding of FAD significantly decreases protein dynamics and stabilizes the FAD and dicoumarol binding sites as well as the monomer:monomer interface. Dicoumarol binding further stabilizes all three functional sites, a result not previously anticipated by available crystallographic models. Our work provides an experimental perspective into the communication of stability effects through the NQO1 dimer, which is valuable for understanding at the molecular level the effects of disease-associated variants, post-translational modifications and ligand binding cooperativity in NQO1.
Collapse
Affiliation(s)
- Pavla Vankova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic;
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Eduardo Salido
- Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de La Laguna, 38320 Tenerife, Spain;
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK;
| | - Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic;
- Correspondence: (P.M.); (A.L.P.)
| | - Angel L. Pey
- Department of Physical Chemistry and Unit of Excellence in Chemistry, University of Granada, Av. Fuentenueva s/n, E-18071 Granada, Spain
- Correspondence: (P.M.); (A.L.P.)
| |
Collapse
|
58
|
Megarity CF, Abdel‐Aal Bettley H, Caraher MC, Scott KA, Whitehead RC, Jowitt TA, Gutierrez A, Bryce RA, Nolan KA, Stratford IJ, Timson DJ. Negative Cooperativity in NAD(P)H Quinone Oxidoreductase 1 (NQO1). Chembiochem 2019; 20:2841-2849. [DOI: 10.1002/cbic.201900313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Clare F. Megarity
- School of Biological SciencesQueen's University BelfastMedical Biology Centre 97 Lisburn Road Belfast BT9 7BL UK
| | - Hoda Abdel‐Aal Bettley
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - M. Clare Caraher
- School of Biological SciencesQueen's University BelfastMedical Biology Centre 97 Lisburn Road Belfast BT9 7BL UK
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Katherine A. Scott
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Roger C. Whitehead
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Thomas A. Jowitt
- The Faculty of Life ScienceManchester Cancer Research Centre and the University of Manchester Oxford Road Manchester M13 9PT UK
| | - Aldo Gutierrez
- School of Science and TechnologyNottingham Trent University Clifton Campus Nottingham NG11 8NS UK
| | - Richard A. Bryce
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Karen A. Nolan
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ian J. Stratford
- Manchester Pharmacy SchoolThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J. Timson
- School of Biological SciencesQueen's University BelfastMedical Biology Centre 97 Lisburn Road Belfast BT9 7BL UK
- School of Pharmacy and Biomolecular Sciences, Huxley BuildingUniversity of Brighton Lewes Road Brighton BN2 4GJ UK
| |
Collapse
|
59
|
Cancer-associated variants of human NQO1: impacts on inhibitor binding and cooperativity. Biosci Rep 2019; 39:BSR20191874. [PMID: 31431515 PMCID: PMC6732362 DOI: 10.1042/bsr20191874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Human NAD(P)H quinone oxidoreductase (DT-diaphorase, NQO1) exhibits negative cooperativity towards its potent inhibitor, dicoumarol. Here, we addressed the hypothesis that the effects of the two cancer-associated polymorphisms (p.R139W and p.P187S) may be partly mediated by their effects on inhibitor binding and negative cooperativity. Dicoumarol stabilized both variants and bound with much higher affinity for p.R139W than p.P187S. Both variants exhibited negative cooperativity towards dicoumarol; in both cases, the Hill coefficient (h) was approximately 0.5 and similar to that observed with the wild-type protein. NQO1 was also inhibited by resveratrol and by nicotinamide. Inhibition of NQO1 by resveratrol was approximately 10,000-fold less strong than that observed with the structurally similar enzyme, NRH quinine oxidoreductase 2 (NQO2). The enzyme exhibited non-cooperative behaviour towards nicotinamide, whereas resveratrol induced modest negative cooperativity (h = 0.85). Nicotinamide stabilized wild-type NQO1 and p.R139W towards thermal denaturation but had no detectable effect on p.P187S. Resveratrol destabilized the wild-type enzyme and both cancer-associated variants. Our data suggest that neither polymorphism exerts its effect by changing the enzyme’s ability to exhibit negative cooperativity towards inhibitors. However, it does demonstrate that resveratrol can inhibit NQO1 in addition to this compound’s well-documented effects on NQO2. The implications of these findings for molecular pathology are discussed.
Collapse
|
60
|
Megarity CF, Timson DJ. Escherichia coli
Modulator of Drug Activity B (MdaB) Has Different Enzymological Properties to Eukaryote Quinone Oxidoreductases. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Clare F. Megarity
- School of Biological SciencesQueen's University Belfast, Medical Biology Centre 97 Lisburn Road UK-Belfast BT9 7BL United Kingdom
| | - David J. Timson
- School of Biological SciencesQueen's University Belfast, Medical Biology Centre 97 Lisburn Road UK-Belfast BT9 7BL United Kingdom
- School of Pharmacy and Biomolecular SciencesThe University of Brighton Huxley Building, Lewes Road UK-Brighton BN2 4GJ United Kingdom
| |
Collapse
|