51
|
Marcellinaro R, Spoletini D, Grieco M, Avella P, Cappuccio M, Troiano R, Lisi G, Garbarino GM, Carlini M. Colorectal Cancer: Current Updates and Future Perspectives. J Clin Med 2023; 13:40. [PMID: 38202047 PMCID: PMC10780254 DOI: 10.3390/jcm13010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer is a frequent neoplasm in western countries, mainly due to dietary and behavioral factors. Its incidence is growing in developing countries for the westernization of foods and lifestyles. An increased incidence rate is observed in patients under 45 years of age. In recent years, the mortality for CRC is decreased, but this trend is slowing. The mortality rate is reducing in those countries where prevention and treatments have been implemented. The survival is increased to over 65%. This trend reflects earlier detection of CRC through routine clinical examinations and screening, more accurate staging through advances in imaging, improvements in surgical techniques, and advances in chemotherapy and radiation. The most important predictor of survival is the stage at diagnosis. The screening programs are able to reduce incidence and mortality rates of CRC. The aim of this paper is to provide a comprehensive overview of incidence, mortality, and survival rate for CRC.
Collapse
Affiliation(s)
- Rosa Marcellinaro
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Domenico Spoletini
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Michele Grieco
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Pasquale Avella
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy; (P.A.); (M.C.)
- Hepatobiliary and Pancreatic Surgery Unit, Pineta Grande Hospital, Castel Volturno, 81030 Caserta, Italy
| | - Micaela Cappuccio
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy; (P.A.); (M.C.)
| | - Raffaele Troiano
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Giorgio Lisi
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Giovanni M. Garbarino
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| | - Massimo Carlini
- Department of General Surgery, S. Eugenio Hospital, 00144 Rome, Italy; (D.S.); (M.G.); (R.T.); (G.L.); (M.C.)
| |
Collapse
|
52
|
Zhang WJ, Yue KL, Wang JZ, Zhang Y. Association between heat shock factor protein 4 methylation and colorectal cancer risk and potential molecular mechanisms: A bioinformatics study. World J Gastrointest Oncol 2023; 15:2150-2168. [PMID: 38173437 PMCID: PMC10758642 DOI: 10.4251/wjgo.v15.i12.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND We previously demonstrated that heat shock factor protein 4 (HSF4) facilitates colorectal cancer (CRC) progression. DNA methylation, a major modifier of gene expression and stability, is involved in CRC development and outcome. AIM To investigate the correlation between HSF4 methylation and CRC risk, and to uncover the underlying molecular mechanisms. METHODS Differences in β values of HSF4 methylation loci in multiple malignancies and their correlation with HSF4 mRNA expression were analyzed based on Shiny Methylation Analysis Resource Tool. HSF4 methylation-related genes were identified by LinkedOmics in CRC, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed. Protein-protein interaction network of HSF4 methylation-related genes was constructed by String database and MCODE algorithm. RESULTS A total of 19 CpG methylation loci were identified in HSF4, and their β values were significantly increased in CRC tissues and exhibited a positive correlation with HSF4 mRNA expression. Unfortunately, the prognostic and diagnostic performance of these CpG loci in CRC patients was mediocre. In CRC, there were 1694 HSF4 methylation-related genes; 1468 of which displayed positive and 226 negative associations, and they were involved in regulating phenotypes such as immune, inflammatory, and metabolic reprogramming. EGFR, RELA, STAT3, FCGR3A, POLR2K, and AXIN1 are hub genes among the HSF4 methylation-related genes. CONCLUSION HSF4 is highly methylated in CRC, but there is no significant correlation between it and the prognosis and diagnosis of CRC. HSF4 methylation may serve as one of the ways in which HSF4 mediates the CRC process.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- Department of Medical Oncology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Ke-Lin Yue
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Jing-Zhai Wang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Yu Zhang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| |
Collapse
|
53
|
Otálora-Otálora BA, López-Rivera JJ, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Host Transcriptional Regulatory Genes and Microbiome Networks Crosstalk through Immune Receptors Establishing Normal and Tumor Multiomics Metafirm of the Oral-Gut-Lung Axis. Int J Mol Sci 2023; 24:16638. [PMID: 38068961 PMCID: PMC10706695 DOI: 10.3390/ijms242316638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The microbiome has shown a correlation with the diet and lifestyle of each population in health and disease, the ability to communicate at the cellular level with the host through innate and adaptative immune receptors, and therefore an important role in modulating inflammatory process related to the establishment and progression of cancer. The oral cavity is one of the most important interaction windows between the human body and the environment, allowing the entry of an important number of microorganisms and their passage across the gastrointestinal tract and lungs. In this review, the contribution of the microbiome network to the establishment of systemic diseases like cancer is analyzed through their synergistic interactions and bidirectional crosstalk in the oral-gut-lung axis as well as its communication with the host cells. Moreover, the impact of the characteristic microbiota of each population in the formation of the multiomics molecular metafirm of the oral-gut-lung axis is also analyzed through state-of-the-art sequencing techniques, which allow a global study of the molecular processes involved of the flow of the microbiota environmental signals through cancer-related cells and its relationship with the establishment of the transcription factor network responsible for the control of regulatory processes involved with tumorigenesis.
Collapse
Affiliation(s)
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá 110131, Colombia;
| | - Carlos Arturo Álvarez-Moreno
- Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia;
| |
Collapse
|
54
|
Yang J, Zhao S, Su J, Liu S, Wu Z, Ma W, Tang M, Wu J, Mao E, Han L, Liu M, Zhang J, Cao L, Shao J, Shang Y. Comprehensive genomic profiling reveals prognostic signatures and insights into the molecular landscape of colorectal cancer. Front Oncol 2023; 13:1285508. [PMID: 38023196 PMCID: PMC10680082 DOI: 10.3389/fonc.2023.1285508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent malignancy with diverse molecular characteristics. The NGS-based approach enhances our comprehension of genomic landscape of CRC and may guide future advancements in precision oncology for CRC patients. Method In this research, we conducted an analysis using Next-Generation Sequencing (NGS) on samples collected from 111 individuals who had been diagnosed with CRC. We identified somatic and germline mutations and structural variants across the tumor genomes through comprehensive genomic profiling. Furthermore, we investigated the landscape of driver mutations and their potential clinical implications. Results Our findings underscore the intricate heterogeneity of genetic alterations within CRC. Notably, BRAF, ARID2, KMT2C, and GNAQ were associated with CRC prognosis. Patients harboring BRAF, ARID2, or KMT2C mutations exhibited shorter progression-free survival (PFS), whereas those with BRAF, ARID2, or GNAQ mutations experienced worse overall survival (OS). We unveiled 80 co-occurring and three mutually exclusive significant gene pairs, enriched primarily in pathways such as TP53, HIPPO, RTK/RAS, NOTCH, WNT, TGF-Beta, MYC, and PI3K. Notably, co-mutations of BRAF/ALK, BRAF/NOTCH2, BRAF/CREBBP, and BRAF/FAT1 correlated with worse PFS. Furthermore, germline AR mutations were identified in 37 (33.33%) CRC patients, and carriers of these variants displayed diminished PFS and OS. Decreased AR protein expression was observed in cases with AR germline mutations. A four-gene mutation signature was established, incorporating the aforementioned prognostic genes, which emerged as an independent prognostic determinant in CRC via univariate and multivariate Cox regression analyses. Noteworthy BRAF and ARID2 protein expression decreases detected in patients with their respective mutations. Conclusion The integration of our analyses furnishes crucial insights into CRC's molecular characteristics, drug responsiveness, and the construction of a four-gene mutation signature for predicting CRC prognosis.
Collapse
Affiliation(s)
- Jinwei Yang
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Sihui Zhao
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Junyan Su
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Siyao Liu
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Zaozao Wu
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Ming Tang
- Department of Pathology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingcui Wu
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Erdong Mao
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Li Han
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Mengyuan Liu
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Jiali Zhang
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Lei Cao
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Jingyi Shao
- Department of Reproductive Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yun Shang
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
55
|
Widayati TA, Schneider J, Panteleeva K, Chernysheva E, Hrbkova N, Beck S, Voloshin V, Chervova O. Open access-enabled evaluation of epigenetic age acceleration in colorectal cancer and development of a classifier with diagnostic potential. Front Genet 2023; 14:1258648. [PMID: 37953923 PMCID: PMC10634722 DOI: 10.3389/fgene.2023.1258648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Aberrant DNA methylation (DNAm) is known to be associated with the aetiology of cancer, including colorectal cancer (CRC). In the past, the availability of open access data has been the main driver of innovative method development and research training. However, this is increasingly being eroded by the move to controlled access, particularly of medical data, including cancer DNAm data. To rejuvenate this valuable tradition, we leveraged DNAm data from 1,845 samples (535 CRC tumours, 522 normal colon tissues adjacent to tumours, 72 colorectal adenomas, and 716 normal colon tissues from healthy individuals) from 14 open access studies deposited in NCBI GEO and ArrayExpress. We calculated each sample's epigenetic age (EA) using eleven epigenetic clock models and derived the corresponding epigenetic age acceleration (EAA). For EA, we observed that most first- and second-generation epigenetic clocks reflect the chronological age in normal tissues adjacent to tumours and healthy individuals [e.g., Horvath (r = 0.77 and 0.79), Zhang elastic net (EN) (r = 0.70 and 0.73)] unlike the epigenetic mitotic clocks (EpiTOC, HypoClock, MiAge) (r < 0.3). For EAA, we used PhenoAge, Wu, and the above mitotic clocks and found them to have distinct distributions in different tissue types, particularly between normal colon tissues adjacent to tumours and cancerous tumours, as well as between normal colon tissues adjacent to tumours and normal colon tissue from healthy individuals. Finally, we harnessed these associations to develop a classifier using elastic net regression (with lasso and ridge regularisations) that predicts CRC diagnosis based on a patient's sex and EAAs calculated from histologically normal controls (i.e., normal colon tissues adjacent to tumours and normal colon tissue from healthy individuals). The classifier demonstrated good diagnostic potential with ROC-AUC = 0.886, which suggests that an EAA-based classifier trained on relevant data could become a tool to support diagnostic/prognostic decisions in CRC for clinical professionals. Our study also reemphasises the importance of open access clinical data for method development and training of young scientists. Obtaining the required approvals for controlled access data would not have been possible in the timeframe of this study.
Collapse
Affiliation(s)
- Tyas Arum Widayati
- Medical Genomics Lab, Cancer Institute, University College London, London, United Kingdom
| | - Jadesada Schneider
- Medical Genomics Lab, Cancer Institute, University College London, London, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Kseniia Panteleeva
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth Chernysheva
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Natalie Hrbkova
- Medical Genomics Lab, Cancer Institute, University College London, London, United Kingdom
| | - Stephan Beck
- Medical Genomics Lab, Cancer Institute, University College London, London, United Kingdom
| | - Vitaly Voloshin
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Olga Chervova
- Medical Genomics Lab, Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
56
|
Liu Z, Xu Y, Jin S, Liu X, Wang B. Construction of a Prognostic Model Based on Methylation-Related Genes in Patients with Colon Adenocarcinoma. Cancer Manag Res 2023; 15:1097-1110. [PMID: 37818334 PMCID: PMC10561619 DOI: 10.2147/cmar.s417897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Purpose Colon adenocarcinoma (COAD) is the second leading cause of death in the world, and the new incidence rate ranks third among all cancers. Abnormal DNA methylation is related to the occurrence and development of tumors. In this study, we aimed to identify genes associated with abnormal methylation in COAD. Methods COAD transcriptome data, methylation data and clinical information were downloaded from the TCGA database and GEO database. The differentially expressed genes (DEGs) and methylated genes (DMGs) were analyzed and identified in COAD. PCA analysis was applied to divide COAD into subtypes, and the survival and immune cell infiltration of each subtype were evaluated. Cox and LASSO analyses were performed to construct COAD risk model. GSEA was used to evaluate the enrichment pathways. The Kaplan-Meier was used to analyze the difference in survival. ROC curve was plotted to evaluate the accuracy of the model, and GSE17536 was used to verify the accuracy of the risk model. The risk model is combined with the clinicopathological characteristics of COAD patients to perform multivariate Cox regression analysis to obtain independent risk factors and draw nomograms. Results In total, 4564 DEGs and 1093 DMGs were screened, among which 298 were found to be overlapping genes. For 220 of these overlapping genes, the methylation was significantly negatively correlated to expression levels. An optimal signature from 4 methylated biomarkers was identified to construct the prognostic model. Conclusion Our study identified 4 methylated biomarkers in the COAD. Then, we constructed the risk model to provide a theoretical basis and reference value for the research and treatment of COAD.
Collapse
Affiliation(s)
- ZhenDong Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - YuYang Xu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Shan Jin
- Department of Anesthesiology, Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - Xin Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| | - BaoChun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People’s Republic of China
| |
Collapse
|
57
|
Lim SB, Joe S, Kim HJ, Lee JL, Park IJ, Yoon YS, Kim CW, Kim JH, Kim S, Lee JY, Shim H, Chu HBK, Cho S, Kang J, Kim SC, Lee HS, Kim YJ, Kim SY, Yu CS. Deciphering the DNA methylation landscape of colorectal cancer in a Korean cohort. BMB Rep 2023; 56:569-574. [PMID: 37605616 PMCID: PMC10618072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 08/19/2023] [Indexed: 08/23/2023] Open
Abstract
Aberrant DNA methylation plays a pivotal role in the onset and progression of colorectal cancer (CRC), a disease with high incidence and mortality rates in Korea. Several CRC-associated diagnostic and prognostic methylation markers have been identified; however, due to a lack of comprehensive clinical and methylome data, these markers have not been validated in the Korean population. Therefore, in this study, we aimed to obtain the CRC methylation profile using 172 tumors and 128 adjacent normal colon tissues of Korean patients with CRC. Based on the comparative methylome analysis, we found that hypermethylated positions in the tumor were predominantly concentrated in CpG islands and promoter regions, whereas hypomethylated positions were largely found in the open-sea region, notably distant from the CpG islands. In addition, we stratified patients by applying the CpG island methylator phenotype (CIMP) to the tumor methylome data. This stratification validated previous clinicopathological implications, as tumors with high CIMP signatures were significantly correlated with the proximal colon, higher prevalence of microsatellite instability status, and MLH1 promoter methylation. In conclusion, our extensive methylome analysis and the accompanying dataset offers valuable insights into the utilization of CRC-associated methylation markers in Korean patients, potentially improving CRC diagnosis and prognosis. Furthermore, this study serves as a solid foundation for further investigations into personalized and ethnicity-specific CRC treatments. [BMB Reports 2023; 56(10): 569-574].
Collapse
Affiliation(s)
- Seok-Byung Lim
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, College of Medicine, Ulsan University, Seoul 05505, Korea
| | - Soobok Joe
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hyo-Ju Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jong Lyul Lee
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, College of Medicine, Ulsan University, Seoul 05505, Korea
| | - In Ja Park
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, College of Medicine, Ulsan University, Seoul 05505, Korea
| | - Yong Sik Yoon
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, College of Medicine, Ulsan University, Seoul 05505, Korea
| | - Chan Wook Kim
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, College of Medicine, Ulsan University, Seoul 05505, Korea
| | - Jong-Hwan Kim
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sangok Kim
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Jin-Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyeran Shim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hoang Bao Khanh Chu
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sheehyun Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jisun Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Si-Cho Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hong Seok Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- LepiDyne Co., Ltd., Seoul 04779, Korea
| | - Seon-Young Kim
- Korea Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Chang Sik Yu
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, College of Medicine, Ulsan University, Seoul 05505, Korea
| |
Collapse
|
58
|
Ali W, Xiao W, Jacobs D, Kajdacsy-Balla A. Survival and Enrichment Analysis of Epithelial-Mesenchymal Transition Genes in Bladder Urothelial Carcinoma. Genes (Basel) 2023; 14:1899. [PMID: 37895248 PMCID: PMC10606556 DOI: 10.3390/genes14101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The escalating prevalence of bladder cancer, particularly urothelial carcinoma, necessitates innovative approaches for prognosis and therapy. This study delves into the significance of genes related to epithelial-mesenchymal transition (EMT), a process inherently linked to carcinogenesis and comparatively better studied in other cancers. We examined 1184 EMT-related gene expression levels in bladder urothelial cancer cases through the TCGA dataset. Genes shown to be differentially expressed in relation to survival underwent further network and enrichment analysis to uncover how they might shape disease outcomes. Our in silico analysis revealed a subset of 32 genes, including those significantly represented in biological pathways such as VEGF signaling and bacterium response. In addition, these genes interact with genes involved in the JAK-STAT signaling pathway. Additionally, some of those 32 genes have been linked to immunomodulators such as chemokines CCL15 and CCL18, as well as to various immune cell infiltrates. Our findings highlight the prognostic utility of various EMT-related genes and identify possible modulators of their effect on survival, allowing for further targeted wet lab research and possible therapeutic intervention.
Collapse
Affiliation(s)
- Waleed Ali
- Albert Einstein College of Medicine, New York, NY 10461, USA; (W.X.); (D.J.)
| | - Weirui Xiao
- Albert Einstein College of Medicine, New York, NY 10461, USA; (W.X.); (D.J.)
| | - Daniel Jacobs
- Albert Einstein College of Medicine, New York, NY 10461, USA; (W.X.); (D.J.)
| | - Andre Kajdacsy-Balla
- Professor of Pathology, University of Illinois at Chicago College of Medicine, Chicago, IL 60607, USA;
| |
Collapse
|
59
|
Shi YJ, Dong YH, Mei ZB, Wang H. Value of ctDNA methylation biomarkers in diagnosis of colorectal tumors. Epigenomics 2023; 15:891-893. [PMID: 37846515 DOI: 10.2217/epi-2023-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Tweetable abstract DNA methylation alterations have been identified as promising biological markers for early-stage colorectal cancer detection. Here, the authors highlight some recent advances in DNA methylation and its role in the early diagnosis and overall disease course management of colorectal tumors. New insights into DNA methylation biomarkers for colorectal cancer early diagnosis and management are discussed.
Collapse
Affiliation(s)
- Yun-Jie Shi
- Department of Colorectal Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuan-Hang Dong
- Department of Gastroenterology, The First Affiliated Hospital, Naval Medical University, Shanghai, Shanghai, 200433, China
| | - Zu-Bing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, 201203, China
| | - Hao Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
60
|
Jiang H, Zhou S, Li G. Novel biomarkers used for early diagnosis and tyrosine kinase inhibitors as targeted therapies in colorectal cancer. Front Pharmacol 2023; 14:1189799. [PMID: 37719843 PMCID: PMC10502318 DOI: 10.3389/fphar.2023.1189799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common and second most lethal type of cancer worldwide, presenting major health risks as well as economic costs to both people and society. CRC survival chances are significantly higher if the cancer is diagnosed and treated early. With the development of molecular biology, numerous initiatives have been undertaken to identify novel biomarkers for the early diagnosis of CRC. Pathological disorders can be diagnosed at a lower cost with the help of biomarkers, which can be detected in stool, blood, and tissue samples. Several lines of evidence suggest that the gut microbiota could be used as a biomarker for CRC screening and treatment. CRC treatment choices include surgical resection, chemotherapy, immunotherapy, gene therapy, and combination therapies. Targeted therapies are a relatively new and promising modality of treatment that has been shown to increase patients' overall survival (OS) rates and can inhibit cancer cell development. Several small-molecule tyrosine kinase inhibitors (TKIs) are being investigated as potential treatments due to our increasing awareness of CRC's molecular causes and oncogenic signaling. These compounds may inhibit critical enzymes in controlling signaling pathways, which are crucial for CRC cells' development, differentiation, proliferation, and survival. On the other hand, only one of the approximately 42 TKIs that demonstrated anti-tumor effects in pre-clinical studies has been licensed for clinical usage in CRC. A significant knowledge gap exists when bringing these tailored medicines into the clinic. As a result, the emphasis of this review is placed on recently discovered biomarkers for early diagnosis as well as tyrosine kinase inhibitors as possible therapy options for CRC.
Collapse
|
61
|
Lu Y, Guo H, Jiang J. Development and validation of a web-based predictive model for preoperative diagnosis of localized colorectal cancer and colorectal adenoma. Front Oncol 2023; 13:1199868. [PMID: 37664051 PMCID: PMC10470828 DOI: 10.3389/fonc.2023.1199868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Background Localized colorectal cancer (LCC) has obscure clinical signs, which are difficult to distinguish from colorectal adenoma (CA). This study aimed to develop and validate a web-based predictive model for preoperative diagnosis of LCC and CA. Methods We conducted a retrospective study that included data from 500 patients with LCC and 980 patients with CA who were admitted to Dongyang People's Hospital between November 2012 and June 2022. Patients were randomly divided into the training (n=1036) and validation (n=444) cohorts. Univariate logistic regression, least absolute shrinkage and selection operator regression, and multivariate logistic regression were used to select the variables for predictive models. The area under the curve (AUC), calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC) were used to evaluate the performance of the model. Results The web-based predictive model was developed, including nine independent risk factors: age, sex, drinking history, white blood cell count, lymphocyte count, red blood cell distribution width, albumin, carcinoembryonic antigen, and fecal occult blood test. The AUC of the prediction model in the training and validation cohorts was 0.910 (0.892-0.929) and 0.894 (0.862-0.925), respectively. The calibration curve showed good consistency between the outcome predicted by the model and the actual diagnosis. DCA and CIC showed that the predictive model had a good clinical application value. Conclusion This study first developed a web-based preoperative prediction model, which can discriminate LCC from CA and can be used to quantitatively assess the risks and benefits in clinical practice.
Collapse
Affiliation(s)
- Yan Lu
- Clinical Laboratory, DongYang People’s Hospital, Dongyang, Zhejiang, China
| | | | | |
Collapse
|
62
|
Wu X, Tang Z, Zhao R, Wang Y, Wang X, Liu S, Zou H. Taxonomic and functional profiling of fecal metagenomes for the early detection of colorectal cancer. Front Oncol 2023; 13:1218056. [PMID: 37601681 PMCID: PMC10436198 DOI: 10.3389/fonc.2023.1218056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives This study aimed to identify colorectal cancer (CRC)-associated phylogenetic and functional bacterial features by a large-scale metagenomic sequencing and develop a binomial classifier to accurately distinguish between CRC patients and healthy individuals. Methods We conducted shotgun metagenomic analyses of fecal samples from a ZhongShanMed discovery cohort of 121 CRC and 52 controls and SouthernMed validation cohort of 67 CRC and 44 controls. Taxonomic profiling and quantification were performed by direct sequence alignment against genome taxonomy database (GTDB). High-quality reads were also aligned to IGC datasets to obtain functional profiles defined by Kyoto Encyclopedia of Genes and Genomes (KEGG). A least absolute shrinkage and selection operator (LASSO) classifier was constructed to quantify risk scores of probability of disease and to discriminate CRC from normal for discovery, validation, Fudan, GloriousMed, and HongKong cohorts. Results A diverse spectrum of bacterial and fungi species were found to be either enriched (368) or reduced (113) in CRC patients (q<0.05). Similarly, metabolic functions associated with biosynthesis and metabolism of amino acids and fatty acids were significantly altered (q<0.05). The LASSO regression analysis of significant changes in the abundance of microbial species in CRC achieved areas under the receiver operating characteristic curve (AUROCs) of 0.94 and 0.91 in the ZhongShanMed and SouthernMed cohorts, respectively. A further analysis of Fudan, GloriousMed, and HK cohorts using the same classification model also demonstrated AUROC of 0.80, 0.78, and 0.91, respectively. Moreover, major CRC-associated bacterial biomarkers identified in this study were found to be coherently enriched or depleted across 10 metagenomic sequencing studies of gut microbiota. Conclusion A coherent signature of CRC-associated bacterial biomarkers modeled on LASSO binomial classifier maybe used accurately for early detection of CRC.
Collapse
Affiliation(s)
- Xudong Wu
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, Guangdong, China
| | - Zhimin Tang
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, Guangdong, China
| | - Rongsong Zhao
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, Guangdong, China
| | - Yusi Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, Guangdong, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) CO., Ltd, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
63
|
Wang SS, Lewis MJ, Pitzalis C. DNA Methylation Signatures of Response to Conventional Synthetic and Biologic Disease-Modifying Antirheumatic Drugs (DMARDs) in Rheumatoid Arthritis. Biomedicines 2023; 11:1987. [PMID: 37509625 PMCID: PMC10377185 DOI: 10.3390/biomedicines11071987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex condition that displays heterogeneity in disease severity and response to standard treatments between patients. Failure rates for conventional, target synthetic, and biologic disease-modifying rheumatic drugs (DMARDs) are significant. Although there are models for predicting patient response, they have limited accuracy, require replication/validation, or for samples to be obtained through a synovial biopsy. Thus, currently, there are no prediction methods approved for routine clinical use. Previous research has shown that genetics and environmental factors alone cannot explain the differences in response between patients. Recent studies have demonstrated that deoxyribonucleic acid (DNA) methylation plays an important role in the pathogenesis and disease progression of RA. Importantly, specific DNA methylation profiles associated with response to conventional, target synthetic, and biologic DMARDs have been found in the blood of RA patients and could potentially function as predictive biomarkers. This review will summarize and evaluate the evidence for DNA methylation signatures in treatment response mainly in blood but also learn from the progress made in the diseased tissue in cancer in comparison to RA and autoimmune diseases. We will discuss the benefits and challenges of using DNA methylation signatures as predictive markers and the potential for future progress in this area.
Collapse
Affiliation(s)
- Susan Siyu Wang
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| |
Collapse
|
64
|
Yang G, Yu XR, Weisenberger DJ, Lu T, Liang G. A Multi-Omics Overview of Colorectal Cancer to Address Mechanisms of Disease, Metastasis, Patient Disparities and Outcomes. Cancers (Basel) 2023; 15:cancers15112934. [PMID: 37296894 DOI: 10.3390/cancers15112934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Human colorectal cancer (CRC) is one of the most common malignancies in men and women across the globe, albeit CRC incidence and mortality shows a substantial racial and ethnic disparity, with the highest burden in African American patients. Even with effective screening tools such as colonoscopy and diagnostic detection assays, CRC remains a substantial health burden. In addition, primary tumors located in the proximal (right) or distal (left) sides of the colorectum have been shown to be unique tumor types that require unique treatment schema. Distal metastases in the liver and other organ systems are the major causes of mortality in CRC patients. Characterizing genomic, epigenomic, transcriptomic and proteomic (multi-omics) alterations has led to a better understanding of primary tumor biology, resulting in targeted therapeutic advancements. In this regard, molecular-based CRC subgroups have been developed that show correlations with patient outcomes. Molecular characterization of CRC metastases has highlighted similarities and differences between metastases and primary tumors; however, our understanding as to how to improve patient outcomes based on metastasis biology is lagging and remains a major obstacle to improving CRC patient outcomes. In this review, we will summarize the multi-omics features of primary CRC tumors and their metastases across racial and ethnic groups, the differences in proximal and distal tumor biology, molecular-based CRC subgroups, treatment strategies and challenges for improving patient outcomes.
Collapse
Affiliation(s)
- Guang Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- China Grand Enterprises, Beijing 100101, China
| | - Xi Richard Yu
- China Grand Enterprises, Beijing 100101, China
- Huadong Medicine Co., Ltd., Hangzhou 310011, China
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- State Key Laboratory of Natural Sciences, China Pharmaceutical University, Nanjing 211121, China
| | - Gangning Liang
- USC Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
65
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
66
|
Xiang Q, Zhou D, Xiang X, Le X, Deng C, Sun R, Li C, Pang H, He J, Zheng Z, Tang J, Peng W, Peng X, He X, Wu F, Qiu J, Xu Y, Xiang T. Neuroglobin plays as tumor suppressor by disrupting the stability of GPR35 in colorectal cancer. Clin Epigenetics 2023; 15:57. [PMID: 37005662 PMCID: PMC10067258 DOI: 10.1186/s13148-023-01472-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND The incidence of colorectal cancer (CRC) has increased in recent years. Identification of accurate tumor markers has become the focus of CRC research. Early and frequent DNA methylation tends to occur in cancer. Thus, identifying accurate methylation biomarkers would improve the efficacy of CRC treatment. Neuroglobin (NGB) is involved in neurological and oncological diseases. However, there are currently no reports on epigenetic regulation involvement of NGB in CRC. RESULTS NGB was downregulated or silenced in majority CRC tissues and cell lines. The hypermethylation of NGB was detected in tumor tissue, but no or a very low methylation frequency in normal tissues. Overexpression of NGB induced G2/M phase arrest and apoptosis, suppressed proliferation, migration, invasion in vitro, and inhibited CRC tumor growth and angiogenesis in vivo. Isobaric tag for relative and absolute quantitation (Itraq)-based proteomics identified approximately 40% proteins related to cell-cell adhesion, invasion, and tumor vessel formation in the tumor microenvironment, among which GPR35 was proved critical for NGB-regulated tumor angiogenesis suppression in CRC. CONCLUSIONS NGB, an epigenetically silenced factor, inhibits metastasis through the GPR35 in CRC. It is expected to grow into a potential cancer risk assessment factor and a valuable biomarker for early diagnosis and prognosis assessment of CRC.
Collapse
Affiliation(s)
- Qin Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Dishu Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xinni Xiang
- West China School of Medicine, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Le
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chaoqun Deng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ran Sun
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chunhong Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Huayang Pang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jin He
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zeze Zheng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Tang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiyan Peng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xi Peng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqian He
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fan Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| | - Yongzhu Xu
- Chongqing Blood Center, Chongqing, 400015, China.
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
67
|
Cecere F, Pignata L, Hay Mele B, Saadat A, D'Angelo E, Palumbo O, Palumbo P, Carella M, Scarano G, Rossi GB, Angelini C, Sparago A, Cerrato F, Riccio A. Co-Occurrence of Beckwith-Wiedemann Syndrome and Early-Onset Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15071944. [PMID: 37046605 PMCID: PMC10093120 DOI: 10.3390/cancers15071944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
CRC is an adult-onset carcinoma representing the third most common cancer and the second leading cause of cancer-related deaths in the world. EO-CRC (<45 years of age) accounts for 5% of the CRC cases and is associated with cancer-predisposing genetic factors in half of them. Here, we describe the case of a woman affected by BWSp who developed EO-CRC at age 27. To look for a possible molecular link between BWSp and EO-CRC, we analysed her whole-genome genetic and epigenetic profiles in blood, and peri-neoplastic and neoplastic colon tissues. The results revealed a general instability of the tumor genome, including copy number and methylation changes affecting genes of the WNT signaling pathway, CRC biomarkers and imprinted loci. At the germline level, two missense mutations predicted to be likely pathogenic were found in compound heterozygosity affecting the Cystic Fibrosis (CF) gene CFTR that has been recently classified as a tumor suppressor gene, whose dysregulation represents a severe risk factor for developing CRC. We also detected constitutional loss of methylation of the KCNQ1OT1:TSS-DMR that leads to bi-allelic expression of the lncRNA KCNQ1OT1 and BWSp. Our results support the hypothesis that the inherited CFTR mutations, together with constitutional loss of methylation of the KCNQ1OT1:TSS-DMR, initiate the tumorigenesis process. Further somatic genetic and epigenetic changes enhancing the activation of the WNT/beta-catenin pathway likely contributed to increase the growth advantage of cancer cells. Although this study does not provide any conclusive cause-effect relationship between BWSp and CRC, it is tempting to speculate that the imprinting defect of BWSp might accelerate tumorigenesis in adult cancer in the presence of predisposing genetic variants.
Collapse
Affiliation(s)
- Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Bruno Hay Mele
- Department of Biology, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Abu Saadat
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Emilia D'Angelo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Gioacchino Scarano
- Medical Genetics Unit, Azienda Ospedaliera "San Pio" P."Gaetano Rummo", 82100 Benevento, Italy
| | | | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo (IAC) "Mauro Picone", Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy
- Institute of Genetics and e Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), 80131 Napoli, Italy
| |
Collapse
|
68
|
Tan WY, Sharma A, Das P, Ahuja N. Early Detection of Cancers in the Era of Precision Oncology. Curr Opin Oncol 2023; 35:115-124. [PMID: 36721896 DOI: 10.1097/cco.0000000000000931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The increasing global incidence of cancer demands innovative cancer detection modalities. The current population-based early cancer detection approaches focus on several major types of cancers (breast, prostate, cervical, lung and colon) at their early stages, however, they generally do not target high-risk individuals at precancerous stages. RECENT FINDINGS Some cancers, such as pancreatic cancer, are challenging to detect in their early stages. Therefore, there is a pressing need for improved, accessible, noninvasive, and cost-effective early detection methods. Harnessing cell-free-based biomarker-driven strategies paves a new era of precision diagnosis for multicancer early detection. The majority of these tests are in the early stages and expensive, but these approaches are expected to become cost sensitive in the near future. SUMMARY This review provides an overview of early cancer detection strategies, highlighting the methods, challenges, and issues to be addressed to revolutionize and improve global early cancer detection.
Collapse
Affiliation(s)
| | - Anup Sharma
- Yale School of Medicine, Department of Surgery
| | | | - Nita Ahuja
- Yale School of Medicine, Department of Surgery
- Yale School of Medicine, Department of Pathology
- Yale School of Medicine, Biological and Biomedical Sciences Program (BBS), Yale University, New Haven, Connecticut, USA
| |
Collapse
|
69
|
Urh K, Zidar N, Boštjančič E. Bioinformatics Analysis of RNA-seq Data Reveals Genes Related to Cancer Stem Cells in Colorectal Cancerogenesis. Int J Mol Sci 2022; 23:ijms232113252. [PMID: 36362041 PMCID: PMC9654446 DOI: 10.3390/ijms232113252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSC) play one of the crucial roles in the pathogenesis of various cancers, including colorectal cancer (CRC). Although great efforts have been made regarding our understanding of the cancerogenesis of CRC, CSC involvement in CRC development is still poorly understood. Using bioinformatics and RNA-seq data of normal mucosa, colorectal adenoma, and carcinoma (n = 106) from GEO and TCGA, we identified candidate CSC genes and analyzed pathway enrichment analysis (PEI) and protein–protein interaction analysis (PPI). Identified CSC-related genes were validated using qPCR and tissue samples from 47 patients with adenoma, adenoma with early carcinoma, and carcinoma without and with lymph node metastasis and were compared to normal mucosa. Six CSC-related genes were identified: ANLN, CDK1, ECT2, PDGFD, TNC, and TNXB. ANLN, CDK1, ECT2, and TNC were differentially expressed between adenoma and adenoma with early carcinoma. TNC was differentially expressed in CRC without lymph node metastases whereas ANLN, CDK1, and PDGFD were differentially expressed in CRC with lymph node metastases compared to normal mucosa. ANLN and PDGFD were differentially expressed between carcinoma without and with lymph node metastasis. Our study identified and validated CSC-related genes that might be involved in early stages of CRC development (ANLN, CDK1, ECT2, TNC) and in development of metastasis (ANLN, PDGFD).
Collapse
|
70
|
Kaplun DS, Kaluzhny DN, Prokhortchouk EB, Zhenilo SV. DNA Methylation: Genomewide Distribution, Regulatory Mechanism and Therapy Target. Acta Naturae 2022; 14:4-19. [PMID: 36694897 PMCID: PMC9844086 DOI: 10.32607/actanaturae.11822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 01/22/2023] Open
Abstract
DNA methylation is the most important epigenetic modification involved in the regulation of transcription, imprinting, establishment of X-inactivation, and the formation of a chromatin structure. DNA methylation in the genome is often associated with transcriptional repression and the formation of closed heterochromatin. However, the results of genome-wide studies of the DNA methylation pattern and transcriptional activity of genes have nudged us toward reconsidering this paradigm, since the promoters of many genes remain active despite their methylation. The differences in the DNA methylation distribution in normal and pathological conditions allow us to consider methylation as a diagnostic marker or a therapy target. In this regard, the need to investigate the factors affecting DNA methylation and those involved in its interpretation becomes pressing. Recently, a large number of protein factors have been uncovered, whose ability to bind to DNA depends on their methylation. Many of these proteins act not only as transcriptional activators or repressors, but also affect the level of DNA methylation. These factors are considered potential therapeutic targets for the treatment of diseases resulting from either a change in DNA methylation or a change in the interpretation of its methylation level. In addition to protein factors, a secondary DNA structure can also affect its methylation and can be considered as a therapy target. In this review, the latest research into the DNA methylation landscape in the genome has been summarized to discuss why some DNA regions avoid methylation and what factors can affect its level or interpretation and, therefore, can be considered a therapy target.
Collapse
Affiliation(s)
- D. S. Kaplun
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071 Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119071 Russia
| | - D. N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - E. B. Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071 Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119071 Russia
| | - S. V. Zhenilo
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071 Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119071 Russia
| |
Collapse
|
71
|
Deng Y, Yang X, Hua H, Zhang C. IGFBP5 is Upregulated and Associated with Poor Prognosis in Colorectal Cancer. Int J Gen Med 2022; 15:6485-6497. [PMID: 35966504 PMCID: PMC9365118 DOI: 10.2147/ijgm.s370576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to investigate the role of IGFBP5 in colorectal cancer (CRC) and the relationship between the expression of IGFBP5 and clinicopathological parameters in CRC patients. Patients and Methods Immunohistochemical analysis was used to detect the expression of IGFBP5 and its correlation with clinicopathological parameters of CRC patients. Prognosis analysis, gene set enrichment analysis, and protein interaction network analysis were performed using bioinformatics analysis. The Genomics of Drug Sensitivity in Cancer (GDSC) dataset was used to analyze the correlation between the expression of IGFBP5 and drug resistance. Results Immunohistochemical analysis revealed that the expression of IGFBP5 was significantly higher in CRC tissues than in para-cancerous tissues (P < 0.05). High expression of IGFBP5 was associated with tumor differentiation and the N stage of CRC (P < 0.05). Moreover, high expression of IGFBP5 predicted worse overall survival and disease-free survival in CRC patients (P < 0.05). The expression of IGFBP5 was associated with cell–matrix adhesion, extracellular matrix binding, and collagen binding (P < 0.05). Furthermore, IGFBP5 was involved in the Hedgehog signaling pathway and PI3K-Akt signaling pathway (P < 0.05). IGF1, IGF2, SPP1, LTBP1, and FAM20C were most closely related to IGFBP5. Conclusion The expression of IGFBP5 is upregulated and associated with tumor differentiation, lymph node metastasis, drug resistance, and prognosis in CRC patients.
Collapse
Affiliation(s)
- Yu Deng
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xu Yang
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hongzhong Hua
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Cong Zhang
- Department of Pathology, Fuyang Hospital of Anhui Medical University, Fuyang, People's Republic of China
| |
Collapse
|
72
|
Sarhadi VK, Armengol G. Molecular Biomarkers in Cancer. Biomolecules 2022; 12:1021. [PMID: 35892331 PMCID: PMC9331210 DOI: 10.3390/biom12081021] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular cancer biomarkers are any measurable molecular indicator of risk of cancer, occurrence of cancer, or patient outcome. They may include germline or somatic genetic variants, epigenetic signatures, transcriptional changes, and proteomic signatures. These indicators are based on biomolecules, such as nucleic acids and proteins, that can be detected in samples obtained from tissues through tumor biopsy or, more easily and non-invasively, from blood (or serum or plasma), saliva, buccal swabs, stool, urine, etc. Detection technologies have advanced tremendously over the last decades, including techniques such as next-generation sequencing, nanotechnology, or methods to study circulating tumor DNA/RNA or exosomes. Clinical applications of biomarkers are extensive. They can be used as tools for cancer risk assessment, screening and early detection of cancer, accurate diagnosis, patient prognosis, prediction of response to therapy, and cancer surveillance and monitoring response. Therefore, they can help to optimize making decisions in clinical practice. Moreover, precision oncology is needed for newly developed targeted therapies, as they are functional only in patients with specific cancer genetic mutations, and biomarkers are the tools used for the identification of these subsets of patients. Improvement in the field of cancer biomarkers is, however, needed to overcome the scientific challenge of developing new biomarkers with greater sensitivity, specificity, and positive predictive value.
Collapse
Affiliation(s)
- Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Gemma Armengol
- Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
73
|
Yi Q, Peng J, Xu Z, Liang Q, Cai Y, Peng B, He Q, Yan Y. Spectrum of BRAF Aberrations and Its Potential Clinical Implications: Insights From Integrative Pan-Cancer Analysis. Front Bioeng Biotechnol 2022; 10:806851. [PMID: 35910024 PMCID: PMC9329936 DOI: 10.3389/fbioe.2022.806851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
B-Raf proto-oncogene serine/threonine-protein kinase (BRAF) is frequently altered in multiple cancer types, and BRAF V600 mutations act as a prime target for precision therapy. Although emerging evidence has investigated the role of BRAF, the comprehensive profiling of BRAF expression, alteration and clinical implications across various cancer types has not been reported. In this study, we used the TCGA dataset, covering 10,967 tumor samples across 32 cancer types, to analyze BRAF abnormal expression, DNA methylation, alterations (mutations and amplification/deletion), and their associations with patient survival. The results showed that BRAF expression, alteration frequency, mutation site distribution, and DNA methylation patterns varied tremendously among different cancer types. The expression of BRAF was found higher in PCPG and CHOL, and lower in TGCT and UCS compared to normal tissues. In terms of pathological stages, BRAF expression was significantly differentially expressed in COAD, KIRC, LUSC, and OV. The methylation levels of BRAF were significantly lower in LUSC, HNSC, and UCEC compared to normal tissue. The expression of BRAF and downstream gene (ETS2) was negatively correlated with methylation levels in various cancers. The overall somatic mutation frequency of BRAF was 7.7% for all cancer samples. Most fusion transcripts were found in THCA and SKCM with distinct fusion patterns. The majority of BRAF mutations were oncogenic and mainly distributed in the Pkinase_Tyr domain of THCA, SKCM, COADREAD, and LUAD. The BRAF mutations were divided into five levels according to the clinical targeted therapy implication. The results showed level 1 was mainly distributed in SKCM, COADREAD, and LUAD, while level 3B in THCA. The overall BRAF CNV frequency was about 42.7%, most of which was gain (75.9%), common in GBM, TGCT, and KIRP. In addition, the forest plot showed that increased BRAF expression was associated with poor patient overall survival in LIHC, OV, and UCEC. Taken together, this study provided a novel insight into the full alteration spectrum of BRAF and its implications for treatment and prognosis.
Collapse
Affiliation(s)
- Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qingchun He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
- Department of Emergency, Xiangya Changde Hospital, Changde, China
- *Correspondence: Yuanliang Yan, ; Qingchun He,
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuanliang Yan, ; Qingchun He,
| |
Collapse
|
74
|
Shen Y, Lian D, Shi K, Gao Y, Hu X, Yu K, Zhao Q, Feng C. Cancer Risk and Mutational Patterns Following Organ Transplantation. Front Cell Dev Biol 2022; 10:956334. [PMID: 35837331 PMCID: PMC9274140 DOI: 10.3389/fcell.2022.956334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid development of medical technology and widespread application of immunosuppressive drugs have improved the success rate of organ transplantation significantly. However, the use of immunosuppressive agents increases the frequency of malignancy greatly. With the prospect of “precision medicine” for tumors and development of next-generation sequencing technology, more attention has been paid to the application of high-throughput sequencing technology in clinical oncology research, which is mainly applied to the early diagnosis of tumors and analysis of tumor-related genes. All generations of cancers carry somatic mutations, meanwhile, significant differences were observed in mutational signatures across tumors. Systematic sequencing of cancer genomes from patients after organ transplantation can reveal DNA damage and repair processes in exposed cancer cells and their precursors. In this review, we summarize the application of high-throughput sequencing and organoids in the field of organ transplantation, the mutational patterns of cancer genomes, and propose a new research strategy for understanding the mechanism of cancer following organ transplantation.
Collapse
Affiliation(s)
- Yangyang Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Di Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kai Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuefeng Gao
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia, China
- Sanmenxia Polytechnic, Sanmenxia, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Kun Yu, ; Qian Zhao, ; Chungang Feng,
| | - Qian Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Kun Yu, ; Qian Zhao, ; Chungang Feng,
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Kun Yu, ; Qian Zhao, ; Chungang Feng,
| |
Collapse
|